1
|
Keshavan N, Mhaldien L, Gilmour K, Rahman S. Interferon Stimulated Gene Expression Is a Biomarker for Primary Mitochondrial Disease. Ann Neurol 2024. [PMID: 39320038 DOI: 10.1002/ana.27081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE Mitochondria are implicated in regulation of the innate immune response. We hypothesized that abnormalities in interferon signaling may contribute to pathophysiology in patients with primary mitochondrial disease (PMD). METHODS Expression of interferon stimulated genes (ISGs) was measured by real-time polymerase chain reaction (PCR) in whole blood samples from a cohort of patients with PMD. RESULTS Upregulated ISG expression was observed in a high proportion (41/55, 75%) of patients with PMD on at least 1 occasion, most frequently IFI27 upregulation, seen in 50% of the samples. Some patients had extremely high IFI27 levels, similar to those seen in patients with primary interferonopathies. A statistically significant correlation was observed between elevated IFI27 gene expression and PMD, but not between IFI27 and secondary mitochondrial dysfunction, suggesting that ISG upregulation is a biomarker of PMD. In some patients with PMD, ISG abnormalities persisted on repeat measurement over several years, indicative of ongoing chronic inflammation. Subgroup analyses suggested common ISG signatures in patients with similar mitochondrial disease mechanisms and positive correlations with disease severity among patients with identical genetic diagnoses. INTERPRETATION Dysregulated interferon signaling is frequently seen in patients with PMD suggesting that interferon dysregulation is a contributor to pathophysiology. This may indicate a role for repurposing of immunomodulatory therapies for the treatment of PMDs by targeting interferon signaling. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Nandaki Keshavan
- Metabolic Unit, Great Ormond Street Hospital, London, UK
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lana Mhaldien
- Department of Immunology, Camelia Botnar Laboratory, Great Ormond Street Hospital, London, UK
| | - Kimberly Gilmour
- Department of Immunology, Camelia Botnar Laboratory, Great Ormond Street Hospital, London, UK
| | - Shamima Rahman
- Metabolic Unit, Great Ormond Street Hospital, London, UK
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
2
|
Small AM, Yutzey KE, Binstadt BA, Voigts Key K, Bouatia-Naji N, Milan D, Aikawa E, Otto CM, St Hilaire C. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e109-e128. [PMID: 38881493 DOI: 10.1161/cir.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.
Collapse
|
3
|
Liu X, Lei M, Xue Y, Li H, Yin J, Li D, Shu J, Cai C. Multi-dimensional Insight into the Coexistence of Pathogenic Genes for ADAR1 and TSC2: Careful Consideration is Essential for Interpretation of ADAR1 Variants. Biochem Genet 2024; 62:1811-1826. [PMID: 37740860 DOI: 10.1007/s10528-023-10488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 09/25/2023]
Abstract
Aicardi-Goutières syndrome 6 (AGS6) is a serious auto-immunization-associated acute neurologic decompensation. AGS6 manifests as acute onset of severe generalized dystonia of limbs and developmental regression secondary to febrile illness mostly. Dyschromatosis symmetrica hereditaria (DSH), as pigmentary genodermatosis, is a characterized mixture of hyperpigmented and hypopigmented macules. Both AGS6 and DSH are associated with ADAR1 pathogenic variants. To explore the etiology of a proband with developmental regression with mixture of hyperpigmentation and hypopigmentation macules, we used the trio-WES. Later, to clarify the association between variants and diseases, we used guidelines of ACMG for variants interpretation and quantitative Real-time PCR for verifying elevated expression levels of interferon-stimulated genes, separately. By WES, we detected 2 variants in ADAR1 and a variant in TSC2, respectively, were NM_001111.5:c.1096_1097del, NM_001111.5:c.518A>G, and NM_000548.5:c.1864C>T. Variants interpretation suggested that these 3 variants were both pathogenic. Expression levels of interferon-stimulated genes also elevated as expected. We verified the co-occurrence of pathogenic variants of ADAR1 and TSC2 in AGS6 patients with DSH. Our works contributed to the elucidation of ADAR1 pathogenic mechanism, given the specific pathogenic mechanism of ADAR1, and it is necessary to consider with caution when variants were found in ADAR1.
Collapse
Affiliation(s)
- Xiangyu Liu
- Graduate College of Tianjin Medical University, Tianjin, 300070, China
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Meifang Lei
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yan Xue
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Hong Li
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jing Yin
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Jianbo Shu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| |
Collapse
|
4
|
Karla AR, Pinard A, Boerio ML, Hemelsoet D, Tavernier SJ, De Pauw M, Vereecke E, Fraser S, Bamshad MJ, Guo D, Callewaert B, Milewicz DM. SAMHD1 compound heterozygous rare variants associated with moyamoya and mitral valve disease in the absence of other features of Aicardi-Goutières syndrome. Am J Med Genet A 2024; 194:e63486. [PMID: 38041217 DOI: 10.1002/ajmg.a.63486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.
Collapse
Affiliation(s)
- Aamuktha R Karla
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Amélie Pinard
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maura L Boerio
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Simon J Tavernier
- Department of Internal Medicine and Pediatrics, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michel De Pauw
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Elke Vereecke
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Stuart Fraser
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dianna M Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
6
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
8
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Waugh KA, Minter R, Baxter J, Chi C, Galbraith MD, Tuttle KD, Eduthan NP, Kinning KT, Andrysik Z, Araya P, Dougherty H, Dunn LN, Ludwig M, Schade KA, Tracy D, Smith KP, Granrath RE, Busquet N, Khanal S, Anderson RD, Cox LL, Estrada BE, Rachubinski AL, Lyford HR, Britton EC, Fantauzzo KA, Orlicky DJ, Matsuda JL, Song K, Cox TC, Sullivan KD, Espinosa JM. Triplication of the interferon receptor locus contributes to hallmarks of Down syndrome in a mouse model. Nat Genet 2023; 55:1034-1047. [PMID: 37277650 PMCID: PMC10260402 DOI: 10.1038/s41588-023-01399-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/14/2023] [Indexed: 06/07/2023]
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that IFNR overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the Ifnr locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Baxter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathryn D Tuttle
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha P Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zdenek Andrysik
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah Dougherty
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren N Dunn
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyndal A Schade
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dayna Tracy
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicolas Busquet
- Animal Behavior Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Santosh Khanal
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan D Anderson
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Liza L Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Belinda Enriquez Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah R Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor C Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer L Matsuda
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Kunhua Song
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy C Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Gollmann-Tepeköylü C, Graber M, Hirsch J, Mair S, Naschberger A, Pölzl L, Nägele F, Kirchmair E, Degenhart G, Demetz E, Hilbe R, Chen HY, Engert JC, Böhm A, Franz N, Lobenwein D, Lener D, Fuchs C, Weihs A, Töchterle S, Vogel GF, Schweiger V, Eder J, Pietschmann P, Seifert M, Kronenberg F, Coassin S, Blumer M, Hackl H, Meyer D, Feuchtner G, Kirchmair R, Troppmair J, Krane M, Weiss G, Tsimikas S, Thanassoulis G, Grimm M, Rupp B, Huber LA, Zhang SY, Casanova JL, Tancevski I, Holfeld J. Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification. Circulation 2023; 147:1518-1533. [PMID: 37013819 PMCID: PMC10192061 DOI: 10.1161/circulationaha.122.063481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/β receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/β receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.
Collapse
Affiliation(s)
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Naschberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Kirchmair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Degenhart
- Department of Radiology, Core Facility for Micro-CT, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao-Yu Chen
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - James C. Engert
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Anna Böhm
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadja Franz
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lobenwein
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Christiane Fuchs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Anna Weihs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Sonja Töchterle
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Georg F. Vogel
- Department of Pediatrics/Institute of Cell biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victor Schweiger
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonas Eder
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Pietschmann
- Division of Cellular and Molecular Pathophysiology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Markus Seifert
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Blumer
- Institute of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Gudrun Feuchtner
- Department of Radiology, Core Facility for Micro-CT, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, University of Innsbruck, Innsbruck, Innsbruck, Austria
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Günther Weiss
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, University of California, San Diego, La Jolla, USA
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A. Huber
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Austrian Drug Screening Institute, ADSI, Innsbruck, Austria
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ivan Tancevski
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
13
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol 2022; 74:735-751. [PMID: 35315249 DOI: 10.1002/art.42087] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI), and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of "points to consider" to improve diagnosis, treatment, and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates, and an allied health care professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires, and consensus methodology, "points to consider" to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment, and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI, and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment, and management of patients with CANDLE/PRAAS, SAVI, and AGS and aim to standardize and improve care, quality of life, and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lovro Lamot
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | | | - David Piskin
- University of Western Ontario, London Health Sciences Center, and Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thais Armangue
- Sant Joan de Deu Children's Hospital and IDIBAPS-Hospital Clinic; University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California
| | - Yanick J Crow
- University of Edinburgh, Edinburgh, UK, and Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, University of Paris, Paris, France
| | - Russell C Dale
- University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance and Kaiser San Francisco Hospital, San Francisco, California
| | | | - Elisa M Fazzi
- ASST Civil Hospital and University of Brescia, Brescia, Italy
| | | | - Francesco Gavazzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, and University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children and Indiana University School of Medicine, Indianapolis
| | | | | | - Bénédicte Neven
- Necker Children's Hospital, AP-HP, Institut Imagine Institut des Maladies Genetiques, University of Paris, Paris, France
| | - Simona Orcesi
- IRCCS Mondino Foundation and University of Pavia, Pavia, Italy
| | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | | | | | | | - Katsiaryna Uss
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Brian M Feldman
- Hospital for Sick Children and University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
14
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 EULAR and ACR points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann Rheum Dis 2022; 81:601-613. [PMID: 35086813 PMCID: PMC9036471 DOI: 10.1136/annrheumdis-2021-221814] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of 'points to consider' to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, 'points to consider' to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lovro Lamot
- Department of Pediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- 1Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thais Armangue
- Pediatric Neuroimmunology Unit, Neurology Service, Sant Joan de Deu Children's Hospital, and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California, USA
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburg, Edinburg, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, Île-de-France, France
| | - Russell C Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance, San Francisco, California, USA.,Kaiser San Francisco Hospital, San Francisco, California, USA
| | - Despina Eleftheriou
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisa M Fazzi
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Sciences ASST Civil Hospital, University of Brescia, Brescia, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Gavazzi
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operations Branch (ICMOB), Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bénédicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Imagine Institut des Maladies Genetiques, Paris, Île-de-France, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - M Cecilia Poli
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Davide Tonduti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano, Italy
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Brian M Feldman
- Division of Rheumatology, Hospital for Sick Children, Toronto, Ontario, Canada.,30Department of Pediatrics, Faculty of Medicine, University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Brogan
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Liu L, Zhang L, Huang P, Xiong J, Xiao Y, Wang C, Mao D, Liu L. Case Report: Aicardi-Goutières Syndrome Type 6 and Dyschromatosis Symmetrica Hereditaria With Congenital Heart Disease and Mitral Valve Calcification - Phenotypic Variants Caused by Adenosine Deaminase Acting on the RNA 1 Gene Homozygous Mutations. Front Pediatr 2022; 10:852903. [PMID: 35832578 PMCID: PMC9272138 DOI: 10.3389/fped.2022.852903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dyschromatosis symmetrica hereditaria (DSH), characterized by a mixture of hyper- and hypopigmented macules on the skin, is a rare pigmentary dermatosis of autosomal dominant inheritance. The pathogenic gene is adenosine deaminase acting on the RNA 1 gene (ADAR1), mutations in this gene also lead to Aicardi-Goutières syndrome type 6 (AGS 6), a rare hereditary encephalopathy with isolated spastic paraplegia. The pathomechanism of the ADAR1 gene mutations inducing DSH has not been clarified yet. We report the first case of DSH combined with AGS caused by the homozygous mutation of the ADAR1 gene in China (c.1622T > A) and reviewed the relevant literature. AGS 6 could occur in both men and women, and start in infancy. The main characteristics are growth retardation, skin depigmentation, intracranial calcification, and cerebral white matter lesions. In the current paper, the proband also had patent ductus arteriosus (PDA), ventricular septal defect (VSD), and mitral valve calcification, which are new symptoms that have not been reported in other cases. Additionally, we also aim to discuss the possible molecular mechanisms underlying the clinical heterogeneity caused by ADAR1 gene mutations.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
Inoue M, Nakahama T, Yamasaki R, Shibuya T, Kim JI, Todo H, Xing Y, Kato Y, Morii E, Kawahara Y. An Aicardi-Goutières Syndrome-Causative Point Mutation in Adar1 Gene Invokes Multiorgan Inflammation and Late-Onset Encephalopathy in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:3016-3027. [PMID: 34772697 DOI: 10.4049/jimmunol.2100526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a congenital inflammatory disorder accompanied by overactivated type I IFN signaling and encephalopathy with leukodystrophy and intracranial calcification. To date, none of the mouse models carrying an AGS-causative mutation has mimicked such brain pathology. Here, we established a mutant mouse model carrying a K948N point mutation, corresponding to an AGS-causative K999N mutation, located in a deaminase domain of the Adar1 gene that encodes an RNA editing enzyme. Adar1K948N/K948N mice displayed postnatal growth retardation. Hyperplasia of splenic white pulps with germinal centers and hepatic focal inflammation were observed from 2 mo of age. Inflammation developed in the lungs and heart with lymphocyte infiltration in an age-dependent manner. Furthermore, white matter abnormalities with astrocytosis and microgliosis were detected at 1 y of age. The increased expression of IFN-stimulated genes was detected in multiple organs, including the brain, from birth. In addition, single-nucleus RNA sequencing revealed that this elevated expression of IFN-stimulated genes was commonly observed in all neuronal subtypes, including neurons, oligodendrocytes, and astrocytes. We further showed that a K948N point mutation reduced the RNA editing activity of ADAR1 in vivo. The pathological abnormalities found in Adar1K948N/K948N mice were ameliorated by either the concurrent deletion of MDA5, a cytosolic sensor of unedited transcripts, or the sole expression of active ADAR1 p150, an isoform of ADAR1. Collectively, such data suggest that although the degree is mild, Adar1K948N/K948N mice mimic multiple AGS phenotypes, including encephalopathy, which is caused by reduced RNA editing activity of the ADAR1 p150 isoform.
Collapse
Affiliation(s)
- Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichiro Yamasaki
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan; and
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O'Connell MA. ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 2021; 46:758-771. [PMID: 33736931 DOI: 10.1016/j.tibs.2021.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.
Collapse
Affiliation(s)
- Jaclyn Quin
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| |
Collapse
|
18
|
Sathishkumar D, Muthusamy K, Gupta A, Malhotra M, Thomas M, Koshy B, Jasper A, Danda S, George R. Co-occurrence of Aicardi-Goutières syndrome type 6 and dyschromatosis symmetrica hereditaria due to compound heterozygous pathogenic variants in ADAR1: a case series from India. Clin Exp Dermatol 2021; 46:704-709. [PMID: 33289110 DOI: 10.1111/ced.14531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
Aicardi-Goutières syndrome type 6 (AGS6) and dyschromatosis symmetrica hereditaria (DSH) are allelic disorders caused respectively by biallelic and heterozygous pathogenic variants in ADAR1. We report three unrelated children presenting with features of both AGS6 and DSH, two of whom had compound heterozygous pathogenic variants in ADAR1. We also describe the novel genetic variants in our cases and review the literature on association of ADAR1-related AGS6 and DSH with these phenotypes.
Collapse
Affiliation(s)
- D Sathishkumar
- Departments of, Department of, Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - K Muthusamy
- Department of, Paediatric Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - A Gupta
- Departments of, Department of, Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - M Malhotra
- Department of, Paediatric Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - M Thomas
- Department of, Paediatric Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - B Koshy
- Department of, Developmental Paediatrics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - A Jasper
- Department of, Radiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - S Danda
- Department of, Medical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - R George
- Departments of, Department of, Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
20
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|