1
|
Udby PM, Modic M, Elmose S, Carreon LY, Andersen MØ, Karppinen J, Samartzis D. The Clinical Significance of the Modic Changes Grading Score. Global Spine J 2024; 14:796-803. [PMID: 35998235 PMCID: PMC11192140 DOI: 10.1177/21925682221123012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Cross-sectional retrospective observational study. OBJECTIVE To evaluate the reliability and clinical utility of the Modic changes (MC) grading score. METHOD Patients from the Danish national spine registry, DaneSpine, scheduled for lumbar discectomy were identified. MRI of patients with MC were graded based on vertical height involvement: Grade A (<25%), Grade B (25%-50%), and Grade C (>50%). All MRIs were reviewed by 2 physicians to evaluate the reliability of the MC grade. RESULTS Of 213 patients included, 142 patients had MC, 71 with MC-1 and 71 with MC-2; 34% were Grade A, 45% were Grade B, and 21% were Grade C. MC grade demonstrated substantial intra-rater (κ = .68) and inter-rater (κ = .61) reliability. A significantly higher proportion (n = 40, 57%) of patients with MC-1 had a severe MC grade compared to patients with MC-2 (n = 30, 43%, P < .001). Severe MC grade was associated with the presence of severe lumbar disc degeneration (DD) (Pfirrmann grade = V, P = .024), worse preoperative ODI (52.49 vs 44.17, P = .021) and EQ-5D scores (.26 vs .46, P = .053). MC alone including type was not associated with a significant difference in patient-reported outcomes (P > .05). CONCLUSION The MC grade score was demonstrated to have substantial intra- and inter-observer reliability. Severe MC grade was associated with both severe DD and MC type, being more prevalent in patients with MC-1. The MC grade was also significantly associated with worse disability and reduced health-related quality of life. Results from the study suggest that MC grade is more clinically important than MC type.
Collapse
Affiliation(s)
- Peter M Udby
- Spine Unit, Department of Orthopedic Surgery, Zealand University Hospital, Koege, Denmark
- Spine Surgery and Research, Spine Center of Southern Denmark, Lillebaelt Hospital, Middelfart, Denmark
| | - Michael Modic
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Signe Elmose
- Spine Surgery and Research, Spine Center of Southern Denmark, Lillebaelt Hospital, Middelfart, Denmark
| | - Leah Y Carreon
- Spine Surgery and Research, Spine Center of Southern Denmark, Lillebaelt Hospital, Middelfart, Denmark
| | - Mikkel Ø Andersen
- Spine Surgery and Research, Spine Center of Southern Denmark, Lillebaelt Hospital, Middelfart, Denmark
| | - Jaro Karppinen
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Rehabilitation Services of South Karelia Social and Health Care District, Lappeenranta, Finland
| | - Dino Samartzis
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Aboushaala K, Chee AV, Toro SJ, Vucicevic R, Yuh C, Dourdourekas J, Patel IK, Espinoza-Orias A, Oh C, Al-Harthi L, Karppinen J, Goldberg EJ, Phillips FM, Colman M, Williams FMK, Borgia JA, Green S, Forsyth C, An HS, Samartzis D. Discovery of circulating blood biomarkers in patients with and without Modic changes of the lumbar spine: a preliminary analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1398-1406. [PMID: 38451373 DOI: 10.1007/s00586-024-08192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE The following study aimed to determine the existence of blood biomarkers in symptomatic patients with or without lumbar Modic changes (MC). METHODS A cross-sectional sub-analyses of a prospective cohort was performed. Fasting blood samples were collected from patients with and without lumbar MC who had undergone spinal fusion or microdiscectomy. An 80-plex panel and CCL5/RANTES were used to assess preoperative plasma cytokine concentrations. Patient demographics and imaging phenotypes were also assessed. RESULTS Thirty-one subjects were analysed (n = 18 no MC; n = 13 MC). No significant differences were found in age, sex, body mass index, smoking and alcohol history, and surgical procedure (i.e. fusion, decompression) between the two groups (p > 0.05). Several statistically significant blood biomarkers in MC patients were identified, including elevated levels of C-C Motif Chemokine Ligand 5 (CCL5, p = 0.0006), while Macrophage Migration Inhibitory Factor (MIF) was significantly lower (p = 0.009). Additionally, C-X-C Motif Chemokine Ligand 5 (CXCL5, p = 0.052), Pentraxin 3 (PTX3, p = 0.06) and Galectin-3 (Gal-3, p = 0.07) showed potential relevance. Moreover, MC patients exhibited significantly higher levels of disc degeneration (p = 0.0001) and displacement severity (p = 0.020). Based on multivariate analyses and controlling for disc degeneration/displacement, CCL5 (OR 1.02; 95% CI 1.002-1.033; p = 0.028) and MIF (OR 0.60; 95% CI 0.382-0.951; p = 0.030) were independently associated with MC patients. CONCLUSION This "proof-of-concept" study is the first to identify specific and significantly circulating blood biomarkers associated with symptomatic patients with lumbar MC, independent of disc alterations of degeneration and/or bulges/herniations. Specifically, differences in CCL5 and MIF protein levels were significantly noted in MC patients compared to those without MC.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Ana V Chee
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA.
| | - Sheila J Toro
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Rajko Vucicevic
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Catherine Yuh
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Jake Dourdourekas
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Ishani K Patel
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Alejandro Espinoza-Orias
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Chundo Oh
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL, USA
| | - Jaro Karppinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Edward J Goldberg
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Frank M Phillips
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Matthew Colman
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Frances M K Williams
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
- Department of Twins Research and Genetic Epidemiology, King's College, London, UK
| | - Jeffrey A Borgia
- Departments of Anatomy & Cell Biology and Pathology, Rush Medical College, Chicago, IL, USA
| | - Stefan Green
- Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | | | - Howard S An
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush Medical College, 1611 W. Harrison St, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Gualdi F, Smith IG, Boixader RC, Williams FMK. Modic change is associated with increased BMI but not autoimmune diseases in TwinsUK. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:3379-3386. [PMID: 37555954 DOI: 10.1007/s00586-023-07870-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Low back pain (LBP) is one of the largest causes of morbidity worldwide. The aetiology of LBP is complex, and many factors contribute to the onset. Bone marrow lesions within the vertebra adjacent to an intervertebral degenerate disc named Modic change (MC) have been suggested as a diagnostic subgroup of LBP. Autoimmune response has been proposed to be one of the causes that promote the development of MC. The aim of the current investigation is to assess prevalence and severity of MC and LBP in participants with an autoimmune disease diagnosis in a well-documented cohort of adult twin volunteers. METHODS Multivariate generalized mixed linear models (GLMM) were implemented in order to calculate the association between having an autoimmune disorder and MC prevalence, width and severe and disabling LBP. The model was corrected for family structure as well as for covariates such as age, BMI and smoking. RESULTS No association was found between diagnosis of autoimmune disorder and MC. Interestingly, BMI was independently associated with MC width but not to MC prevalence. These results help to shed light on the relationship between MC and autoimmunity as well as the role of BMI in the development of the lesions. CONCLUSION This study is the first to examine autoimmune disorders and MC prevalence in a large, population-based female cohort. The study was well powered to detect a small effect. No association was found between having a diagnosis of one or more autoimmune conditions and MC prevalence, width or LBP.
Collapse
Affiliation(s)
- Francesco Gualdi
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain.
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08005, Barcelona, Catalonia, Spain.
- Department Twin Research and Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Isabelle Granville Smith
- Department Twin Research and Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Roger Compte Boixader
- Department Twin Research and Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Frances M K Williams
- Department Twin Research and Genetic Epidemiology, King's College London, St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
4
|
Chau A, Steib S, Whitaker E, Kohns D, Quinter A, Craig A, Chiodo A, Chandran S, Laidlaw A, Schott Z, Farlow N, Yarjanian J, Omwanghe A, Wasserman R, O’Neill C, Clauw D, Bowden A, Marras W, Carey T, Mehling W, Hunt CA, Lotz J. Theoretical Schemas to Guide Back Pain Consortium (BACPAC) Chronic Low Back Pain Clinical Research. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:S13-S35. [PMID: 36562563 PMCID: PMC10403312 DOI: 10.1093/pm/pnac196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic low back pain (cLBP) is a complex with a heterogenous clinical presentation. A better understanding of the factors that contribute to cLBP is needed for accurate diagnosis, optimal treatment, and identification of mechanistic targets for new therapies. The Back Pain Consortium (BACPAC) Research Program provides a unique opportunity in this regard, as it will generate large clinical datasets, including a diverse set of harmonized measurements. The Theoretical Model Working Group was established to guide BACPAC research and to organize new knowledge within a mechanistic framework. This article summarizes the initial work of the Theoretical Model Working Group. It includes a three-stage integration of expert opinion and an umbrella literature review of factors that affect cLBP severity and chronicity. METHODS During Stage 1, experts from across BACPAC established a taxonomy for risk and prognostic factors (RPFs) and preliminary graphical depictions. During Stage 2, a separate team conducted a literature review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to establish working definitions, associated data elements, and overall strength of evidence for identified RPFs. These were subsequently integrated with expert opinion during Stage 3. RESULTS The majority (∼80%) of RPFs had little strength-of-evidence confidence, whereas seven factors had substantial confidence for either a positive association with cLBP (pain-related anxiety, serum C-reactive protein, diabetes, and anticipatory/compensatory postural adjustments) or no association with cLBP (serum interleukin 1-beta / interleukin 6, transversus muscle morphology/activity, and quantitative sensory testing). CONCLUSION This theoretical perspective will evolve over time as BACPAC investigators link empirical results to theory, challenge current ideas of the biopsychosocial model, and use a systems approach to develop tools and algorithms that disentangle the dynamic interactions among cLBP factors.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sharis Steib
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Evans Whitaker
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - David Kohns
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Quinter
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anita Craig
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Chiodo
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - SriKrishan Chandran
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Laidlaw
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary Schott
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan Farlow
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - John Yarjanian
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Omwanghe
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Ronald Wasserman
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Conor O’Neill
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Dan Clauw
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anton Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - William Marras
- Department of Integrated Systems Engineering, Ohio State University, Columbus, Ohio, USA
| | - Tim Carey
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolf Mehling
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, California, USA
| | - C Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Jeffrey Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
ISSLS PRIZE in Clinical Science 2022: Epidemiology, risk factors and clinical impact of juvenile Modic changes in paediatric patients with low back pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1069-1079. [PMID: 35129673 DOI: 10.1007/s00586-022-07125-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE It's a long-held belief that Modic changes (MC) occur only in adults, with advanced age, and are highly associated with pain and adverse outcomes. The following study addressed the epidemiology, risk factors and clinical relevance of MC in young paediatric patients. METHODS Two hundred and seven consecutive patients with no history of deformities, neoplasms, trauma, or infections were included in this ambispective study. MRIs were utilized to assess MCs and types, and other degenerative disc/endplate abnormalities. Subject demographics, duration of symptoms, clinic visits, conservative management (physical therapy, NSAIDs, opioids, injections) and surgery were noted. RESULTS The mean age was 16.5 years old (46.9% males), 14% had MCs and they occurred throughout the spine. Subject baseline demographics were similar between MCs and non-MCs patients (p > 0.05). Modic type 2 (50%) was the most common type (type 1:27.1%; type 3:18.8%; mixed:4.7%). Multivariate analyses noted that endplate damage (OR: 11.36), disc degeneration (OR: 5.81), disc space narrowing (OR: 5.77), Schmorl's nodes (OR: 4.30) and spondylolisthesis (OR: 3.55) to be significantly associated with MCs (p < 0.05). No significant differences in conservative management were noted between Modic and non-MCs patients (p > 0.05). Among surgery patients (n = 44), 21% also had MCs (p = 0.134). Symptom-duration was significantly greater in MC patients (p = 0.049). CONCLUSION Contrary to traditional dogma, robust evidence now exists noting that MCs and their types can develop in children. Our findings give credence to the "Juvenile" variant of MCs, whereby its implications throughout the lifespan need to be assessed. Juvenile MCs have prolonged symptoms and related to specific structural spine phenotypes.
Collapse
|
7
|
胡 华, 李 连, 刘 艳, 王 书, 谢 双, 孙 建. [Effect of resveratrol on high mobility group box-1 protein signaling pathway in cartilage endplate degeneration caused by inflammation]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:461-469. [PMID: 35426287 PMCID: PMC9011066 DOI: 10.7507/1002-1892.202110084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Indexed: 01/24/2023]
Abstract
Objective To investigate the effect of resveratrol (RES) on inflammation-induced cartilage endplate (CEP) degeneration, and its regulatory mechanism on high mobility group box-1 protein (HMGB1) signaling pathway. Methods The intervertebral CEP cells of Sprague Dawley (SD) rats aged 3 weeks were extracted and identified by toluidine blue staining and immunofluorescence staining of rabbit anti-rat collagen type Ⅱ. The cell counting kit 8 (CCK-8) method was used to screen the optimal concentration of RES on intervertebral CEP cells. Gene chip analysis was used to determine the target of RES on intervertebral CEP cells. Interleukin 1β (IL-1β) was used to construct the intervertebral CEP cell degeneration model caused by inflammation and the 7-8-week-old SD rat intervertebral disc degeneration model, and pcDNA3.1-HMGB1 (pcDNA3.1) was used as the control of RES effect. Flow cytometry and TUNEL staining were used to detect the apoptotic rate of intervertebral CEP cells and rat intervertebral disc tissue cells, respectively. ELISA kit was used to detect the content of interleukin 10 (IL-10) and tumor necrosis factor α (TNF-α) in the cell supernatant and rat serum. Western blot was used to detect the expressions of HMGB1, extracellular signal-regulated protein kinase (ERK), phosphorylated ERK (p-ERK), B cell lymphoma/leukemia 2 gene (Bcl-2), and Bcl-2-associated X protein (Bax). Results The extracted cells were identified as rat intervertebral CEP cells. CCK-8 method screened out the highest activity of intervertebral CEP cells treated with 30 μmol/L RES. The gene chip analysis confirmed that the HMGB1-ERK signal was the target of RES. Both cell experiments and animal experiments showed that RES treatment can significantly down-regulate the apoptosis rate of intervertebral CEP cells, inhibit the release of TNF-α, and increase the content of IL-10; and down-regulate the expressions of HMGB1, p-ERK, and Bax, and increase Bcl-2; and pcDNA3.1 could partially reverse these effects of RES, and the differences were all significant (P<0.05). Conclusion RES can significantly inhibit the apoptosis of intervertebral CEP cells induced by inflammation, which is related to inhibiting the expression of HMGB1.
Collapse
Affiliation(s)
- 华 胡
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 连泰 李
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 艳伟 刘
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 书君 王
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 双喜 谢
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 建君 孙
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| |
Collapse
|
8
|
Li Y, Karppinen J, Cheah KSE, Chan D, Sham PC, Samartzis D. Integrative analysis of metabolomic, genomic, and imaging-based phenotypes identify very-low-density lipoprotein as a potential risk factor for lumbar Modic changes. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 31:735-745. [PMID: 34564762 DOI: 10.1007/s00586-021-06995-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Modic changes (MC) on magnetic resonance imaging (MRI) have been associated with the development and severity of low back pain (LBP). The etiology of MC remains elusive, but it has been suggested that altered metabolism may be a risk factor. As such, this study aimed to identify metabolomic biomarkers for MC phenotypes of the lumbar spine via a combined metabolomic-genomic approach. METHODS A population cohort of 3,584 southern Chinese underwent lumbar spine MRI. Blood samples were genotyped with single-nucleotide polymorphisms (SNP) arrays (n = 2,482) and serum metabolomics profiling using magnetic resonance spectroscopy (n = 757), covering 130 metabolites representing three molecular windows, were assessed. Genome-wide association studies (GWAS) were performed on each metabolite, to construct polygenic scores for predicting metabolite levels in subjects who had GWAS but not metabolomic data. Associations between predicted metabolite levels and MC phenotypes were assessed using linear/logistic regression and least absolute shrinkage and selection operator (LASSO). Two-sample Mendelian randomization analysis tested for causal relationships between metabolic biomarkers and MC. RESULTS 20.4% had MC (10.6% type 1, 67.2% type 2, 22.2% mixed types). Significant MC metabolomic biomarkers were mean diameter of very-low-density lipoprotein (VLDL)/low-density lipoprotein (LDL) particles and cholesterol esters/phospholipids in large LDL. Mendelian randomization indicated that decreased VLDL mean diameter may lead to MC. CONCLUSIONS This large-scale study is the first to address metabolomics in subject with/without lumbar MC. Causality studies implicate VLDL related to MC, noting a metabolic etiology. Our study substantiates the field of "spino-metabolomics" and illustrates the power of integrating metabolomics-genomics-imaging phenotypes to discover biomarkers for spinal disorders, paving the way for more personalized spine care for patients.
Collapse
Affiliation(s)
- Yiming Li
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Centre for PanorOmic Sciences, State Key Laboratory of Brain and Cognitive Sciences, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA. .,Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Yao Y, Chu X, Ma M, Ye J, Wen Y, Li P, Cheng B, Cheng S, Zhang L, Liu L, Qi X, Liang C, Kafle OP, Wu C, Wang S, Wang X, Ning Y, Zhang F. Evaluate the effects of serum urate level on bone mineral density: a genome-wide gene-environment interaction analysis in UK Biobank cohort. Endocrine 2021; 73:702-711. [PMID: 34046847 DOI: 10.1007/s12020-021-02760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Serum urate is associated with BMD and may be a protective factor. However, the exact association and mechanism are still unclear. We performed a genome-wide gene-environmental interaction study (GWGEIS) to explore the interaction effects between gene and urate on BMD, using data from the UK Biobank cohort. METHODS A total of 4575 participants for femur total BMD, 4561 participants for L1-L4 BMD, and 237799 participants for heel BMD were included in the present study. Linear regression models were used to test for associations between urate and BMD (femur total BMD, L1-L4 BMD, heel BMD) by R software. GWGEIS was conducted by PLINK 2.0 using a generalize linear model, adjusted for age, sex, weight, smoking behavior, drinking behavior, physical activity and 10 principle components for population structure. RESULTS Results showed that urate was positively associated with femur total BMD, L1-L4 BMD and heel BMD and similar findings were observed in both the male and female subgroups. GWGEIS identified 261 genome-wide significant (P < 5.00 × 10-8) SNP × urate interaction effects for femur total BMD (rs8192585 in NOTCH4, rs116080577 in PBX1, rs9409991 in COL5A1), 17 genome-wide significant SNP × urate interaction effects for heel BMD (rs145344540 in PDE11A and rs78485379 in DKK2), 17 suggestive genome-wide SNP × urate interaction effects (P < 1.00 × 10-5) for L1-L4 BMD (rs10977015 in PTPRD). We also detected genome-wide significant and suggestive SNP × urate interaction effects for BMD in both the male and female subgroups. CONCLUSIONS This study reported several novel candidate genes, and strengthen the evidence of the interactive effects between gene and urate on the variations of BMD.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Mallow GM, Siyaji ZK, Galbusera F, Espinoza-Orías AA, Giers M, Lundberg H, Ames C, Karppinen J, Louie PK, Phillips FM, Pourzal R, Schwab J, Sciubba DM, Wang JC, Wilke HJ, Williams FMK, Mohiuddin SA, Makhni MC, Shepard NA, An HS, Samartzis D. Intelligence-Based Spine Care Model: A New Era of Research and Clinical Decision-Making. Global Spine J 2021; 11:135-145. [PMID: 33251858 PMCID: PMC7882816 DOI: 10.1177/2192568220973984] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- G. Michael Mallow
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Zakariah K. Siyaji
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | | | - Alejandro A. Espinoza-Orías
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Morgan Giers
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Hannah Lundberg
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Ames
- Department of Neurosurgery, University of California San Francisco, CA, USA
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | - Frank M. Phillips
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Joseph Schwab
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Daniel M. Sciubba
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey C. Wang
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Ulm, Germany
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | | | - Melvin C. Makhni
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Nicholas A. Shepard
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Two GWAS-identified variants are associated with lumbar spinal stenosis and Gasdermin-C expression in Chinese population. Sci Rep 2020; 10:21069. [PMID: 33273635 PMCID: PMC7713291 DOI: 10.1038/s41598-020-78249-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to investigate the expression levels of genome-wide association studies (GWAS)-identified variants near Gasdermin-C (GSDMC) and its association with lumbar disc degeneration (LDD) in a Chinese population. In accordance with previously reported findings, our study involved the top 4 variants; rs6651255, rs7833174, rs4130415, and rs7816342. A total of 800 participants, 400 LDD patients and 400 controls were involved in the study. The LDD patients were divided into two mutually exclusive subgroups: subgroup 1: lumbar disc herniation; subgroup 2: lumbar spinal stenosis. Genotyping were performed using TaqMan assay, and Enzyme-Linked Immunosorbent Assay (ELISA) used to measure the plasma GSDMC levels, while quantitative reverse-transcription (qRT)-PCR and immunohistochemistry (IHC) were used to evaluate the GSDMC expression levels. Among the studied variants, there were no statistically significant differences in allelic and genotypic frequencies between LDD patients and their controls (all P > 0.05). However, the subgroup analysis revealed a significant association between rs6651255 and rs7833174 in patients with lumbar spinal stenosis (subgroup 2). Furthermore, the max-statistic test revealed that the inheritance models of two variants of lumbar spinal stenosis were represented by the recessive model. The plasma and mRNA expression levels of GSDMC were significantly higher in patients with lumbar spinal stenosis compared with the control group (P < 0.05). Furthermore, the CC genotypes of rs6651255 and rs7833174 were significantly associated with increased plasma expression levels of GSDMC in patients with lumbar spinal stenosis (P < 0.01). Two GWAS-identified variants (rs6651255 and rs7833174) near GSDMC were associated with a predisposition to lumbar spinal stenosis. GSDMC protein and mRNA expression levels may have prognostic qualities as biomarkers for the existence, occurrence or development of lumbar spinal stenosis.
Collapse
|