1
|
DeWitt JT, Raghunathan M, Haricharan S. Nonrepair functions of DNA mismatch repair proteins: new avenues for precision oncology. Trends Cancer 2024:S2405-8033(24)00220-6. [PMID: 39490324 DOI: 10.1016/j.trecan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
DNA damage repair (DDR) proteins are well recognized as guardians of the genome that are frequently lost during malignant transformation of normal cells across cancer types. To date, their tumor suppressor functions have been generally regarded as a consequence of their roles in maintaining genomic stability: more genomic instability increases the risk of oncogenic transformation events. However, recent discoveries centering around DNA mismatch repair (MMR) proteins suggest a broader impact of the loss of DDR proteins on cellular processes beyond genomic instability. Here, we explore the clinical implications of nonrepair roles for DDR proteins, using the growing evidence supporting roles for DNA MMR proteins in cell cycle and apoptosis regulation, metabolic function, the cellular secretome, and immunomodulation.
Collapse
Affiliation(s)
- Jerry Tyler DeWitt
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svasti Haricharan
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
2
|
Tsoulos N, Agiannitopoulos K, Potska K, Katseli A, Ntogka C, Pepe G, Bouzarelou D, Papathanasiou A, Grigoriadis D, Tsaousis GN, Gogas H, Troupis T, Papazisis K, Natsiopoulos I, Venizelos V, Amarantidis K, Giassas S, Papadimitriou C, Fountzilas E, Stathoulopoulou M, Koumarianou A, Xepapadakis G, Blidaru A, Zob D, Voinea O, Özdoğan M, Ergören MÇ, Hegmane A, Papadopoulou E, Nasioulas G, Markopoulos C. The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory. Cancer Genomics Proteomics 2024; 21:448-463. [PMID: 39191493 PMCID: PMC11363926 DOI: 10.21873/cgp.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer. MATERIALS AND METHODS A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis. RESULTS 20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg). CONCLUSION Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Theodore Troupis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Clinic, Thessaloniki, Greece
| | | | - Anna Koumarianou
- Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Daniela Zob
- Oncology Department, "Prof. Dr. Al. Trestioreanu" Bucharest Oncology Institute, Bucharest, Romania
| | - Oana Voinea
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mustafa Özdoğan
- Division of Medical Oncology, Memorial Antalya Hospital, Antalya, Turkey
| | - Mahmut Çerkez Ergören
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Alinta Hegmane
- Riga East University Hospital, Oncology Center of Latvia, Riga, Latvia
| | | | | | - Christos Markopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Motonari T, Yoshino Y, Haruta M, Endo S, Sasaki S, Miyashita M, Tada H, Watanabe G, Kaneko T, Ishida T, Chiba N. Evaluating homologous recombination activity in tissues to predict the risk of hereditary breast and ovarian cancer and olaparib sensitivity. Sci Rep 2024; 14:7519. [PMID: 38589490 PMCID: PMC11001962 DOI: 10.1038/s41598-024-57367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.
Collapse
Affiliation(s)
- Tokiwa Motonari
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Moe Haruta
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Shino Endo
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Shota Sasaki
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Minoru Miyashita
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroshi Tada
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Gou Watanabe
- Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | - Toshiro Kaneko
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takanori Ishida
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
4
|
Boujemaa M, Nouira F, Jandoubi N, Mejri N, Bouaziz H, Charfeddine C, Ben Nasr S, Labidi S, El Benna H, Berrazega Y, Rachdi H, Daoud N, Benna F, Haddaoui A, Abdelhak S, Samir Boubaker M, Boussen H, Hamdi Y. Uncovering the clinical relevance of unclassified variants in DNA repair genes: a focus on BRCA negative Tunisian cancer families. Front Genet 2024; 15:1327894. [PMID: 38313678 PMCID: PMC10834681 DOI: 10.3389/fgene.2024.1327894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families. Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed. Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity. Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatma Nouira
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Hamam, Tunisia
| | - Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Biotechpole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Farouk Benna
- Radiation Oncology Department, Salah Azaiez Institute, Tunis, Tunisia
| | | | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
5
|
Christowitz C, Olivier DW, Schneider JW, Kotze MJ, Engelbrecht AM. Incorporating functional genomics into the pathology-supported genetic testing framework implemented in South Africa: A future view of precision medicine for breast carcinomas. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108492. [PMID: 38631437 DOI: 10.1016/j.mrrev.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
A pathology-supported genetic testing (PSGT) framework was established in South Africa to improve access to precision medicine for patients with breast carcinomas. Nevertheless, the frequent identification of variants of uncertain significance (VUSs) with the use of genome-scale next-generation sequencing has created a bottleneck in the return of results to patients. This review highlights the importance of incorporating functional genomics into the PSGT framework as a proposed initiative. Here, we explore various model systems and experimental methods available for conducting functional studies in South Africa to enhance both variant classification and clinical interpretation. We emphasize the distinct advantages of using in vitro, in vivo, and translational ex vivo models to improve the effectiveness of precision oncology. Moreover, we highlight the relevance of methodologies such as protein modelling and structural bioinformatics, multi-omics, metabolic activity assays, flow cytometry, cell migration and invasion assays, tube-formation assays, multiplex assays of variant effect, and database mining and machine learning models. The selection of the appropriate experimental approach largely depends on the molecular mechanism of the gene under investigation and the predicted functional effect of the VUS. However, before making final decisions regarding the pathogenicity of VUSs, it is essential to assess the functional evidence and clinical outcomes under current variant interpretation guidelines. The inclusion of a functional genomics infrastructure within the PSGT framework will significantly advance the reclassification of VUSs and enhance the precision medicine pipeline for patients with breast carcinomas in South Africa.
Collapse
Affiliation(s)
- Claudia Christowitz
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Daniel W Olivier
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Johann W Schneider
- Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Global Health, African Cancer Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
6
|
Chrysafi P, Jani CT, Lotz M, Al Omari O, Singh H, Stafford K, Agarwal L, Rupal A, Dar AQ, Dangelo A, Lam P. Prevalence of Variants of Uncertain Significance in Patients Undergoing Genetic Testing for Hereditary Breast and Ovarian Cancer and Lynch Syndrome. Cancers (Basel) 2023; 15:5762. [PMID: 38136308 PMCID: PMC10742236 DOI: 10.3390/cancers15245762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) and Lynch Syndrome (LS) are the most common inherited cancer syndromes identified with genetic testing. Testing, though, commonly reveals variants of uncertain significance (VUSs). This is a retrospective observational study designed to determine the prevalence of pathogenic mutations and VUSs in patients tested for HBOC and/or LS and to explore the characteristics of the VUS population. Patients 18-80 years old that met NCCN criteria for HBOC and/or LS genetic screening were tested between 2006 and 2020 at Mount Auburn Hospital in Cambridge, Massachusetts. A total of 663 patients were included in the study, with a mean age of 50 years old and 90% being females. Pathogenic mutations were identified in 12.5% and VUSs in 28.3%. VUS prevalence was associated with race (p-value = 0.019), being particularly higher in Asian populations. Patients with a personal history of breast cancer or family history of breast or ovarian cancer were more likely to have a VUS (personal breast: OR: 1.55; CI: 1.08-2.25; family breast: OR: 1.68; CI: 1.08-2.60, family ovarian OR: 2.29; CI: 1.04-5.45). In conclusion, VUSs appear to be detected in almost one third patients tested for cancer genetic syndromes, and thus future work is warranted to determine their significance in cancer development.
Collapse
Affiliation(s)
- Pavlina Chrysafi
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Chinmay T. Jani
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Margaret Lotz
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Division of Hematology and Oncology, Mount Auburn Hospital, Cambridge, MA 02138, USA
| | - Omar Al Omari
- Department of Pulmonary and Critical Care, Temple University, Philadelphia, PA 19122, USA;
| | - Harpreet Singh
- Department of Pulmonary and Critical Care, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Katherine Stafford
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Lipisha Agarwal
- Department of Pulmonary and Critical Care, University of Vermont, Burlington, VT 05405, USA;
| | - Arashdeep Rupal
- Department of Pulmonary and Critical Care, University of South Florida, Tampa, FL 33620, USA;
| | - Abdul Qadir Dar
- Department of Medicine, Lahey Medical Center, Burlington, MA 01805, USA;
| | - Abby Dangelo
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Division of Hematology and Oncology, Mount Auburn Hospital, Cambridge, MA 02138, USA
| | - Prudence Lam
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA; (P.C.); (M.L.); (K.S.); (A.D.); (P.L.)
- Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
7
|
Basho R, Chase MC. Genetic Testing in Metastatic Breast Cancer in the USA: A Podcast. Oncol Ther 2023; 11:433-443. [PMID: 37707712 PMCID: PMC10673788 DOI: 10.1007/s40487-023-00243-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023] Open
Abstract
This podcast highlights the importance of genetic testing in patients with metastatic breast cancer, with a specific focus on germline or inherited breast cancer susceptibility gene (BRCA) mutations. In the USA, national guidelines recommend that all patients with recurrent or metastatic breast cancer should be offered genetic testing for germline breast cancer susceptibility gene 1 or 2 (BRCA1 or 2) mutations to identify patients potentially suitable for treatment with a poly(ADP-ribose) polymerase inhibitor. However, a retrospective study indicated that only 43% of patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer who may be eligible for genetic testing have undergone germline BRCA1 or 2 testing. Therefore, a large national effort is required to offer genetic testing to more patients with recurrent or metastatic breast cancer. The aim of this podcast is to provide physicians with information to support the early engagement of patients in discussions about genetic testing, and guidance on how to manage patient concerns about the potential implications of testing. Here, a healthcare professional discusses germline genetic testing with a patient advocate and answers questions regarding the importance of testing in patients with metastatic breast cancer. Furthermore, the authors discuss what it means to receive a positive or negative result for a germline BRCA mutation and the impact this may have on the patient and their family members. Overall, the authors emphasize the importance of healthcare professionals providing every patient with metastatic breast cancer with the relevant information about genetic testing so that patients can make informed decisions. Podcast Audio and Infographic available for this article.Podcast Audio and Infographic available for this article.
Collapse
Affiliation(s)
- Reva Basho
- The Lawrence J. Ellison Institute for Transformative Medicine, 12414 Exposition Blvd, Los Angeles, CA, 90064, USA.
| | | |
Collapse
|
8
|
Zahid MF, Moriarty K, Dryden C, Weinberg O, Asif M, Ikpefan R, Anderson JM, Collins RH, Chung SS, Chen W, Patel PA, Madanat YF. Identifying patients at risk for hereditary myeloid malignancy syndromes incorporating a novel, self-administered questionnaire to an initial screening platform. Eur J Haematol 2023; 111:844-850. [PMID: 37587783 DOI: 10.1111/ejh.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Four to 10% of cases of myeloid malignancies are inherited. We report our experience on hereditary myeloid malignancy syndromes (HMMS) incorporating a novel questionnaire in the screening platform for patients with myeloid malignancies and aplastic anemia. METHODS The questionnaire was sent via electronic patient portal prior to clinic visits. Patients screened positive based on responses to questionnaire items, presence of suspicion disease characteristics (young age, family history, monosomy 7 etc.) and/or presence of signs of HMMS. Those deemed at-risk based on questionnaire responses, clinical features and/or somatic mutation profile were offered germline testing. RESULTS A total of 408 patients were screened, 141 (35%) were deemed at-risk. Fifty-four (38%) of at-risk patients were seen in the genetics clinic. Forty-one (76%) of the patients seen agreed to germline testing and 13 declined due to cost or personal decision. Twenty pathogenic (P)/likely-pathogenic (LP) germline mutations were identified in 16 (39%) of the tested patients. Five patients also had a variant of uncertain significance (VUS) and an additional 13 had at least 1 VUS without P/LP mutations (total 29 VUS's were found in 18 (44%) of tested patients). The median age of diagnosis for patients with P/LP mutations was 56 years versus 66 years in the entire cohort. CONCLUSION Incorporating an electronic questionnaire is an effective screening method for HMMS. Many patients declined testing due to cost. These results highlight the importance of germline testing in patients with myeloid malignancies, further research in HMMS, and coverage by healthcare plans.
Collapse
Affiliation(s)
- Mohammad Faizan Zahid
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kelsey Moriarty
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Courtney Dryden
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Olga Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Misha Asif
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruth Ikpefan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julia M Anderson
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert H Collins
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen S Chung
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prapti A Patel
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yazan F Madanat
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Nepomuceno TC, Foo TK, Richardson ME, Ranola JMO, Weyandt J, Varga MJ, Alarcon A, Gutierrez D, von Wachenfeldt A, Eriksson D, Kim R, Armel S, Iversen E, Couch FJ, Borg Å, Xia B, Carvalho MA, Monteiro ANA. BRCA1 frameshift variants leading to extended incorrect protein C termini. HGG ADVANCES 2023; 4:100240. [PMID: 37718511 PMCID: PMC10558845 DOI: 10.1016/j.xhgg.2023.100240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Carriers of BRCA1 germline pathogenic variants are at substantially higher risk of developing breast and ovarian cancer than the general population. Accurate identification of at-risk individuals is crucial for risk stratification and the implementation of targeted preventive and therapeutic interventions. Despite significant progress in variant classification efforts, a sizable portion of reported BRCA1 variants remain as variants of uncertain clinical significance (VUSs). Variants leading to premature protein termination and loss of essential functional domains are typically classified as pathogenic. However, the impact of frameshift variants that result in an extended incorrect terminus is not clear. Using validated functional assays, we conducted a systematic functional assessment of 17 previously reported BRCA1 extended incorrect terminus variants (EITs) and concluded that 16 constitute loss-of-function variants. This suggests that most EITs are likely to be pathogenic. However, one variant, c.5578dup, displayed a protein expression level, affinity to known binding partners, and activity in transcription and homologous recombination assays comparable to the wild-type BRCA1 protein. Twenty-three additional carriers of c.5578dup were identified at a US clinical diagnostic lab and assessed using a family history likelihood model providing, in combination with the functional data, a likely benign interpretation. These results, consistent with family history data in the current study and available data from ClinVar, indicate that most, but not all, BRCA1 variants leading to an extended incorrect terminus constitute loss-of-function variants and underscore the need for comprehensive assessment of individual variants.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | - Amaya Alarcon
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Diana Gutierrez
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Daniel Eriksson
- Department of Clinical Genetics, Akademiska Sjukhuset, Uppsala, Sweden
| | - Raymond Kim
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Susan Armel
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | | | - Åke Borg
- University of Lund, 221 00 Lund, Sweden
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil.
| | - Alvaro N A Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Stolarova L, Kleiblova P, Zemankova P, Stastna B, Janatova M, Soukupova J, Achatz MI, Ambrosone C, Apostolou P, Arun BK, Auer P, Barnard M, Bertelsen B, Blok MJ, Boddicker N, Brunet J, Burnside ES, Calvello M, Campbell I, Chan SH, Chen F, Chiang JB, Coppa A, Cortesi L, Crujeiras-González A, De Leeneer K, De Putter R, DePersia A, Devereux L, Domchek S, Efremidis A, Engel C, Ernst C, Evans DGR, Feliubadaló L, Fostira F, Fuentes-Ríos O, Gómez-García EB, González S, Haiman C, Hansen TVO, Hauke J, Hodge J, Hu C, Huang H, Ishak NDB, Iwasaki Y, Konstantopoulou I, Kraft P, Lacey J, Lázaro C, Li N, Lim WK, Lindstrom S, Lori A, Martinez E, Martins A, Matsuda K, Matullo G, McInerny S, Michailidou K, Montagna M, Monteiro AN, Mori L, Nathanson K, Neuhausen SL, Nevanlinna H, Olson JE, Palmer J, Pasini B, Patel A, Piane M, Poppe B, Radice P, Renieri A, Resta N, Richardson ME, Rosseel T, Ruddy KJ, Santamariña M, Dos Santos ES, Teras L, Toland AE, Trentham-Dietz A, Vachon CM, Volk AE, Weber-Lassalle N, Weitzel JN, Wiesmuller L, Winham S, Yadav S, Yannoukakos D, Yao S, Zampiga V, Zethoven M, Zhang ZW, Zima T, Spurdle AB, Vega A, Rossing M, Del Valle J, De Nicolo A, Hahnen E, Claes KB, Ngeow J, Momozawa Y, James PA, Couch FJ, Macurek L, Kleibl Z. ENIGMA CHEK2gether Project: A Comprehensive Study Identifies Functionally Impaired CHEK2 Germline Missense Variants Associated with Increased Breast Cancer Risk. Clin Cancer Res 2023; 29:3037-3050. [PMID: 37449874 PMCID: PMC10425727 DOI: 10.1158/1078-0432.ccr-23-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Germline pathogenic variants in CHEK2 confer moderately elevated breast cancer risk (odds ratio, OR ∼ 2.5), qualifying carriers for enhanced breast cancer screening. Besides pathogenic variants, dozens of missense CHEK2 variants of uncertain significance (VUS) have been identified, hampering the clinical utility of germline genetic testing (GGT). EXPERIMENTAL DESIGN We collected 460 CHEK2 missense VUS identified by the ENIGMA consortium in 15 countries. Their functional characterization was performed using CHEK2-complementation assays quantifying KAP1 phosphorylation and CHK2 autophosphorylation in human RPE1-CHEK2-knockout cells. Concordant results in both functional assays were used to categorize CHEK2 VUS from 12 ENIGMA case-control datasets, including 73,048 female patients with breast cancer and 88,658 ethnicity-matched controls. RESULTS A total of 430/460 VUS were successfully analyzed, of which 340 (79.1%) were concordant in both functional assays and categorized as functionally impaired (N = 102), functionally intermediate (N = 12), or functionally wild-type (WT)-like (N = 226). We then examined their association with breast cancer risk in the case-control analysis. The OR and 95% CI (confidence intervals) for carriers of functionally impaired, intermediate, and WT-like variants were 2.83 (95% CI, 2.35-3.41), 1.57 (95% CI, 1.41-1.75), and 1.19 (95% CI, 1.08-1.31), respectively. The meta-analysis of population-specific datasets showed similar results. CONCLUSIONS We determined the functional consequences for the majority of CHEK2 missense VUS found in patients with breast cancer (3,660/4,436; 82.5%). Carriers of functionally impaired missense variants accounted for 0.5% of patients with breast cancer and were associated with a moderate risk similar to that of truncating CHEK2 variants. In contrast, 2.2% of all patients with breast cancer carried functionally wild-type/intermediate missense variants with no clinically relevant breast cancer risk in heterozygous carriers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Maria Isabel Achatz
- A.C. Camargo Cancer Center and Oncology Center, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Christine Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Cancer Center, Buffalo, New York
- WCHS Inc., Baltimore, Maryland
| | - Paraskevi Apostolou
- Human Molecular Genetics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Banu K. Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- WHI, USA
| | - Mollie Barnard
- Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marinus J. Blok
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Nicholas Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- CARRIERS, USA
| | - Joan Brunet
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Elizabeth S. Burnside
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- WWHS, Charlotte, North Carolina
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Ian Campbell
- Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Sock Hoai Chan
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Fei Chen
- Keck School of Medicine, University of Southern California, Los Angeles, California
- MEC, USA
| | - Jian Bang Chiang
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Ana Crujeiras-González
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robin De Putter
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Allison DePersia
- Center for Medical Genetics, NorthShore University Health System, Evanston, Illinois
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Lifepool, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Susan Domchek
- CARRIERS, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna Efremidis
- Clinical Cancer Genetics and Family Consultants, CLINICAGENE, Athens Medical Center, Athens, Greece
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - D. Gareth R. Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Lidia Feliubadaló
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Olivia Fuentes-Ríos
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Encarna B. Gómez-García
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Sara González
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Christopher Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, California
- MEC, USA
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - James Hodge
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
- CPS3, Kennesaw, Georgia
| | - Chunling Hu
- CARRIERS, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Hongyan Huang
- T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- NHS, Reston, Virginia
| | | | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Peter Kraft
- T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- NHS, Reston, Virginia
| | - James Lacey
- Beckman Research Institute, City of Hope Cancer Center, Duarte, California
- CTS, USA
| | - Conxi Lázaro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Na Li
- Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Sara Lindstrom
- WHI, USA
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Adriana Lori
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
- American Cancer Society, Atlanta, Georgia
| | - Elana Martinez
- Duke-NUS Medical School, Singapore, Singapore
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California
| | - Alexandra Martins
- Inserm UMR1245, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, and Royal Melbourne Hospital, Melbourne, Australia
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Padua, Italy
| | - Alvaro N.A. Monteiro
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Luigi Mori
- Endocrine and Metabolic Disease Unit, ASST Spedali Civili of Brescia, Brescia, Italia
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Katherine Nathanson
- CARRIERS, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Janet E. Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- MCBCS, USA
| | - Julie Palmer
- Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alpa Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
- CPS-II, USA
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Paolo Radice
- Department of Experimental Oncology, Molecular Bases of Genetic Risk and Genetic Testing Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Nicoletta Resta
- Department of Precision and Regenerative Medicine and Ionian Area, Medical Genetics Unit, University of Bari, Bari, Italy
| | | | - Toon Rosseel
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kathryn J. Ruddy
- MCBCS, USA
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Marta Santamariña
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | | | - Lauren Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia
- CPS-II, USA
| | - Amanda E. Toland
- Department of Cancer Biology & Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amy Trentham-Dietz
- WWHS, Charlotte, North Carolina
- University of Wisconsin, Madison, Wisconsin
| | | | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nana Weber-Lassalle
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Lisa Wiesmuller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Stacey Winham
- MMHS, USA
- Department Quantitative Sciences, Mayo Clinic, Rochester, Minnesota
| | - Siddhartha Yadav
- CARRIERS, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Song Yao
- WCHS Inc., Baltimore, Maryland
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Valentina Zampiga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori," Meldola, Italy
| | - Magnus Zethoven
- Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ze Wen Zhang
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesús Del Valle
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL-IGTP-IDIBGI, L'Hospitalet, Barcelona, Spain
| | - Arcangela De Nicolo
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Joanne Ngeow
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Inserm UMR1245, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Fergus J. Couch
- CARRIERS, USA
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Yang Y, Liu C, Zhuo ZL, Xie F, Wang K, Wang S, Zhao XT. Germline Mutations in 32 Cancer Susceptibility Genes by Next-Generation Sequencing among Breast Cancer Patients. Oncology 2023; 102:206-216. [PMID: 37517399 DOI: 10.1159/000532095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION BRCA1/2 germline mutations are the most well-known genetic determinants for breast cancer. However, the distribution of germline mutations in non-BRCA1/2 cancer susceptibility genes in Chinese breast cancer patients is unclear. The association between clinical characteristics and germline mutations remains to be explored. METHODS Consecutive breast cancer patients from Peking University People's Hospital were enrolled. Clinical characteristics were collected, and next-generation sequencing was performed using blood samples of participants to identify pathogenic/likely pathogenic (P/LP) germline mutations in 32 cancer susceptibility genes including homologous recombination repair (HRR) genes. RESULTS A total of 885 breast cancer patients underwent the detection of germline mutations. 107 P/LP germline mutations of 17 genes were identified in 116 breast cancer patients including 79 (8.9%) in BRCA1/2 and 40 (4.5%) in 15 non-BRCA1/2 genes. PALB2 was the most frequently mutated gene other than BRCA1/2 but still relatively rare (1.1%). There were 38 novel P/LP germline variants detected. P/LP germline mutations in BRCA1/2 were significantly associated with onset age (p < 0.001), the family history of breast/ovarian cancer (p = 0.010), and molecular subtype (p < 0.001), while being correlated with onset age (p < 0.001), site of breast tumor (p = 0.028), and molecular subtype (p < 0.001) in HRR genes. CONCLUSIONS The multiple-gene panel prominently increased the detection rate of P/LP germline mutations in 32 cancer susceptibility genes compared to BRCA1/2 alone. Onset younger than or equal to 45 years of age, bilateral and triple-negative breast cancer patients may be more likely to be recommended for detecting P/LP germline mutations in HRR genes.
Collapse
Affiliation(s)
- Yu Yang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chang Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhong-Ling Zhuo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fei Xie
- Breast Center, Peking University People's Hospital, Beijing, China
| | - Ke Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, China
| | - Xiao-Tao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
Sachsenweger J, Jansche R, Merk T, Heitmeir B, Deniz M, Faust U, Roggia C, Tzschach A, Schroeder C, Riess A, Pospiech H, Peltoketo H, Pylkäs K, Winqvist R, Wiesmüller L. ABRAXAS1 orchestrates BRCA1 activities to counter genome destabilizing repair pathways-lessons from breast cancer patients. Cell Death Dis 2023; 14:328. [PMID: 37198153 DOI: 10.1038/s41419-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
It has been well-established that mutations in BRCA1 and BRCA2, compromising functions in DNA double-strand break repair (DSBR), confer hereditary breast and ovarian cancer risk. Importantly, mutations in these genes explain only a minor fraction of the hereditary risk and of the subset of DSBR deficient tumors. Our screening efforts identified two truncating germline mutations in the gene encoding the BRCA1 complex partner ABRAXAS1 in German early-onset breast cancer patients. To unravel the molecular mechanisms triggering carcinogenesis in these carriers of heterozygous mutations, we examined DSBR functions in patient-derived lymphoblastoid cells (LCLs) and in genetically manipulated mammary epithelial cells. By use of these strategies we were able to demonstrate that these truncating ABRAXAS1 mutations exerted dominant effects on BRCA1 functions. Interestingly, we did not observe haploinsufficiency regarding homologous recombination (HR) proficiency (reporter assay, RAD51-foci, PARP-inhibitor sensitivity) in mutation carriers. However, the balance was shifted to use of mutagenic DSBR-pathways. The dominant effect of truncated ABRAXAS1 devoid of the C-terminal BRCA1 binding site can be explained by retention of the N-terminal interaction sites for other BRCA1-A complex partners like RAP80. In this case BRCA1 was channeled from the BRCA1-A to the BRCA1-C complex, which induced single-strand annealing (SSA). Further truncation, additionally deleting the coiled-coil region of ABRAXAS1, unleashed excessive DNA damage responses (DDRs) de-repressing multiple DSBR-pathways including SSA and non-homologous end-joining (NHEJ). Our data reveal de-repression of low-fidelity repair activities as a common feature of cells from patients with heterozygous mutations in genes encoding BRCA1 and its complex partners.
Collapse
Affiliation(s)
- Juliane Sachsenweger
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rebecca Jansche
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Tatjana Merk
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Benedikt Heitmeir
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Helmut Pospiech
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany.
| |
Collapse
|
13
|
Melki R, Melloul M, Aissaoui S, El Harroudi T, Boukhatem N. Increased prevalence of the founder BRCA1 c.5309G>T and recurrent BRCA2 c.1310_1313delAAGA mutations in breast cancer families from Northerstern region of Morocco: evidence of geographical specificity and high relevance for genetic counseling. BMC Cancer 2023; 23:339. [PMID: 37055759 PMCID: PMC10099884 DOI: 10.1186/s12885-023-10822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Inherited mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 (BRCA1/2) confer high risks of breast and ovarian cancer. Because the contribution of BRCA1/2 germline mutations to BC in the Northeastern population of Morocco remains largely unknown, we conducted this first study to evaluate the prevalence and the phenotypic spectrum of two BRCA1/2 pathogenic mutations (the founder BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA). This choice was also argued by the presence of an apparent specific geographical connection of these mutations and the Northeastern region of Morocco. METHODS Screening for the germline mutations c.5309G>T and BRCA2 c.1310_1313delAAGA was performed by sequencing on a total of 184 breast cancer (BC) patients originated from the Northeastern region of Morocco. The likelihood of identifying a BRCA mutation is calculated using the Eisinger scoring model. The clinical and pathologic features were compared between the BRCA-positive and BRCA-negative groups of patients. Difference in survival outcomes was compared between mutation carriers and non-carriers. RESULTS BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA are responsible for a significant proportion of all BC cases (12.5%) and at least 20% of familial BC. The screening of BRCA1/2 genes by NGS sequencing confirmed that there are no additional mutations detected among positive patients. The clinicopathological features in positive patients were in accordance with typical characteristics of BRCA pathogenic mutations. The mean features in the carriers were the early onset of the disease, familial history, triple negative status (for BRCA1 c.5309G>T) and worse prognosis in terms of overall surviving. Our study indicates that the Eisinger scoring model could be recommended to identify patients for referral to BRCA1/2 oncogenetic counseling. CONCLUSION Our findings suggest that BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA mutations may have a strong founder and/or recurrent effect on breast cancer among the Northeastern Moroccan population. There contribution to breast cancer incidence is certainly substantial in this subgroup. Therefore, we believe that BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA mutations have to be included in the array of tests aimed at revealing cancer syndrome carriers among subjects of Moroccan origin.
Collapse
Affiliation(s)
- Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.
| | - Marouane Melloul
- Microbiology and Molecular Biology Unit, PMBBE Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | | - Tijani El Harroudi
- Surgical Oncology, Faculty of Medicine and Pharmacy, University Mohammed Premier , Oujda, Morocco
| | - Noureddine Boukhatem
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
14
|
Imyanitov EN, Kuligina ES, Sokolenko AP, Suspitsin EN, Yanus GA, Iyevleva AG, Ivantsov AO, Aleksakhina SN. Hereditary cancer syndromes. World J Clin Oncol 2023; 14:40-68. [PMID: 36908677 PMCID: PMC9993141 DOI: 10.5306/wjco.v14.i2.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Hereditary cancer syndromes (HCSs) are arguably the most frequent category of Mendelian genetic diseases, as at least 2% of presumably healthy subjects carry highly-penetrant tumor-predisposing pathogenic variants (PVs). Hereditary breast-ovarian cancer and Lynch syndrome make the highest contribution to cancer morbidity; in addition, there are several dozen less frequent types of familial tumors. The development of the majority albeit not all hereditary malignancies involves two-hit mechanism, i.e. the somatic inactivation of the remaining copy of the affected gene. Earlier studies on cancer families suggested nearly fatal penetrance for the majority of HCS genes; however, population-based investigations and especially large-scale next-generation sequencing data sets demonstrate that the presence of some highly-penetrant PVs is often compatible with healthy status. Hereditary cancer research initially focused mainly on cancer detection and prevention. Recent studies identified multiple HCS-specific drug vulnerabilities, which translated into the development of highly efficient therapeutic options.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekaterina S Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Grigoriy A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| |
Collapse
|
15
|
van der Merwe NC, Ntaita KS, Stofberg H, Combrink HM, Oosthuizen J, Kotze MJ. Implementation of multigene panel testing for breast and ovarian cancer in South Africa: A step towards excellence in oncology for the public sector. Front Oncol 2022; 12:938561. [PMID: 36568162 PMCID: PMC9768488 DOI: 10.3389/fonc.2022.938561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of genomic knowledge into public health benefits requires the implementation of evidence-based recommendations in clinical practice. In this study, we moved beyond BRCA1/2 susceptibility testing in breast and ovarian cancer patients to explore the application of pharmacogenetics across multiple genes participating in homologous recombination DNA damage repair. This involved the utilisation of next-generation sequencing (NGS) at the intersection of research and service delivery for development of a comprehensive genetic testing platform in South Africa. Lack of international consensus regarding risk categorization of established cancer susceptibility genes and the level of evidence required for prediction of drug response supported the development of a central database to facilitate clinical interpretation. Here we demonstrate the value of this approach using NGS to 1) determine the variant spectrum applicable to targeted therapy and implementation of prevention strategies using the 15-gene Oncomine™ BRCA Expanded Panel, and 2) searched for novel and known pathogenic variants in uninformative cases using whole exome sequencing (WES). Targeted NGS performed as a routine clinical service in 414 South African breast and/or ovarian cancer patients resulted in the detection of 48 actionable variants among 319 (15%) cases. BRCA1/2-associated cancers were identified in 70.8% of patients (34/48, including two double-heterozygotes), with the majority (35.3%, 12/34) representing known South African founder variants. Detection of actionable variants in established non-BRCA1/2 risk genes contributed 29% to the total percentage (14/48), distributed amongst ATM, CHEK2, BARD1, BRIP1, PALB2 and TP53. Experimental WES using a virtually constructed multi-cancer NGS panel in 16 genetically unresolved cases (and four controls) revealed novel protein truncating variants in the basal cell carcinoma gene PTCH1 (c.4187delG) and the signal transmission and transduction gene KIT (c.930delA) involved in crucial cellular processes. Based on these findings, the most cost-effective approach would be to perform BRCA1/2 founder variant testing at referral, followed by targeted multigene panel testing if clinically indicated and addition of WES in unresolved cases. This inventive step provides a constant flow of new knowledge into the diagnostic platform via a uniquely South African pathology-supported genetic approach implemented for the first time in this context to integrate research with service delivery.
Collapse
Affiliation(s)
- Nerina C. van der Merwe
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa,Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Nerina C. van der Merwe,
| | - Kholiwe S. Ntaita
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa,Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Hanri Stofberg
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Herkulaas MvE. Combrink
- Office of the Dean, Economic and Management Sciences, University of the Free State, Bloemfontein, South Africa,Interdisciplinary Centre for Digital Futures, University of the Free State, Bloemfontein, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa,Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa,Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
16
|
McDonald JT, Ricks-Santi LJ. Hereditary variants of unknown significance in African American women with breast cancer. PLoS One 2022; 17:e0273835. [PMID: 36315513 PMCID: PMC9621418 DOI: 10.1371/journal.pone.0273835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
Expanded implementation of genetic sequencing has precipitously increased the discovery of germline and somatic variants. The direct benefit of identifying variants in actionable genes may lead to risk reduction strategies such as increased surveillance, prophylactic surgery, as well as lifestyle modifications to reduce morbidity and mortality. However, patients with African ancestry are more likely to receive inconclusive genetic testing results due to an increased number of variants of unknown significance decreasing the utility and impact on disease management and prevention. This study examines whole exome sequencing results from germline DNA samples in African American women with a family history of cancer including 37 cases that were diagnosed with breast cancer and 51 family members. Self-identified ancestry was validated and compared to the 1000 genomes population. The analysis of sequencing results was limited to 85 genes from three clinically available common genetic screening platforms. This target region had a total of 993 variants of which 6 (<1%) were pathogenic or likely pathogenic, 736 (74.1%) were benign, and 170 (17.1%) were classified as a variant of unknown significance. There was an average of 3.4±1.8 variants with an unknown significance per individual and 85 of 88 individuals (96.6%) harbored at least one of these in the targeted genes. Pathogenic or likely pathogenic variants were only found in 6 individuals for the BRCA1 (p.R1726fs, rs80357867), BRCA2 (p.K589fs, rs397507606 & p.L2805fs, rs397507402), RAD50 (p.E995fs, rs587780154), ATM (p.V2424G, rs28904921), or MUTYH (p.G396D, rs36053993) genes. Strategies to functionally validate the remaining variants of unknown significance, especially in understudied and hereditary cancer populations, are greatly needed to increase the clinical utility and utilization of clinical genetic screening platforms to reduce cancer incidence and mortality.
Collapse
Affiliation(s)
- J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Luisel J. Ricks-Santi
- Cancer Research Center, Hampton University, Hampton, VA, United States of America
- Department of Pharmacotherapy and Translational Research, College of Medicine, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nepomuceno TC, Dos Santos APP, Fernandes VC, Elias ABR, Gomes TT, Suarez-Kurtz G, Iversen ES, Couch FJ, Monteiro ANA, Carvalho MA. Assessment of small in-frame indels and C-terminal nonsense variants of BRCA1 using a validated functional assay. Sci Rep 2022; 12:16203. [PMID: 36171434 PMCID: PMC9519549 DOI: 10.1038/s41598-022-20500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
BRCA1 (Breast Cancer 1, early onset) is linked to breast and ovarian cancer predisposition. Still, the risks conferred by a significant portion of BRCA1 variants identified in the population remains unknown. Most of these variants of uncertain significance are missense alterations. However, the functional implications of small in-frame deletions and/or insertions (indels) are also difficult to predict. Our group has previously evaluated the functional impact of 347 missense variants using an extensively validated transcriptional activity assay. Here we show a systematic assessment of 30 naturally occurring in-frame indels located at the C-terminal region of BRCA1. We identified positions sensitive and tolerant to alterations, expanding the knowledge of structural determinants of BRCA1 function. We further designed and assessed the impact of four single codon deletions in the tBRCT linker region and six nonsense variants at the C-terminus end of BRCA1. Amino acid substitutions, deletions or insertions in the disordered region do not significantly impact activity and are not likely to constitute pathogenic alleles. On the other hand, a sizeable fraction of in-frame indels at the BRCT domain significantly impact function. We then use a Bayesian integrative statistical model to derive the probability of pathogenicity for each variant. Our data highlights the importance of assessing the impact of small in-frame indels in BRCA1 to improve risk assessment and clinical decisions for carriers.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ana P P Dos Santos
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Vanessa C Fernandes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Anna B R Elias
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Thiago T Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil. .,Laboratório de Genética Molecular, Instituto Federal Do Rio de Janeiro, Rua Senador Furtado, Campus Rio de Janeiro121, Rio de Janeiro, RJ, 20270-021, Brazil.
| |
Collapse
|
18
|
Elliott AM, Adam S, du Souich C, Lehman A, Nelson TN, van Karnebeek C, Alderman E, Armstrong L, Aubertin G, Blood K, Boelman C, Boerkoel C, Bretherick K, Brown L, Chijiwa C, Clarke L, Couse M, Creighton S, Watts-Dickens A, Gibson WT, Gill H, Tarailo-Graovac M, Hamilton S, Heran H, Horvath G, Huang L, Hulait GK, Koehn D, Lee HK, Lewis S, Lopez E, Louie K, Niederhoffer K, Matthews A, Meagher K, Peng JJ, Patel MS, Race S, Richmond P, Rupps R, Salvarinova R, Seath K, Selby K, Steinraths M, Stockler S, Tang K, Tyson C, van Allen M, Wasserman W, Mwenifumbo J, Friedman JM. Genome-wide sequencing and the clinical diagnosis of genetic disease: The CAUSES study. HGG ADVANCES 2022; 3:100108. [PMID: 35599849 PMCID: PMC9117924 DOI: 10.1016/j.xhgg.2022.100108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.
Collapse
Affiliation(s)
- Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, Vancouver, BC, Canada
| | - Shelin Adam
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christèle du Souich
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tanya N. Nelson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam, University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily Alderman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Gudrun Aubertin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katherine Blood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Cyrus Boelman
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Cornelius Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karla Bretherick
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Lindsay Brown
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lorne Clarke
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Madeline Couse
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Susan Creighton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Abby Watts-Dickens
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Harinder Gill
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Sara Hamilton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Harindar Heran
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gabriella Horvath
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Lijia Huang
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Gurdip K. Hulait
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David Koehn
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hyun Kyung Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Elena Lopez
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Kristal Louie
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Karen Niederhoffer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Allison Matthews
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Kirsten Meagher
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Junran J. Peng
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Millan S. Patel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Simone Race
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Phillip Richmond
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ramona Salvarinova
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kimberly Seath
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn Selby
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Steinraths
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sylvia Stockler
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kaoru Tang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christine Tyson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Margot van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jill Mwenifumbo
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
19
|
Burke W, Parens E, Chung WK, Berger SM, Appelbaum PS. The Challenge of Genetic Variants of Uncertain Clinical Significance : A Narrative Review. Ann Intern Med 2022; 175:994-1000. [PMID: 35436152 PMCID: PMC10555957 DOI: 10.7326/m21-4109] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genomic tests expand diagnostic and screening opportunities but also identify genetic variants of uncertain clinical significance (VUSs). Only a minority of VUSs are likely to prove pathogenic when later reassessed, but resolution of the uncertainty is rarely timely. That uncertainty adds complexity to clinical decision making and can result in harms and costs to patients and the health care system, including the time-consuming analysis required to interpret a VUS and the potential for unnecessary treatment and adverse psychological effects. Current efforts to improve variant interpretation will help reduce the scope of the problem, but the high prevalence of rare and novel variants in the human genome points to VUSs as an ongoing challenge. Additional strategies can help mitigate the potential harms of VUSs, including testing protocols that limit identification or reporting of VUSs, subclassification of VUSs according to the likelihood of pathogenicity, routine family-based evaluation of variants, and enhanced counseling efforts. All involve tradeoffs, and the appropriate balance of measures is likely to vary for different test uses and clinical settings. Cross-specialty deliberation and public input could contribute to systematic and broadly supported policies for managing VUSs.
Collapse
Affiliation(s)
- Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, WA, USA
| | | | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara M. Berger
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul S. Appelbaum
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Abdel-Razeq H, Tamimi F, Abujamous L, Abdel-Razeq R, Abunasser M, Edaily S, Abdulelah H, Khashabeh RA, Bater R. Rates of Variants of Uncertain Significance Among Patients With Breast Cancer Undergoing Genetic Testing: Regional Perspectives. Front Oncol 2022; 12:673094. [PMID: 35402282 PMCID: PMC8989924 DOI: 10.3389/fonc.2022.673094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose Contrary to BRCA pathogenic variants, recommendations for management of variants of uncertain significance (VUS) are not clear and focus more on the patient’s family and personal history of cancer. Local and regional data on VUS are scarce. In this paper, we study patterns and frequency of VUS among breast cancer patients undergoing genetic testing. Patients and Methods Patients with breast cancer at high risk for pathogenic variants, as per the National Comprehensive Cancer Network (NCCN) guidelines, were tested at reference laboratories. Related surgical interventions were reviewed. Results Among a group of 1,197 patients with breast cancer who underwent genetic testing and counseling, 110 (9.2%) had VUS; most (n = 79, 71.8%) were in BRCA2. Median age (range) was 39 (25–66) years with 65 (59.1%) patients who were 40 years or younger at diagnosis. Among 103 patients with non-metastatic disease, 48 (46.6%) had breast-conserving surgery (BCS) while only 5 (4.9%) had bilateral mastectomies; all were due to bilateral disease and not prophylactic. VUS diagnosis was known prior to initial surgery in 34 (33.0%) patients; 11 (32.4%) of them had BCS only. Over the study period, only one VUS variant was upgraded to “likely positive.” The recent introduction of multiple-gene panel testing had resulted in a surge in VUS rate (22.2%) in genes other than BRCA1 or BRCA2, like PALB2, CHEK2, and ATM. Conclusions Rates of VUS are relatively high and increasing, mostly in non-BRCA1 or BRCA2, and this had no impact on the therapeutic or prophylactic surgical decisions. Adherence to guidelines is extremely important to avoid unnecessary procedures.
Collapse
Affiliation(s)
- Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan.,School of Medicine, University of Jordan, Amman, Jordan
| | - Faris Tamimi
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Lama Abujamous
- Department of Cell Therapy & Applied Genomic, King Hussein Cancer Center, Amman, Jordan
| | | | | | - Sara Edaily
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Hazem Abdulelah
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Razan Abu Khashabeh
- Department of Cell Therapy & Applied Genomic, King Hussein Cancer Center, Amman, Jordan
| | - Rayan Bater
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
21
|
Bellè F, Mercatanti A, Lodovichi S, Congregati C, Guglielmi C, Tancredi M, Caligo MA, Cervelli T, Galli A. Validation and Data-Integration of Yeast-Based Assays for Functional Classification of BRCA1 Missense Variants. Int J Mol Sci 2022; 23:ijms23074049. [PMID: 35409408 PMCID: PMC8999655 DOI: 10.3390/ijms23074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Germline mutations in the BRCA1 gene have been reported to increase the lifetime risk of developing breast and/or ovarian cancer (BOC). By new sequencing technologies, numerous variants of uncertain significance (VUS) are identified. It is mandatory to develop new tools to evaluate their functional impact and pathogenicity. As the expression of pathogenic BRCA1 variants in Saccharomyces cerevisiae increases the frequency of intra- and inter-chromosomal homologous recombination (HR), and gene reversion (GR), we validated the two HR and the GR assays by testing 23 benign and 23 pathogenic variants and compared the results with those that were obtained in the small colony phenotype (SCP) assay, an additional yeast-based assay, that was validated previously. We demonstrated that they scored high accuracy, sensitivity, and sensibility. By using a classifier that was based on majority of voting, we have integrated data from HR, GR, and SCP assays and developed a reliable method, named yBRCA1, with high sensitivity to obtain an accurate VUS functional classification (benign or pathogenic). The classification of BRCA1 variants, important for assessing the risk of developing BOC, is often difficult to establish with genetic methods because they occur rarely in the population. This study provides a new tool to get insights on the functional impact of the BRCA1 variants.
Collapse
Affiliation(s)
- Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Alberto Mercatanti
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Caterina Congregati
- Division of Internal Medicine, University Hospital of Pisa, 56125 Pisa, Italy;
| | - Chiara Guglielmi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, 56125 Pisa, Italy; (C.G.); (M.T.)
| | - Mariella Tancredi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, 56125 Pisa, Italy; (C.G.); (M.T.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, 56125 Pisa, Italy; (C.G.); (M.T.)
- Correspondence: (M.A.C.); (A.G.)
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
- Correspondence: (M.A.C.); (A.G.)
| |
Collapse
|
22
|
Tagne Simo R, Baiguerel EM, Nwabo Kamdje AH, Seke Etet PF, Ahmadou M, Nangue C, Telefo PB. Awareness of Breast Cancer Screening among the Medical and General Population of the North Region of Cameroon. Int J Breast Cancer 2021; 2021:6663195. [PMID: 34354843 PMCID: PMC8331314 DOI: 10.1155/2021/6663195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
Breast cancer has become a real public health problem in Cameroon, particularly in rural areas due to late diagnosis, resulting partly from the absence of national screening programs. This work is aimed at assessing breast cancer awareness in the North Region of Cameroon. Participants were selected in six health centers surrounding the rural area of Garoua, North Region, Cameroon, and administered a questionnaire aimed at assessing their awareness about breast cancer risk factors and screening. Out of the 475 women (including 37 medical personnel) interviewed, 45.5% attended at least secondary school; 91.3% were aware of the disease with the main sources of information from those around them (64.8%), media (46.5%), and health professionals in health facilities (42.7%). 23.3% had misconceptions and myth-based ideas on the origin of the disease. Ignorance was the main reason preventing the performance of breast self-examination, and the high cost prevents individuals from going for mammography. The highest awareness rate was observed in employed women with higher level of education. Our study highlights the need to raise awareness among the populations in North Region, Cameroon, about the risk factors and clinical signs of breast cancer and the importance of screening practice for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Richard Tagne Simo
- Department of Biomedical Sciences, Faculty of Science, University of Ngaoundere, Cameroon
| | - Erika Myriam Baiguerel
- Department of Biomedical Sciences, Faculty of Science, University of Ngaoundere, Cameroon
| | | | - Paul Faustin Seke Etet
- Department of Physiological Sciences and Biochemistry, FMBS, Garoua, University of Ngaoundere, Cameroon
| | - Mohamadou Ahmadou
- Department of Biomedical Sciences, Faculty of Science, University of Ngaoundere, Cameroon
| | - Charlette Nangue
- Anatomo-Cytopathology Laboratory, University Hospital Center of Yaounde, Cameroon
| | | |
Collapse
|
23
|
Foo TK, Vincelli G, Huselid E, Her J, Zheng H, Simhadri S, Wang M, Huo Y, Li T, Yu X, Li H, Zhao W, Bunting SF, Xia B. ATR/ATM-mediated phosphorylation of BRCA1 T1394 promotes homologous recombinational repair and G2/M checkpoint maintenance. Cancer Res 2021; 81:4676-4684. [PMID: 34301763 PMCID: PMC8448966 DOI: 10.1158/0008-5472.can-20-2723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BRCA1 maintains genome integrity and suppresses tumorigenesis by promoting homologous recombination (HR)-mediated repair of DNA double strand breaks (DSB) and DNA damage-induced cell cycle checkpoints. Phosphorylation of BRCA1 by ATM, ATR, CHK2, CDK, and PLK1 kinases has been reported to regulate its functions. Here we show that ATR and ATM-mediated phosphorylation of BRCA1 on T1394, a highly conserved but functionally uncharacterized site, is a key modification for its function in the DNA damage response. Following DNA damage, T1394 phosphorylation ensured faithful repair of DSBs by promoting HR and preventing single strand annealing, a deletion-generating repair process. BRCA1 T1394 phosphorylation further safeguarded chromosomal integrity by maintaining the G2/M checkpoint. Moreover, multiple patient-derived BRCA1 variants of unknown significance were shown to affect T1394 phosphorylation. These results establish an important regulatory mechanism of BRCA1 function in the DNA damage response and may have implications in the development or prognosis of BRCA1-associated cancers.
Collapse
Affiliation(s)
- Tzeh K Foo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | | | - Eric Huselid
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | | | | | - Meiling Wang
- The University of Texas Health Science Center at San Antonio
| | - Yanying Huo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | - Tao Li
- Department of Medicine/Population Sciences, Rutgers Cancer Institute of New Jersey
| | | | - Hong Li
- Center for advanced proteomics, Rutgers, The State University of New Jersey
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
24
|
Wenzel C, Herold S, Wermke M, E. Aust D, B. Baretton G. Routine Molecular Pathology Diagnostics in Precision Oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:arztebl.m2021.0025. [PMID: 33536117 PMCID: PMC8287073 DOI: 10.3238/arztebl.m2021.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Technical advances in the field of molecular genetics permit precise genomic characterization of malignant tumors. This has not only improved our understanding of tumor biology but also paved the way for molecularly stratified treatment strategies in routine clinical practice. METHODS A selective search of PubMed to identify literature on molecular pathology methods, their indications, the challenges associated with molecular findings, and future developments. RESULTS Tumors can be characterized with the aid of immunohistochemistry, in-situ hybridization, and sequencing of DNA or RNA. The benefits of molecularly stratified tumor treatment have been demonstrated by randomized clinical trials on numerous tumor entities, e.g., non-small-cell lung cancer, colorectal cancer, and breast cancer. Therefore, initiation of specific treatment for these entities should be preceded by molecular pathology biomarker analyses, generally carried out on tumor tissue. Randomized controlled trials and non-controlled studies show that enhanced progression-free survival ensues if the pharmacological treatment is oriented on the findings of molecular pathology diagnostics. In next-generation sequencing, numerous relevant gene sequences or even whole genes can be sequenced in parallel, dispensing with complex staged diagnostics and reducing the use of biomaterials. These new methods also complement the currently relevant predictive biomarkers by permitting the investigation of genetic alterations presently of interest in the context of clinical studies. Prior to widespread routine clinical application, however, sequencing of large gene panels or whole genomes or exomes need to be even more stringently validated. CONCLUSION Quality-assured molecular pathology assays are universally available for the determination of currently relevant predictive biomarkers. However, the integration of extensive genomic analyses into routine molecular pathology diagnostics represents a future challenge in precision oncology.
Collapse
Affiliation(s)
- Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Sylvia Herold
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Martin Wermke
- Medical Department I, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden: Dr. med. Martin Wermke
| | - Daniela E. Aust
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| | - Gustavo B. Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden
| |
Collapse
|
25
|
Lyra PCM, Nepomuceno TC, de Souza MLM, Machado GF, Veloso MF, Henriques TB, Dos Santos DZ, Ribeiro IG, Ribeiro RS, Rangel LBA, Richardson M, Iversen ES, Goldgar D, Couch FJ, Carvalho MA, Monteiro ANA. Integration of functional assay data results provides strong evidence for classification of hundreds of BRCA1 variants of uncertain significance. Genet Med 2020; 23:306-315. [PMID: 33087888 PMCID: PMC7862071 DOI: 10.1038/s41436-020-00991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose BRCA1 pathogenic variant heterozygotes are at a substantially increased risk for breast and ovarian cancer. The widespread uptake of testing has led to a significant increase in the detection of missense variants in BRCA1, the vast majority of which are variants of uncertain clinical significance (VUS), posing a challenge to genetic counseling. Here, we harness a wealth of functional data for thousands of variants to aid in variant classification. Methods We have collected, curated, and harmonized functional data for 2701 missense variants representing 24.5% of possible missense variants in BRCA1. Results were harmonized across studies by converting data into binary categorical variables (functional impact versus no functional impact). Using a panel of reference variants we identified a subset of assays with high sensitivity and specificity (≥80%) and apply the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines to assign evidence criteria for classification. Results Integration of data from validated assays provided ACMG/AMP evidence criteria in favor of pathogenicity for 297 variants or against pathogenicity for 2058 representing 96.2% of current VUS functionally assessed. We also explore discordant results and identify limitations in the approach. Conclusion High quality functional data are available for BRCA1 missense variants and provide evidence for classification of 2355 VUS according to their pathogenicity.
Collapse
Affiliation(s)
- Paulo C M Lyra
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Thales C Nepomuceno
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marcele L M de Souza
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Géssica F Machado
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Mariana F Veloso
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Taciane B Henriques
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Diandra Z Dos Santos
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Iuly G Ribeiro
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Roberto S Ribeiro
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Leticia B A Rangel
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - David Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro, Brazil
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
26
|
Liang X, Bai J, Chen B. Overexpression of EPDR1 has an antitumorigenic effect on breast cancer in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2628-2636. [PMID: 33165408 PMCID: PMC7642719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND EPDR1 is widely expressed in cancer, especially colorectal cancer. However, the biologic function of EPDR1 in breast cancer is uncertain. METHODS The expression profile of EPDR1 was assessed by Gene Expression Profiling Interactive Analysis (GEPIA; gepia.cancer-pku.cn). We constructed EPDR1-overexpressing (EPDR1-Ov) plasmids that were transfected into breast cancer cells (MCF-7 and MDA-MB-453) to examine the EPDR1 effect on their malignant behavior. The EPDR1 overexpression and the critical components of the P53 signaling pathway were determined by western blot or RT-PCR. Cell proliferation, colony formation, invasive capacity, and cell apoptotic proportions were examined after transfection. RESULTS mRNA expression of EPDR1 was significantly lessened in breast cancer tissues when compared to the adjacent normal tissues by data analysis from GEPIA. There was an impairment in proliferative ability, viability, invasion, and anti-apoptotic effect in EPDR1 overexpressed breast cancer cells. Mechanistic studies showed that EPDR1 overexpression increased the p53, p21 and Bcl-2 expression while inhibiting Bax expression. CONCLUSION EPDR1 inhibited malignant behaviors and promoted apoptosis in breast cancer cells by activation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Xiuqing Liang
- Department of Breast and Thyroid Surgery, Mianyang Maternal and Child Health and Family Planning Service CenterMianyang 621000, Sichuan Province, China
| | - Jian Bai
- Department of Ultrasound Medicine, Mianyang Maternal and Child Health and Family Planning Service CenterMianyang 621000, Sichuan Province, China
| | - Baoguang Chen
- Department of Breast and Thyroid Surgery, Mianyang Maternal and Child Health and Family Planning Service CenterMianyang 621000, Sichuan Province, China
| |
Collapse
|
27
|
Sahu S, Sharan SK. Translating Embryogenesis to Generate Organoids: Novel Approaches to Personalized Medicine. iScience 2020; 23:101485. [PMID: 32864586 PMCID: PMC7441954 DOI: 10.1016/j.isci.2020.101485] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The astounding capacity of pluripotent stem cells (PSCs) to differentiate and self-organize has revolutionized the development of 3D cell culture models. The major advantage is its ability to mimic in vivo microenvironments and cellular interactions when compared with the classical 2D cell culture models. Recent innovations in generating embryo-like structures (including blastoids and gastruloids) from PSCs have advanced the experimental accessibility to understand embryogenesis with immense potential to model human development. Taking cues on how embryonic development leads to organogenesis, PSCs can also be directly differentiated to form mini-organs or organoids of a particular lineage. Organoids have opened new avenues to augment our understanding of stem cell and regenerative biology, tissue homeostasis, and disease mechanisms. In this review, we provide insights from developmental biology with a comprehensive resource of signaling pathways that in a coordinated manner form embryo-like structures and organoids. Moreover, the advent of assembloids and multilineage organoids from PSCs opens a new dimension to study paracrine function and multi-tissue interactions in vitro. Although this led to an avalanche of enthusiasm to utilize organoids for organ transplantation studies, we examine the current limitations and provide perspectives to improve reproducibility, scalability, functional complexity, and cell-type characterization. Taken together, these 3D in vitro organ-specific and patient-specific models hold great promise for drug discovery, clinical management, and personalized medicine.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-04, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-33, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Boonen RACM, Vreeswijk MPG, van Attikum H. Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Front Mol Biosci 2020; 7:169. [PMID: 33195396 PMCID: PMC7525363 DOI: 10.3389/fmolb.2020.00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years it has become clear that pathogenic variants in PALB2 are associated with a high risk for breast, ovarian and pancreatic cancer. However, the clinical relevance of variants of uncertain significance (VUS) in PALB2, which are increasingly identified through clinical genetic testing, is unclear. Here we review recent advances in the functional characterization of VUS in PALB2. A combination of assays has been used to assess the impact of PALB2 VUS on its function in DNA repair by homologous recombination, cell cycle regulation and the control of cellular levels of reactive oxygen species (ROS). We discuss the outcome of this comprehensive analysis of PALB2 VUS, which showed that VUS in PALB2’s Coiled-Coil (CC) domain can impair the interaction with BRCA1, whereas VUS in its WD40 domain affect PALB2 protein stability. Accordingly, the CC and WD40 domains of PALB2 represent hotspots for variants that impair PALB2 protein function. We also provide a future perspective on the high-throughput analysis of VUS in PALB2, as well as the functional characterization of variants that affect PALB2 RNA splicing. Finally, we discuss how results from these functional assays can be valuable for predicting cancer risk and responsiveness to cancer therapy, such as treatment with PARP inhibitor- or platinum-based chemotherapy.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Cervelli T, Lodovichi S, Bellè F, Galli A. Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. MICROBIAL CELL 2020; 7:162-174. [PMID: 32656256 PMCID: PMC7328678 DOI: 10.15698/mic2020.07.721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Technological advances are continuously revealing new genetic variants that are often difficult to interpret. As one of the most genetically tractable model organisms, yeast can have a central role in determining the consequences of human genetic variation. DNA repair gene mutations are associated with many types of cancers, therefore the evaluation of the functional impact of these mutations is crucial for risk assessment and for determining therapeutic strategies. Owing to the evolutionary conservation of DNA repair pathways between human cells and the yeast Saccharomyces cerevisiae, several functional assays have been developed. Here, we describe assays for variants of human genes belonging to the major DNA repair pathways divided in functional assays for human genes with yeast orthologues and human genes lacking a yeast orthologue. Human genes with orthologues can be studied by introducing the correspondent human mutations directly in the yeast gene or expressing the human gene carrying the mutations; while the only possible approach for human genes without a yeast orthologue is the heterologous expression. The common principle of these approaches is that the mutated gene determines a phenotypic alteration that can vary according to the gene studied and the domain of the protein. Here, we show how the versatility of yeast can help in classifying cancer-associated variants.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Francesca Bellè
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| |
Collapse
|