1
|
Bohlen J, Bagarić I, Vatovec T, Ogishi M, Ahmed SF, Cederholm A, Buetow L, Sobrino S, Le Floc’h C, Arango-Franco CA, Seabra L, Michelet M, Barzaghi F, Leardini D, Saettini F, Vendemini F, Baccelli F, Catala A, Gambineri E, Veltroni M, Aguilar de la Red Y, Rice GI, Consonni F, Berteloot L, Largeaud L, Conti F, Roullion C, Masson C, Bessot B, Seeleuthner Y, Le Voyer T, Rinchai D, Rosain J, Neehus AL, Erazo-Borrás L, Li H, Janda Z, Cho EJ, Muratore E, Soudée C, Lainé C, Delabesse E, Goulvestre C, Ma CS, Puel A, Tangye SG, André I, Bole-Feysot C, Abel L, Erlacher M, Zhang SY, Béziat V, Lagresle-Peyrou C, Six E, Pasquet M, Alsina L, Aiuti A, Zhang P, Crow YJ, Landegren N, Masetti R, Huang DT, Casanova JL, Bustamante J. Autoinflammation in patients with leukocytic CBL loss of heterozygosity is caused by constitutive ERK-mediated monocyte activation. J Clin Invest 2024; 134:e181604. [PMID: 39403923 PMCID: PMC11475086 DOI: 10.1172/jci181604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Patients heterozygous for germline CBL loss-of-function (LOF) variants can develop myeloid malignancy, autoinflammation, or both, if some or all of their leukocytes become homozygous for these variants through somatic loss of heterozygosity (LOH) via uniparental isodisomy. We observed an upregulation of the inflammatory gene expression signature in whole blood from these patients, mimicking monogenic inborn errors underlying autoinflammation. Remarkably, these patients had constitutively activated monocytes that secreted 10 to 100 times more inflammatory cytokines than those of healthy individuals and CBL LOF heterozygotes without LOH. CBL-LOH hematopoietic stem and progenitor cells (HSPCs) outgrew the other cells, accounting for the persistence of peripheral monocytes homozygous for the CBL LOF variant. ERK pathway activation was required for the excessive production of cytokines by both resting and stimulated CBL-LOF monocytes, as shown in monocytic cell lines. Finally, we found that about 1 in 10,000 individuals in the UK Biobank were heterozygous for CBL LOF variants and that these carriers were at high risk of hematological and inflammatory conditions.
Collapse
Affiliation(s)
- Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Ivan Bagarić
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Taja Vatovec
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Syed F. Ahmed
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lori Buetow
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Steicy Sobrino
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Laboratory of Chromatin and Gene Regulation during Development, Paris Cité University, INSERM U1163, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM U1163, Imagine Institute, Paris, France
| | - Corentin Le Floc’h
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Luis Seabra
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Marine Michelet
- Unit of Allergy and Pneumology, Children’s Hospital, Toulouse, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Albert Catala
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Eleonora Gambineri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Marinella Veltroni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | | | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filippo Consonni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, Florence, Italy
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laureline Berteloot
- Department of Pediatric Imaging, Necker Hospital for Sick Children, Paris, France
- INSERM U1163, Paris, France
| | - Laetitia Largeaud
- Laboratory of Hematology, Hospital Center of the University of Toulouse, Toulouse, France
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Cécile Roullion
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Genomics Core Facility and
| | - Cécile Masson
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Bioinformatic Plateform, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Cité University, Paris, France
| | - Boris Bessot
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children–AP-HP, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Lucia Erazo-Borrás
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Zarah Janda
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - En-Jui Cho
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Heidelberg University, Heidelberg, Germany
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Eric Delabesse
- Department of Hematology, CHU and Centre de Recherche de Cancérologie de Toulouse, Paul-Sabatier University, Toulouse, France
| | | | - Cindy S. Ma
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Isabelle André
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
| | - Christine Bole-Feysot
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Genomics Core Facility and
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Chantal Lagresle-Peyrou
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Emmanuelle Six
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM U1163, Imagine Institute, Paris, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Oncology, Centre Hospitalo–Universitaire de Toulouse, Toulouse, France
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Yanick J. Crow
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Riccardo Masetti
- Unit of Allergy and Pneumology, Children’s Hospital, Toulouse, France
| | - Danny T. Huang
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children–AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children–AP-HP, Paris, France
| |
Collapse
|
2
|
Xu J, Zou Z, Liu W, Zhang Q, Shen J, Hao F, Chen G, Yu D, Li Y, Zhang Z, Qin Y, Yang R, Wang Y, Duan L. HAPLN3 p.T34A contributes to incomplete penetrance of moyamoya disease in Chinese carrying RNF213 p.R4810K. Eur J Neurol 2024:e16473. [PMID: 39315749 DOI: 10.1111/ene.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND PURPOSE The penetrance of the RNF213 p.R4810K, a founder mutation of moyamoya disease (MMD), is estimated to be only 1/150-1/300. However, the factors affecting its penetrance remain unclear. Therefore, our study aims to identify modifier genes associated with the incomplete penetrance of this founder mutation. METHODS Whole-exome sequencing (WES) was performed on 36 participants, including 22 MMD patients and 14 non-MMD controls with RNF213 p.R4810K mutation. Fisher's exact test was used to assess the presence of genetic variants that differed significantly between MMD patients and non-MMD controls. In order to exclude false-positive results, another 55 carriers were included to perform Fisher's exact test for the selected sites in the WES discovery stage. Subsequently, human brain microvascular endothelial cells were transfected with wild-type and mutant HAPLN3 for tube formation assays and western blotting to explore the impact of candidate genes on angiogenesis. RESULTS Analysis of variants from WES data revealed a total of 12 non-synonymous variants. Through bioinformatics analysis, the focus was on the HAPLN3 p.T34A variant with a significant p value of 0.00731 in Fisher's exact test. Validation through Sanger sequencing confirmed the presence of this variant in the WES data. In vitro experiments revealed that silencing HAPLN3 and transfecting HAPLN3 p.T34A significantly enhanced tube formation and increased the relative protein expression of vascular endothelial growth factor in endothelial cells. CONCLUSIONS These results suggest that HAPLN3 may function as a modifier gene of RNF213 p.R4810K, promoting the development of MMD and contributing to the incomplete penetrance of MMD founder mutations.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Zhengxing Zou
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wanyang Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Zhang
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Juan Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fangbin Hao
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Gan Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Dan Yu
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yunzhu Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Zhengshan Zhang
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuchen Qin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Rimiao Yang
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yue Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Lian Duan
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Stellacci E, Carter JN, Pannone L, Stevenson D, Moslehi D, Venanzi S, Bernstein JA, Tartaglia M, Martinelli S. Immunological and hematological findings as major features in a patient with a new germline pathogenic CBL variant. Am J Med Genet A 2024; 194:e63627. [PMID: 38613168 PMCID: PMC11223960 DOI: 10.1002/ajmg.a.63627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.
Collapse
Affiliation(s)
- Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| | - Jennefer N. Carter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- These authors equally contributed to this work
| | - Luca Pannone
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - David Stevenson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dorsa Moslehi
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Serenella Venanzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- These authors equally contributed to this work
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| |
Collapse
|
4
|
Munoz-Osores E, Piñones M, Barriga F, Wietstruck MA, Pérez-Mateluna G, Mellado C, Aracena M, Parra R, García C, Borzutzky A. Long-term remission of infantile Takayasu arteritis associated with germline CBL syndrome after allogeneic hematopoietic stem cell transplantation: A case report and literature review. Transpl Immunol 2024; 83:102013. [PMID: 38395087 DOI: 10.1016/j.trim.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Takayasu arteritis (TA) is a large-vessel vasculitis that rarely presents in infancy. Casitas B-lineage lymphoma (CBL) syndrome is a rare genetic disorder due to heterozygous CBL gene germline pathogenic variants that is characterized by a predisposition to develop juvenile myelomonocytic leukemia (JMML). Vasculitis, including TA, has been reported in several patients. Herein, we describe a patient with CBL syndrome, JMML, and TA, developing long-term remission of this vasculitis after allogeneic hematopoietic stem cell transplant (HSCT), and perform a literature review of CBL syndrome with vasculitis or vasculopathy. We report a female patient with growth delay, developmental issues, and congenital heart disease who was admitted at 14 months of age with massive splenomegaly, lymphadenopathy, fever, and hypertension. Body imaging studies revealed arterial stenosis and wall inflammation of the aorta and multiple thoracic and abdominal branches. Whole exome sequencing revealed a pathogenic variant in CBL with loss of heterozygosity in blood cells, diagnosing CBL syndrome, complicated by JMML and TA. Allogeneic HSCT induced remission of JMML and TA, permitting discontinuation of immunosuppression after 12 months. Six years later, her TA is in complete remission off therapy. A literature review identified 18 additional cases of CBL syndrome with vasculitis or vasculopathy. The pathogenesis of vasculitis in CBL syndrome appears to involve dysregulated T cell function and possibly increased angiogenesis. This case advances the understanding of vascular involvement in CBL syndrome and of the genetic, immune, and vascular interplay in TA, offering insights for treating CBL syndrome and broader TA.
Collapse
Affiliation(s)
- Elizabeth Munoz-Osores
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mervin Piñones
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barriga
- Section of Hematology and Oncology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Angélica Wietstruck
- Section of Hematology and Oncology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Pérez-Mateluna
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Mellado
- Section of Genetics, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Aracena
- Section of Genetics, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Parra
- Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián García
- Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arturo Borzutzky
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Slingerland AL, Keusch DS, Lehman LL, Smith ER, Srivastava S, See AP. Yield of genetic evaluation in non-syndromic pediatric moyamoya patients. Childs Nerv Syst 2024; 40:801-808. [PMID: 37778001 DOI: 10.1007/s00381-023-06167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Few guidelines exist for genetic testing of patients with moyamoya arteriopathy. This study aims to characterize the yield of genetic testing of non-syndromic moyamoya patients given the current pre-test probability. METHODS All pediatric moyamoya patients who received revascularization surgery at one institution between 2018 and 2022 were retrospectively reviewed. Patients with previously diagnosed moyamoya syndromes or therapeutic cranial radiation were excluded. RESULTS Of 117 patients with moyamoya, 74 non-syndromic patients (44 females, 59%) were eligible. The median age at surgery was 8.1 years. Neurosurgeons referred 18 (24%) patients for neurogenetic evaluation. Eleven (61%) patients subsequently underwent genetic testing. Eight (73%) patients had available testing results. Five (62.5%) of these patients had developmental delay compared to 16 (22%) of the entire cohort. Six (75%) patients who underwent genetic testing were found to have at least one genetic variant. These results led to diagnosis of a new genetic disorder for 1 (12.5%) patient and screening recommendations for 2 (25%) patients. An RNF213 variant in one patient led to recommendations for family member screening and pulmonary hypertension screening. Another patient was diagnosed with CBL disorder and referred for cancer screening. The median age at surgery in patients with clinically actionable findings was 4.6 years compared to 9.2 years in those who were referred for genetic testing. All 3 patients who had an actionable finding had developmental delay. CONCLUSION It may be beneficial to refer moyamoya patients under 5 for genetic screening given the high likelihood of discovering actionable mutations.
Collapse
Affiliation(s)
- Anna L Slingerland
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Dylan S Keusch
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred P See
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Ge P, Yin Z, Tao C, Zeng C, Yu X, Lei S, Li J, Zhai Y, Ma L, He Q, Liu C, Liu W, Zhang B, Zheng Z, Mou S, Zhao Z, Wang S, Sun W, Guo M, Zheng S, Zhang J, Deng X, Liu X, Ye X, Zhang Q, Wang R, Zhang Y, Zhang S, Wang C, Yang Z, Zhang N, Wu M, Sun J, Zhou Y, Shi Z, Ma Y, Zhou J, Yu S, Li J, Lu J, Gao F, Wang W, Chen Y, Zhu X, Zhang D, Zhao J. Multiomics and blood-based biomarkers of moyamoya disease: protocol of Moyamoya Omics Atlas (MOYAOMICS). Chin Neurosurg J 2024; 10:5. [PMID: 38326922 PMCID: PMC10851534 DOI: 10.1186/s41016-024-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Moyamoya disease (MMD) is a rare and complex cerebrovascular disorder characterized by the progressive narrowing of the internal carotid arteries and the formation of compensatory collateral vessels. The etiology of MMD remains enigmatic, making diagnosis and management challenging. The MOYAOMICS project was initiated to investigate the molecular underpinnings of MMD and explore potential diagnostic and therapeutic strategies. METHODS The MOYAOMICS project employs a multidisciplinary approach, integrating various omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, to comprehensively examine the molecular signatures associated with MMD pathogenesis. Additionally, we will investigate the potential influence of gut microbiota and brain-gut peptides on MMD development, assessing their suitability as targets for therapeutic strategies and dietary interventions. Radiomics, a specialized field in medical imaging, is utilized to analyze neuroimaging data for early detection and characterization of MMD-related brain changes. Deep learning algorithms are employed to differentiate MMD from other conditions, automating the diagnostic process. We also employ single-cellomics and mass cytometry to precisely study cellular heterogeneity in peripheral blood samples from MMD patients. CONCLUSIONS The MOYAOMICS project represents a significant step toward comprehending MMD's molecular underpinnings. This multidisciplinary approach has the potential to revolutionize early diagnosis, patient stratification, and the development of targeted therapies for MMD. The identification of blood-based biomarkers and the integration of multiple omics data are critical for improving the clinical management of MMD and enhancing patient outcomes for this complex disease.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaofan Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shixiong Lei
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Beijing, China
| | - Shuai Zheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaosen Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Chengjun Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ziwen Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Nijia Zhang
- Department of Neurosurgery, Beijing Childrens Hospital, Capital Medical University, Beijing, China
| | - Mingxing Wu
- Department of Neurosurgery, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jian Sun
- Department of Neurosurgery, Beijing Changping District Hospital, Beijing, China
| | - Yujia Zhou
- Department of Neurosurgery, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yonggang Ma
- Department of NeuroInterventional Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jianpo Zhou
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochen Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Junli Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Faliang Gao
- Department of Neurosurgery, Center for Rehabilitation Medicine, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
7
|
Antonelli V, Maimone G, Fuschillo D, Turrini A, Draghi R, Riccioni L, Calbucci F, Tosatto L. De novo cavernous angiomas associated with developmental venous anomaly: a mini-series and literature review. J Neurosurg Sci 2023; 67:758-766. [PMID: 35301833 DOI: 10.23736/s0390-5616.21.05512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Despite being previously considered as congenital lesions, recent studies agree to classify cerebral cavernous malformations (CCM) as acquired forms with clear correlations with other pathological affections of the central nervous system (CNS). In addition, a special subgroup, notably known as de novo CCMs (dnCCM), are associated in a significant number of cases with developmental venous anomalies (DVAs) and, in other cases, with Radiotherapy treatments. METHODS A mini-series of 4 patients with clinical history characterized by developing dnCCM is reported. In three patients, the dnCCM was associated with the presence of an isolated DVA. In one case, no DVA was detected, but the patient underwent brain radiotherapy. In three cases, the dnCCM was clinically symptomatic, and the patients were submitted to a surgical procedure for lesion removal. In one case, the dnCCM was detected during MRI follow-up. RESULTS Adding a review of the literature, we describe 47 patients who presented dnCCMs. The most common presentation is a sporadic CCM with a DVA, and the onset presentation was bleeding in 4 out of 47 cases (8.5%). Bleeding of dnCCM was observed in 9 out of 47 cases (19%), and the choice treatment was surgical in 24 out of 47 cases (51%). CONCLUSIONS We present our series with a review of the recent literature and discuss the "de novo" cavernous malformation pathogenesis. A throughout review of recent literature is reported to clarify the predisposing factors that may lead to dnCCM development in patients carrying specific genetic and molecular features. Considering the high risk of bleeding, strict follow-up and aggressive treatment should be evaluated in dnCCM management.
Collapse
Affiliation(s)
- Vincenzo Antonelli
- Department of Neurosurgery, M. Bufalini Hospital, Cesena, Forlì-Cesena, Italy
| | - Giuseppe Maimone
- Department of Neurosurgery, M. Bufalini Hospital, Cesena, Forlì-Cesena, Italy -
| | - Dalila Fuschillo
- Department of Neurosurgery, M. Bufalini Hospital, Cesena, Forlì-Cesena, Italy
| | - Alessandra Turrini
- Department of Neurosurgery, M. Bufalini Hospital, Cesena, Forlì-Cesena, Italy
| | - Riccardo Draghi
- Department of Neurosurgery, Villa Maria Hospital, Cotignola, Ravenna, Italy
| | - Luca Riccioni
- Department of Pathology, M. Bufalini Hospital, Cesena, Forlì-Cesena, Italy
| | - Fabio Calbucci
- Department of Neurosurgery, Villa Maria Hospital, Cotignola, Ravenna, Italy
| | - Luigino Tosatto
- Department of Neurosurgery, M. Bufalini Hospital, Cesena, Forlì-Cesena, Italy
| |
Collapse
|
8
|
Chida-Nagai A, Tonoki H, Makita N, Ishiyama H, Ihara M, Maruo Y, Tsujioka T, Sasaki D, Izumi G, Yamazawa H, Kato N, Ito M, Fujimura M, Sasaki O, Takeda A. A Noonan-like pediatric patient with a de novo CBL pathogenic variant and an RNF213 polymorphism p.R4810K presenting with cardiopulmonary arrest due to left main coronary artery ostial atresia. Am J Med Genet A 2023; 191:2837-2842. [PMID: 37554039 DOI: 10.1002/ajmg.a.63370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Left main coronary artery ostial atresia (LMCAOA) is an extremely rare condition. Here, we report the case of a 14-year-old boy with Noonan syndrome-like disorder in whom LMCAOA was detected following cardiopulmonary arrest. The patient had been diagnosed with Noonan syndrome-like disorder with a pathogenic splice site variant of CBL c.1228-2 A > G. He suddenly collapsed when he was running. After administering two electric shocks using an automated external defibrillator, the patient's heartbeat resumed. Cardiac catheterization confirmed the diagnosis of LMCAOA. Left main coronary artery angioplasty was performed. The patient was discharged without neurological sequelae. Brain magnetic resonance imaging revealed asymptomatic Moyamoya disease. In addition, RNF213 c.14429 G > A p.R4810K was identified. There are no reports on congenital coronary malformations of compound variations of RNF213 and CBL. In contrast, the RNF213 p.R4810K polymorphism has been established as a risk factor for angina pectoris and myocardial infarction in adults, and several congenital coronary malformations due to genetic abnormalities within the RAS/MAPK signaling pathway have been reported. This report aims to highlight the risk of sudden death in patients with RASopathy and RNF213 p.R4810K polymorphism and emphasize the significance of actively searching for coronary artery morphological abnormalities in these patients.
Collapse
Affiliation(s)
- Ayako Chida-Nagai
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Hidefumi Tonoki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Medical Genetics Center, Tenshi Hospital, Sapporo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuji Maruo
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Takao Tsujioka
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Gaku Izumi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Hirokuni Yamazawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Nobuyasu Kato
- Department of Cardiovascular Surgery, Hokkaido University, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Sasaki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Department of Pediatrics, Tenshi Hospital, Sapporo, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
9
|
Zanoni P, Steindl K, Sticht H, Oneda B, Joset P, Ivanovski I, Horn AHC, Cabello EM, Laube J, Zweier M, Baumer A, Rauch A, Khan N. The genetic landscape and clinical implication of pediatric Moyamoya angiopathy in an international cohort. Eur J Hum Genet 2023; 31:784-792. [PMID: 37012328 PMCID: PMC10325976 DOI: 10.1038/s41431-023-01320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 04/05/2023] Open
Abstract
Pediatric Moyamoya Angiopathy (MMA) is a progressive intracranial occlusive arteriopathy that represents a leading cause of transient ischemic attacks and strokes in childhood. Despite this, up to now no large, exclusively pediatric MMA cohort has been subjected to systematic genetic investigation. In this study, we performed molecular karyotyping, exome sequencing and automated structural assessment of missense variants on a series of 88 pediatric MMA patients and correlated genetic, angiographic and clinical (stroke burden) findings. The two largest subgroups in our cohort consisted of RNF213 and neurofibromatosis type 1 (NF1) patients. While deleterious RNF213 variants were associated with a severe MMA clinical course with early symptom onset, frequent posterior cerebral artery involvement and higher stroke rates in multiple territories, NF1 patients had a similar infarct burden compared to non-NF1 individuals and were often diagnosed incidentally during routine MRIs. Additionally, we found that MMA-associated RNF213 variants have lower predicted functional impact compared to those associated with aortic disease. We also raise the question of MMA as a feature of recurrent as well as rare chromosomal imbalances and further support the possible association of MMA with STAT3 deficiency. In conclusion, we provide a comprehensive characterization at the genetic and clinical level of a large exclusively pediatric MMA population. Due to the clinical differences found across genetic subgroups, we propose genetic testing for risk stratification as part of the routine assessment of pediatric MMA patients.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland.
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Elena M Cabello
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Julia Laube
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, 8000, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8000, Switzerland.
- Moyamoya Center, University Children's Hospital, University of Zurich, Zurich, 8032, Switzerland.
| | - Nadia Khan
- Moyamoya Center, University Children's Hospital, University of Zurich, Zurich, 8032, Switzerland.
| |
Collapse
|
10
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
11
|
Bersano A, Khan N, Fuentes B, Acerbi F, Canavero I, Tournier-Lasserve E, Vajcoczy P, Zedde ML, Hussain S, Lémeret S, Kraemer M, Herve D. European Stroke Organisation (ESO) Guidelines on Moyamoya angiopathy: Endorsed by Vascular European Reference Network (VASCERN). Eur Stroke J 2023; 8:55-84. [PMID: 37021176 PMCID: PMC10069176 DOI: 10.1177/23969873221144089] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/16/2022] [Indexed: 02/05/2023] Open
Abstract
The European Stroke Organisation (ESO) guidelines on Moyamoya Angiopathy (MMA), developed according to ESO standard operating procedure and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology, were compiled to assist clinicians in managing patients with MMA in their decision making. A working group involving neurologists, neurosurgeons, a geneticist and methodologists identified nine relevant clinical questions, performed systematic literature reviews and, whenever possible, meta-analyses. Quality assessment of the available evidence was made with specific recommendations. In the absence of sufficient evidence to provide recommendations, Expert Consensus Statements were formulated. Based on low quality evidence from one RCT, we recommend direct bypass surgery in adult patients with haemorrhagic presentation. For ischaemic adult patients and children, we suggest revascularization surgery using direct or combined technique rather than indirect, in the presence of haemodynamic impairment and with an interval of 6–12 weeks between the last cerebrovascular event and surgery. In the absence of robust trial, an Expert Consensus was reached recommending long-term antiplatelet therapy in non-haemorrhagic MMA, as it may reduce risk of embolic stroke. We also agreed on the utility of performing pre- and post- operative haemodynamic and posterior cerebral artery assessment. There were insufficient data to recommend systematic variant screening of RNF213 p.R4810K. Additionally, we suggest that long-term MMA neuroimaging follow up may guide therapeutic decision making by assessing the disease progression. We believe that this guideline, which is the first comprehensive European guideline on MMA management using GRADE methods will assist clinicians to choose the most effective management strategy for MMA.
Collapse
Affiliation(s)
- Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nadia Khan
- Moyamoya Center, University Children’s Hospital Zurich, Switzerland
- Moyamoya Center for adults, Department of Neurosurgery, University Tubingen, Germany
| | - Blanca Fuentes
- Department of Neurology and Stroke Center, Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Francesco Acerbi
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Peter Vajcoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Germany
| | - Maria Luisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Italy
| | | | | | - Markus Kraemer
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dominique Herve
- CNVT-CERVCO et département de Neurologie, Hôpital Lariboisière, APHP Nord, Paris, France
| |
Collapse
|
12
|
Hausman-Kedem M, Herring R, Torres MD, Santoro JD, Kaseka ML, Vargas C, Amico G, Bertamino M, Nagesh D, Tilley J, Schenk A, Ben-Shachar S, Musolino PL. The Genetic Landscape of Ischemic Stroke in Children - Current Knowledge and Future Perspectives. Semin Pediatr Neurol 2022; 44:100999. [PMID: 36456039 DOI: 10.1016/j.spen.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Stroke in childhood has multiple etiologies, which are mostly distinct from those in adults. Genetic discoveries over the last decade pointed to monogenic disorders as a rare but significant cause of ischemic stroke in children and young adults, including small vessel and arterial ischemic stroke. These discoveries contributed to the understanding that stroke in children may be a sign of an underlying genetic disease. The identification of these diseases requires a detailed medical and family history collection, a careful clinical evaluation for the detection of systemic symptoms and signs, and neuroimaging assessment. Establishing an accurate etiological diagnosis and understanding the genetic risk factors for stroke are essential steps to decipher the underlying mechanisms, optimize the design of tailored prevention strategies, and facilitate the identification of novel therapeutic targets in some cases. Despite the increasing recognition of monogenic causes of stroke, genetic disorders remain understudied and therefore under-recognized in children with stroke. Increased awareness among healthcare providers is essential to facilitate accurate diagnosis in a timely manner. In this review, we provide a summary of the main single-gene disorders which may present as ischemic stroke in childhood and describe their clinical manifestations. We provide a set of practical suggestions for the diagnostic work up of these uncommon causes of stroke, based upon the stroke subtype and imaging characteristics that may suggest a monogenic diagnosis of ischemic stroke in children. Current hurdles in the genetic analyses of children with ischemic stroke as well as future prospectives are discussed.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Israel; The Sacker Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rachelle Herring
- Neurology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Marcela D Torres
- Hematology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Jonathan D Santoro
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | | | - Carolina Vargas
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giulia Amico
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Deepti Nagesh
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | - Jo Tilley
- Departments of Hematology and Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Allyson Schenk
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Shay Ben-Shachar
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA; Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat Gan, Israel
| | - Patricia L Musolino
- Center for Genomic Medicine, Center for Rare Neurological Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Weaver KN, Gripp KW. Central nervous system involvement in individuals with RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:494-500. [PMID: 36454176 DOI: 10.1002/ajmg.c.32023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Central nervous system (CNS) anomalies are common in individuals with RASopathies. While certain findings, including relative or absolute macrocephaly, are typical for most RASopathies, other findings are more common in certain conditions, with rare low-grade gliomas in Noonan syndrome (NS); Chiari 1 malformation and tethered cord in Costello syndrome (CS); and variable structural anomalies including heterotopia and hydrocephalus in cardio-facio-cutaneous syndrome (CFC). We performed a literature review and present aggregate data on the common and uncommon CNS manifestations in individuals with RASopathies. A gene-based approach to defining risk for specific abnormalities may be considered. However, limited information on the CNS findings of rare RASopathies, such as autosomal recessive LZTR1-related NS or PPP1CB-related NS with loose anagen hair (NSLH), is currently available. Thus, consideration of the RASopathies as a group of distinct syndromic conditions with shared underlying causes and overlapping clinical presentations remains relevant, and individuals with a RASopathy are at risk for many findings seen in these conditions.
Collapse
Affiliation(s)
- K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, Delaware, USA.,S. Kimmel Medical College, T. Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Baccelli F, Leardini D, Muratore E, Messelodi D, Bertuccio SN, Chiriaco M, Cancrini C, Conti F, Castagnetti F, Pedace L, Pession A, Yoshimi A, Niemeyer C, Tartaglia M, Locatelli F, Masetti R. Immune dysregulation associated with co-occurring germline CBL and SH2B3 variants. Hum Genomics 2022; 16:40. [PMID: 36123612 PMCID: PMC9484243 DOI: 10.1186/s40246-022-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background CBL syndrome is a RASopathy caused by heterozygous germline mutations of the Casitas B-lineage lymphoma (CBL) gene. It is characterized by heterogeneous clinical phenotype, including developmental delay, facial dysmorphisms, cardiovascular malformations and an increased risk of cancer development, particularly juvenile myelomonocytic leukemia (JMML). Although the clinical phenotype has been progressively defined in recent years, immunological manifestations have not been well elucidated to date.
Methods We studied the genetic, immunological, coagulative, and clinical profile of a family with CBL syndrome that came to our observation after the diagnosis of JMML, with homozygous CBL mutation, in one of the members. Results Variant analysis revealed the co-occurrence of CBL heterozygous mutation (c.1141 T > C) and SH2B3 mutation (c.1697G > A) in two other members. Patients carrying both mutations showed an ALPS-like phenotype characterized by lymphoproliferation, cytopenia, increased double-negative T-cells, impaired Fas-mediated lymphocyte apoptosis, altered cell death in PBMC and low TRECs expression. A coagulative work-up was also performed and showed the presence of subclinical coagulative alterations in patients carrying both mutations. Conclusion In the reported family, we described immune dysregulation, as part of the clinical spectrum of CBL mutation with the co-occurrence of SH2B3. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00414-y.
Collapse
Affiliation(s)
- Francesco Baccelli
- Pediatric Oncology and Hematology "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy.
| | - Edoardo Muratore
- Pediatric Oncology and Hematology "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Daria Messelodi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| | | | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Caterina Cancrini
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.,Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, 00165, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Fausto Castagnetti
- Hematology "Lorenzo E Ariosto Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Lucia Pedace
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, 00165, Rome, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.,Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, 00165, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, 00165, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
15
|
Moyamoya disease emerging as an immune-related angiopathy. Trends Mol Med 2022; 28:939-950. [DOI: 10.1016/j.molmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
16
|
Pollaci G, Gorla G, Potenza A, Carrozzini T, Canavero I, Bersano A, Gatti L. Novel Multifaceted Roles for RNF213 Protein. Int J Mol Sci 2022; 23:ijms23094492. [PMID: 35562882 PMCID: PMC9099590 DOI: 10.3390/ijms23094492] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ring Finger Protein 213 (RNF213), also known as Mysterin, is the major susceptibility factor for Moyamoya Arteriopathy (MA), a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Although several rare RNF213 polymorphisms have been reported, no major susceptibility variant has been identified to date in Caucasian patients, thus frustrating the attempts to identify putative therapeutic targets for MA treatment. For these reasons, the investigation of novel biochemical functions, substrates and unknown partners of RNF213 will help to unravel the pathogenic mechanisms of MA and will facilitate variant interpretations in a diagnostic context in the future. The aim of the present review is to discuss novel perspectives regarding emerging RNF213 roles in light of recent literature updates and dissect their relevance for understanding MA and for the design of future research studies. Since its identification, RNF213 involvement in angiogenesis and vasculogenesis has strengthened, together with its role in inflammatory signals and proliferation pathways. Most recent studies have been increasingly focused on its relevance in antimicrobial activity and lipid metabolism, highlighting new intriguing perspectives. The last area could suggest the main role of RNF213 in the proteasome pathway, thus reinforcing the hypotheses already previously formulated that depict the protein as an important regulator of the stability of client proteins involved in angiogenesis. We believe that the novel evidence reviewed here may contribute to untangling the complex and still obscure pathogenesis of MA that is reflected in the lack of therapies able to slow down or halt disease progression and severity.
Collapse
Affiliation(s)
- Giuliana Pollaci
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Gemma Gorla
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Antonella Potenza
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Tatiana Carrozzini
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
| | - Isabella Canavero
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (I.C.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (I.C.); (A.B.)
| | - Laura Gatti
- Laboratory of Neurobiology, Neurology IX Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.P.); (G.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +39-02-23942389
| |
Collapse
|
17
|
Abdelilah-Seyfried S, Iruela-Arispe ML, Penninger JM, Tournier-Lasserve E, Vikkula M, Cleaver O. Recalibrating vascular malformations and mechanotransduction by pharmacological intervention. J Clin Invest 2022; 132:e160227. [PMID: 35426368 PMCID: PMC9012280 DOI: 10.1172/jci160227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elisabeth Tournier-Lasserve
- INSERM UMR 1141 Neurodiderot, University of Paris, Paris, France
- AP-HP, Department of Genetics of Neurovascular Diseases, Hôpital Saint-Louis, Paris, France
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Brussels, Belgium
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers (Basel) 2022; 14:cancers14030839. [PMID: 35159106 PMCID: PMC8833995 DOI: 10.3390/cancers14030839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CBL mutations are progressively being described as involved in different clinical manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that includes multisystemic involvement characterized by variable phenotypic expression and expressivity. In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of the molecular mechanisms in which CBL exerts its pathogenic role. Abstract CBL plays a key role in different cell pathways, mainly related to cancer onset and progression, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement characterized by variable phenotypic expression and expressivity. This review provides a comprehensive overview of the molecular mechanisms in which CBL exerts its function and describes the clinical manifestation of CBL mutations in humans.
Collapse
|
19
|
Po' C, Nosadini M, Zedde M, Pascarella R, Mirone G, Cicala D, Rosati A, Cosi A, Toldo I, Colombatti R, Martelli P, Iodice A, Accorsi P, Giordano L, Savasta S, Foiadelli T, Sanfilippo G, Lafe E, Thyrion FZ, Polonara G, Campa S, Raviglione F, Scelsa B, Bova SM, Greco F, Cordelli DM, Cirillo L, Toni F, Baro V, Causin F, Frigo AC, Suppiej A, Sainati L, Azzolina D, Agostini M, Cesaroni E, De Carlo L, Di Rosa G, Esposito G, Grazian L, Morini G, Nicita F, Operto FF, Pruna D, Ragazzi P, Rollo M, Spalice A, Striano P, Skabar A, Lanterna LA, Carai A, Marras CE, Manara R, Sartori S. Pediatric Moyamoya Disease and Syndrome in Italy: A Multicenter Cohort. Front Pediatr 2022; 10:892445. [PMID: 35601411 PMCID: PMC9120837 DOI: 10.3389/fped.2022.892445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Moyamoya is a rare progressive cerebral arteriopathy, occurring as an isolated phenomenon (moyamoya disease, MMD) or associated with other conditions (moyamoya syndrome, MMS), responsible for 6-10% of all childhood strokes and transient ischemic attacks (TIAs). METHODS We conducted a retrospective multicenter study on pediatric-onset MMD/MMS in Italy in order to characterize disease presentation, course, management, neuroradiology, and outcome in a European country. RESULTS A total of 65 patients (34/65 women) with MMD (27/65) or MMS (38/65) were included. About 18% (12/65) of patients were asymptomatic and diagnosed incidentally during investigations performed for an underlying condition (incMMS), whereas 82% (53/65) of patients with MMD or MMS were diagnosed due to the presence of neurological symptoms (symptMMD/MMS). Of these latter, before diagnosis, 66% (43/65) of patients suffered from cerebrovascular events with or without other manifestations (ischemic stroke 42%, 27/65; TIA 32%, 21/65; and no hemorrhagic strokes), 18% (12/65) of them reported headache (in 4/12 headache was not associated with any other manifestation), and 26% (17/65) of them experienced multiple phenotypes (≥2 among: stroke/TIA/seizures/headache/others). Neuroradiology disclosed ≥1 ischemic lesion in 67% (39/58) of patients and posterior circulation involvement in 51% (30/58) of them. About 73% (47/64) of patients underwent surgery, and 69% (45/65) of them received aspirin, but after diagnosis, further stroke events occurred in 20% (12/61) of them, including operated patients (11%, 5/47). Between symptom onset and last follow-up, the overall patient/year incidence of stroke was 10.26% (IC 95% 7.58-13.88%). At last follow-up (median 4 years after diagnosis, range 0.5-15), 43% (26/61) of patients had motor deficits, 31% (19/61) of them had intellectual disability, 13% (8/61) of them had epilepsy, 11% (7/61) of them had behavioral problems, and 25% (13/52) of them had mRS > 2. The proportion of final mRS > 2 was significantly higher in patients with symptMMD/MMS than in patients with incMMS (p = 0.021). Onset age <4 years and stroke before diagnosis were significantly associated with increased risk of intellectual disability (p = 0.0010 and p = 0.0071, respectively) and mRS > 2 at follow-up (p = 0.0106 and p = 0.0009, respectively). CONCLUSIONS Moyamoya is a severe condition that may affect young children and frequently cause cerebrovascular events throughout the disease course, but may also manifest with multiple and non-cerebrovascular clinical phenotypes including headache (isolated or associated with other manifestations), seizures, and movement disorder. Younger onset age and stroke before diagnosis may associate with increased risk of worse outcome (final mRS > 2).
Collapse
Affiliation(s)
- Chiara Po'
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.,Department of Women's and Children's Health, University of Padova, Padova, Italy.,Unit of Pediatrics, AULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Treviso, Italy
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.,Neuroimmunology Group, Paediatric Research Institute "Città della Speranza", Padova, Italy
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Arcispedale S. Maria Nuova AUSL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Giuseppe Mirone
- Pediatric Neurosurgery Unit, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Domenico Cicala
- Pediatric Neuroradiology, Department of Neuroscience, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Anna Rosati
- Department of Neuroscience, Children's Hospital Anna Meyer, University of Firenze, Firenze, Italy
| | - Alessandra Cosi
- Department of Neuroscience, Children's Hospital Anna Meyer, University of Firenze, Firenze, Italy
| | - Irene Toldo
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Raffaella Colombatti
- Clinic of Pediatric Hematology Oncology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Paola Martelli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Iodice
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Patrizia Accorsi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lucio Giordano
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Giuseppina Sanfilippo
- Department of Diagnostic and Interventional Radiology and Neuroradiology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elvis Lafe
- Department of Diagnostic and Interventional Radiology and Neuroradiology, IRCSS Policlinico San Matteo, Pavia, Italy
| | - Federico Zappoli Thyrion
- Department of Diagnostic and Interventional Radiology and Neuroradiology, IRCSS Policlinico San Matteo, Pavia, Italy
| | - Gabriele Polonara
- Neuroradiology - Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Campa
- Neuroradiology Unit, University Hospital "Ospedali Riuniti di Ancona, " Università Politecnica delle Marche, Ancona, Italy
| | | | - Barbara Scelsa
- Department of Pediatric Neurology, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Stefania Maria Bova
- Department of Pediatric Neurology, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Filippo Greco
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University Hospital A.U.O. "Policlinico-San Marco" of Catania, Catania, Italy
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luigi Cirillo
- Neuroradiology Unit, IRCSS "Istituto delle Scienze Neurologiche di Bologna, " Ospedale Bellaria, Bologna, Italy
| | - Francesco Toni
- Neuroradiology Unit, IRCSS "Istituto delle Scienze Neurologiche di Bologna, " Ospedale Bellaria, Bologna, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Francesco Causin
- Neuroradiology, Department of Neurological Sciences, University of Padova, Padova, Italy
| | - Anna Chiara Frigo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Agnese Suppiej
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.,Pediatric Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Laura Sainati
- Clinic of Pediatric Hematology Oncology, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Manuela Agostini
- Department of Pediatrics, Regina Margherita Children's Hospital, Torino, Italy
| | - Elisabetta Cesaroni
- Department of Child Neuropsychiatry, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Luigi De Carlo
- Pediatric Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, Messina, Italy
| | - Giacomo Esposito
- Pediatric Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, Roma, Italy
| | - Luisa Grazian
- Unit of Pediatrics, AULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Treviso, Italy
| | - Giovanna Morini
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Child Neurology Division, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Dario Pruna
- Neurology and Epileptology Unit, Department of Pediatric, ARNAS Brotzu, Cagliari, Italy
| | - Paola Ragazzi
- Department of Neurosurgery, "Regina Margherita" Children's Hospital, Torino, Italy
| | - Massimo Rollo
- Interventional Radiology Unit, Department of Imaging, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Alberto Spalice
- Department of Maternal Sciences, Sapienza University, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "Istituto Giannina Gaslini", Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Aldo Skabar
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Andrea Carai
- Pediatric Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, Roma, Italy
| | - Carlo Efisio Marras
- Pediatric Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, Roma, Italy
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurological Sciences, University of Padova, Padova, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.,Department of Women's and Children's Health, University of Padova, Padova, Italy.,Department of Neuroscience, University of Padova, Padova, Italy.,Neuroimmunology Group, Paediatric Research Institute "Città della Speranza", Padova, Italy
| |
Collapse
|
20
|
Miller R, Unda SR, Holland R, Altschul DJ. Western Moyamoya Phenotype: A Scoping Review. Cureus 2021; 13:e19812. [PMID: 34956795 PMCID: PMC8693830 DOI: 10.7759/cureus.19812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Moyamoya, a rare angiographic finding, is characterized by chronic and progressive stenosis at the terminal end of the internal carotid artery, followed by collateralization of the cerebral vasculature at the base of the skull. Coined by Suzuki and Takaku in 1969, the term "moyamoya" means a "puff of smoke" in Japanese, a reference to the angiographic appearance of moyamoya collateralization. Moyamoya is most commonly found in East Asian countries, where much governmental and civilian effort has been expended to characterize this unique disease process. However, despite its rarity, the occurrence of moyamoya in Western countries is associated with significant divergence regarding incidence, gender, sex, age at diagnosis, clinical presentation, and outcomes. Here, we attempted to review the Western literature on moyamoya presentation using the PubMed database to characterize the Western phenotype of moyamoya. We were guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR). We reviewed papers generated from a search with keywords "moyamoya case report," those reported from a Western institution, and those reported on a relevant association. Our scoping review demonstrated various clinical associations with moyamoya. Moreover, we summarized the demographic profile and clinical symptomatology, as well as reported disease associations to better elucidate the Western phenotype of moyamoya.
Collapse
Affiliation(s)
- Raphael Miller
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - Santiago R Unda
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - Ryan Holland
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - David J Altschul
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|
21
|
Late moyamoya-like angiopathy syndrome revealing MAP2K1 Noonan syndrome. Rev Neurol (Paris) 2021; 178:263-265. [PMID: 34565623 DOI: 10.1016/j.neurol.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022]
|
22
|
Pilgram-Pastor S, Chapot R, Kraemer M. The angiographic presentation of European Moyamoya angiopathy. J Neurol 2021; 269:997-1006. [PMID: 34240321 PMCID: PMC8782787 DOI: 10.1007/s00415-021-10684-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
Background and purpose Little is known about the angiographic presentation of Moyamoya angiopathy (MMA) in non-Asian patients. Methods Conventional cerebral angiograms from 155 Caucasian patients diagnosed as MMA were analyzed with respect to extracranial champagne bottle neck sign, Suzuki stages, collateral status, as well as presence of aneurysms and posterior cerebral artery stenosis. Results In 84 of 155 angiograms, the extracranial carotid artery was visualized, in 65 of them (77.4%), a champagne bottle neck sign was noted. Of the 278 analyzable hemispheres, 13.7%,11.2%, 37.8%, 27.3%, 8.6%, and 1.4% were classified as Suzuki stage I, stage II, stage III, stage IV, stage V, and stage VI, respectively. Among 280 hemispheres, in 53 hemispheres (18.9%) isolated basal collaterals (pathway I) and in 104 hemispheres (37.1%) choroidal and pericallosal collaterals (including basal collaterals, pathway II) were found. In 74 hemispheres (26.4%) ethmoidal collaterals (pathways III), and in 17 hemispheres (6.1%) vault collaterals were visualized. Patients with higher Suzuki stages IV–VI (p = 0.008) and ethmoidal collaterals (p < 0.001) suffered more often from cerebral hemorrhage. Transient ischemic attacks occurred more frequently in patients with Suzuki stage I to III (p < 0.001). In 10 of 155 patients (6.5%), the angiogram revealed a cerebral aneurysm. In 13 patients (8.4%), a stenotic P1 segment of the posterior cerebral artery was found. Conclusions This is so far the largest observational study about angiography in Caucasian European MMA patients. A comparison with Asian data indicates similarity of disease in Caucasian and Asian patients.
Collapse
Affiliation(s)
- Sara Pilgram-Pastor
- Department of Neuroradiology, Alfried Krupp Hospital, Essen, Germany
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - René Chapot
- Department of Neuroradiology, Alfried Krupp Hospital, Essen, Germany
| | - Markus Kraemer
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Neurology, Alfried Krupp Von Bohlen Und Halbach Hospital, Alfried-Krupp-Str. 21, 45117, Essen, Germany.
| |
Collapse
|
23
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
24
|
Cardoso L, Galán‐Gómez V, Corral‐Sánchez MD, Pérez‐Martínez A, Riesco S, Isidoro‐García M, Escudero A. Juvenile myelomonocytic leukemia in CBL syndrome associated with germline splice-site mutations: Two case reports and a literature review. Clin Case Rep 2021; 9:e04260. [PMID: 34026204 PMCID: PMC8123759 DOI: 10.1002/ccr3.4260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/05/2022] Open
Abstract
The clinical and laboratory criteria for hemophagocytic lymphohistiocytosis should be taken into account during the juvenile myelomonocytic leukemia diagnosis, specifically in CBL syndrome, to reveal the presence of primary rather than secondary associated hemophagocytosis.
Collapse
Affiliation(s)
- Leila Cardoso
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell TherapyHospital La Paz Institute for Health Research (INGEMM‐IdiPAZ)MadridSpain
| | - Víctor Galán‐Gómez
- Paediatric Haematology and Oncology ServiceLa Paz University HospitalMadridSpain
| | | | - Antonio Pérez‐Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell TherapyHospital La Paz Institute for Health Research (INGEMM‐IdiPAZ)MadridSpain
- Paediatric Haematology and Oncology ServiceLa Paz University HospitalMadridSpain
| | - Susana Riesco
- Department of Paediatric OncohaematologyUniversity Hospital of SalamancaSalamancaSpain
| | | | - Adela Escudero
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell TherapyHospital La Paz Institute for Health Research (INGEMM‐IdiPAZ)MadridSpain
- Institute of Medical and Molecular Genetics (INGEMM)La Paz University HospitalMadridSpain
| |
Collapse
|
25
|
Greenmyer JR, Kohorst M. Pediatric Neoplasms Presenting with Monocytosis. Curr Hematol Malig Rep 2021; 16:235-246. [PMID: 33630234 DOI: 10.1007/s11899-021-00611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Juvenile myelomonocytic leukemia (JMML) is a rare but severe pediatric neoplasm with hematopoietic stem cell transplant as its only established curative option. The development of targeted therapeutics for JMML is being guided by an understanding of the pathobiology of this condition. Here, we review JMML with an emphasis on genetics in order to (i) demonstrate the relationship between JMML genotype and clinical phenotype and (ii) explore potential genetic targets of novel JMML therapies. RECENT FINDINGS DNA hypermethylation studies have demonstrated consistently that methylation is related to disease severity. Increasing understanding of methylation in JMML may open the door to novel therapies, such as DNA methyltransferase inhibitors. The PI3K/AKT/MTOR, JAK/STAT, and RAF/MEK/ERK pathways are being investigated as therapeutic targets for JMML. Future therapy for JMML will be driven by an increased understanding of pathobiology. Targeted therapeutic approaches hold potential for improving outcomes in patients with JMML.
Collapse
Affiliation(s)
| | - Mira Kohorst
- Pediatric Hematology and Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Hong Y, Keylock A, Jensen B, Jacques TS, Ogunbiyi O, Omoyinmi E, Saunders D, Mallick AA, Tooley M, Newbury-Ecob R, Rankin J, Williams HJ, Ganesan V, Brogan PA, Eleftheriou D. Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene. NEUROLOGY-GENETICS 2020; 6:e448. [PMID: 32637631 PMCID: PMC7323481 DOI: 10.1212/nxg.0000000000000448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022]
Abstract
Objective To report a series of patients with cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma (CBL) gene and examine the functional role of the identified mutant Cbl protein. We hypothesized that mutated Cbl fails to act as a negative regulator of the RAS-mitogen-activated protein kinases (MAPK) signaling pathway, resulting in enhanced vascular fibroblast proliferation and migration and enhanced angiogenesis and collateral vessel formation. Methods We performed whole-exome sequencing in 11 separate families referred to Great Ormond Street Hospital, London, with suspected genetic cause for clinical presentation with severe progressive cerebral arteriopathy. Results We identified heterozygous variants in the CBL gene in 5 affected cases from 3 families. We show that impaired CBL-mediated degradation of cell surface tyrosine kinase receptors and dysregulated intracellular signaling through the RAS-MAPK pathway contribute to the pathogenesis of the observed arteriopathy. Mutated CBL failed to control the angiogenic signal relay of vascular endothelial growth factor receptor 2, leading to prolonged tyrosine kinase signaling, thus driving angiogenesis and collateral vessel formation. Mutant Cbl promoted myofibroblast migration and proliferation contributing to vascular occlusive disease; these effects were abrogated following treatment with a RAF-RAS-MAPK pathway inhibitor. Conclusions We provide a possible mechanism for the arteriopathy associated with heterozygous CBL variants. Identification of the key role for the RAS-MAPK pathway in CBL-mediated cerebral arteriopathy could facilitate identification of novel or repurposed druggable targets for treating these patients and may also provide therapeutic clues for other cerebral arteriopathies.
Collapse
Affiliation(s)
- Ying Hong
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Annette Keylock
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Barbara Jensen
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Thomas S Jacques
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Olumide Ogunbiyi
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Ebun Omoyinmi
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Dawn Saunders
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Andrew A Mallick
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Madeleine Tooley
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Ruth Newbury-Ecob
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Julia Rankin
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Hywel J Williams
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Vijeya Ganesan
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Paul A Brogan
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Despina Eleftheriou
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| |
Collapse
|
27
|
Abdelilah-Seyfried S, Tournier-Lasserve E, Derry WB. Blocking Signalopathic Events to Treat Cerebral Cavernous Malformations. Trends Mol Med 2020; 26:874-887. [PMID: 32692314 DOI: 10.1016/j.molmed.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Cerebral cavernous malformations (CCMs) are pathologies of the brain vasculature characterized by capillary-venous angiomas that result in recurrent cerebral hemorrhages. Familial forms are caused by a clonal loss of any of three CCM genes in endothelial cells, which causes the activation of a novel pathophysiological pathway involving mitogen-activated protein kinase and Krüppel-like transcription factor KLF2/4 signaling. Recent work has shown that cavernomas can undergo strong growth when CCM-deficient endothelial cells recruit wild-type neighbors through the secretion of cytokines. This suggests a treatment strategy based on targeting signalopathic events between CCM-deficient endothelial cells and their environment. Such approaches will have to consider recent evidence implicating 'third hits' from hypoxia-induced angiogenesis signaling or the microbiome in modulating the development of cerebral hemorrhages.
Collapse
Affiliation(s)
- Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany.
| | - Elisabeth Tournier-Lasserve
- INSERM UMR-1141, NeuroDiderot, Université de Paris, Paris, France; AP-HP, Groupe hospitalier Saint-Louis, Lariboisière, Fernand-Widal, Service de génétique moléculaire neuro-vasculaire, Paris, France
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Developmental and Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| |
Collapse
|
28
|
After 95 years, it's time to eRASe JMML. Blood Rev 2020; 43:100652. [PMID: 31980238 DOI: 10.1016/j.blre.2020.100652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a rare clonal disorder of early childhood. Constitutive activation of the RAS pathway is the initial event in JMML. Around 90% of patients diagnosed with JMML carry a mutation in the PTPN11, NRAS, KRAS, NF1 or CBL genes. It has been demonstrated that after this first genetic event, an additional somatic mutation or epigenetic modification is involved in disease progression. The available genetic and clinical data have enabled researchers to establish relationships between JMML and several clinical conditions, including Noonan syndrome, Ras-associated lymphoproliferative disease, and Moyamoya disease. Despite scientific progress and the development of more effective treatments, JMML is still a deadly disease: the 5-year survival rate is ~50%. Here, we report on recent research having led to a better understanding of the genetic and molecular mechanisms involved in JMML.
Collapse
|
29
|
Aloui C, Guey S, Pipiras E, Kossorotoff M, Guéden S, Corpechot M, Bessou P, Pedespan JM, Husson M, Hervé D, Riant F, Kraemer M, Steffann J, Quenez O, Tournier-Lasserve E. Xq28 copy number gain causing moyamoya disease and a novel moyamoya syndrome. J Med Genet 2020; 57:339-346. [PMID: 31924698 DOI: 10.1136/jmedgenet-2019-106525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The molecular anomalies causing moyamoya disease (MMD) and moyamoya syndromes (MMS) are unknown in most patients. OBJECTIVE This study aimed to identify de novo candidate copy number variants (CNVs) in patients with moyamoya. METHODS Rare de novo CNVs screening was performed in 13 moyamoya angiopathy trios using whole exome sequencing (WES) reads depth data and whole genome high density SNP array data. WES and SNP array data from an additional cohort of 115 unrelated moyamoya probands were used to search for recurrence of these rare de novo CNVs. RESULTS Two de novo CNVs were identified in two unrelated probands by both methods and confirmed by qPCR. One of these CNVs, located on Xq28, was detected in two additional families. This interstitial Xq28 CNV gain is absent from curated gold standard database of control genomic variants and gnomAD databases. The critical region contains five genes, including MAMLD1, a major NOTCH coactivator. Typical MMD was observed in the two families with a duplication, whereas in the triplicated patients of the third family, a novel MMS associating moyamoya and various systemic venous anomalies was evidenced. CONCLUSION The recurrence of this novel Xq28 CNV, its de novo occurrence in one patient and its familial segregation with the affected phenotype in two additional families strongly suggest that it is pathogenic. In addition to genetic counselling application, its association with pulmonary hypertension is of major importance for clinical care. These data also provide new insights into the genomic architecture of this emblematic, non-atherosclerotic, large vessel disease.
Collapse
Affiliation(s)
- Chaker Aloui
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Stéphanie Guey
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Eva Pipiras
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France.,Department of Cytogenetics, Embryology and Histology, AP-HP Hôpital Jean-Verdier, Bondy, France
| | - Manoelle Kossorotoff
- French Center for Pediatric Stroke, Department of Pediatric Neurology, APHP, University Hospital Necker-Enfants Malades, Paris, France
| | - Sophie Guéden
- Department of Pediatric Neurology, CHU Angers, Angers, France
| | - Michaelle Corpechot
- Service de Génétique Moléculaire Neurovasculaire, AP-HP Hôpital Lariboisière, Paris, France
| | - Pierre Bessou
- Service d'imagerie anténatale, de l'enfant et de la femme, Groupe Hospitalier Pellegrin-Hôpital des enfants, Bordeaux, France
| | - Jean-Michel Pedespan
- Service de neuropédiatrie, Groupe Hospitalier Pellegrin-Hôpital des enfants, Bordeaux, France
| | - Marie Husson
- Service de neuropédiatrie, Groupe Hospitalier Pellegrin-Hôpital des enfants, Bordeaux, France
| | - Dominique Hervé
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France.,Service de Neurologie, AP-HP Hôpital Lariboisière, Paris, France
| | - Florence Riant
- Service de Génétique Moléculaire Neurovasculaire, AP-HP Hôpital Lariboisière, Paris, France
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julie Steffann
- Université Paris Descartes, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Olivier Quenez
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Elisabeth Tournier-Lasserve
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France .,Service de Génétique Moléculaire Neurovasculaire, AP-HP Hôpital Lariboisière, Paris, France
| |
Collapse
|
30
|
Grangeon L, Guey S, Schwitalla JC, Bergametti F, Arnould M, Corpechot M, Hadjadj J, Riant F, Aloui C, Drunat S, Vidaud D, Tournier-Lasserve E, Kraemer M. Clinical and Molecular Features of 5 European Multigenerational Families With Moyamoya Angiopathy. Stroke 2020; 50:789-796. [PMID: 30908154 DOI: 10.1161/strokeaha.118.023972] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose Moyamoya angiopathy (MMA) is a rare cerebral vasculopathy outside of Asia. In Japanese patients, a vast majority of patients carry the founder p.R4810K variant in the RNF213 gene, and familial cases are around 10%. In European patients, data about familial occurrence are limited. The aim of this study was to characterize the clinical and molecular features of several European families with a parent-to-child transmission of MMA. Methods Out of 126 MMA probands referred, we identified 113 sporadic probands and 13 familial probands. Segregation analysis showed a vertical parent-to-child pattern of inheritance in the families of 5 of these probands. All 5 families were of German or Dutch ancestry. We investigated the clinical features of affected members and used whole-exome sequencing to screen RNF213 and 13 genes involved in Mendelian MMA and to identify genes recurrently mutated in these families. Results Twelve affected MMA patients were identified, including 9 females and 3 males. Age at clinical onset ranged from 11 to 65 years. In 3 of 5 families, associated livedo racemosa was found. We did not detect any deleterious variants in the 13 known MMA genes. RNF213 rare missense variants predicted to be pathogenic were detected in all affected members of 2 of these families, as well as 2 candidate variants of the PALD1 gene. Conclusions Nonsyndromic MMA was identified in 5 European families, including 2 to 3 clinically affected cases segregating with a parent-to-child pattern of inheritance in each family. Molecular screening detected rare deleterious variants within RNF213 and PALD1 in all affected members of 2 of these 5 families, as well as in some clinically unaffected members. Altogether these data raise the difficult and, to date unanswered, question of the medical indication of presymptomatic screening.
Collapse
Affiliation(s)
- Lou Grangeon
- From the Sorbonne Paris Cité, Inserm UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, France (L.G., S.G., F.B., M.A., C.A. E.T.-L.)
| | - Stéphanie Guey
- From the Sorbonne Paris Cité, Inserm UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, France (L.G., S.G., F.B., M.A., C.A. E.T.-L.)
| | | | - Françoise Bergametti
- From the Sorbonne Paris Cité, Inserm UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, France (L.G., S.G., F.B., M.A., C.A. E.T.-L.)
| | - Minh Arnould
- From the Sorbonne Paris Cité, Inserm UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, France (L.G., S.G., F.B., M.A., C.A. E.T.-L.)
| | - Michaelle Corpechot
- AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France (M.C., J.H., F.R., E.T.-L.)
| | - Jessica Hadjadj
- AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France (M.C., J.H., F.R., E.T.-L.)
| | - Florence Riant
- AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France (M.C., J.H., F.R., E.T.-L.)
| | - Chaker Aloui
- From the Sorbonne Paris Cité, Inserm UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, France (L.G., S.G., F.B., M.A., C.A. E.T.-L.)
| | - Severine Drunat
- AP-HP, Service de génétique, Groupe Hospitalier Robert Debré, Paris, France (S.D.)
| | - Dominique Vidaud
- AP-HP, Service de génétique, Groupe hospitalier Cochin, Paris, France (D.V.)
| | - Elisabeth Tournier-Lasserve
- From the Sorbonne Paris Cité, Inserm UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, France (L.G., S.G., F.B., M.A., C.A. E.T.-L.).,AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France (M.C., J.H., F.R., E.T.-L.)
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp Hospital Essen, Germany (J.C.S., M.K.).,Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (M.K.)
| |
Collapse
|
31
|
Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood 2019; 133:1060-1070. [PMID: 30670449 DOI: 10.1182/blood-2018-11-844688] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/16/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique clonal hematopoietic disorder of early childhood. It is classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization and shares some features with chronic myelomonocytic leukemia in adults. JMML pathobiology is characterized by constitutive activation of the Ras signal transduction pathway. About 90% of patients harbor molecular alterations in 1 of 5 genes (PTPN11, NRAS, KRAS, NF1, or CBL), which define genetically and clinically distinct subtypes. Three of these subtypes, PTPN11-, NRAS-, and KRAS-mutated JMML, are characterized by heterozygous somatic gain-of-function mutations in nonsyndromic children, whereas 2 subtypes, JMML in neurofibromatosis type 1 and JMML in children with CBL syndrome, are defined by germline Ras disease and acquired biallelic inactivation of the respective genes in hematopoietic cells. The clinical course of the disease varies widely and can in part be predicted by age, level of hemoglobin F, and platelet count. The majority of children require allogeneic hematopoietic stem cell transplantation for long-term leukemia-free survival, but the disease will eventually resolve spontaneously in ∼15% of patients, rendering the prospective identification of these cases a clinical necessity. Most recently, genome-wide DNA methylation profiles identified distinct methylation signatures correlating with clinical and genetic features and highly predictive for outcome. Understanding the genomic and epigenomic basis of JMML will not only greatly improve precise decision making but also be fundamental for drug development and future collaborative trials.
Collapse
|
32
|
Karschnia P, Nishimura S, Louvi A. Cerebrovascular disorders associated with genetic lesions. Cell Mol Life Sci 2019; 76:283-300. [PMID: 30327838 PMCID: PMC6450555 DOI: 10.1007/s00018-018-2934-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.
Collapse
Affiliation(s)
- Philipp Karschnia
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Sayoko Nishimura
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
33
|
Costain G, Kannu P, Bowdin S. Genome-wide sequencing expands the phenotypic spectrum of EP300 variants. Eur J Med Genet 2018; 61:125-129. [DOI: 10.1016/j.ejmg.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
|