1
|
Laflamme N, Triassi V, Martineau L, Toffa DH, Létourneau-Guillon L, Laplante A, Cossette P, Samarut É, Tétreault M, Nguyen DK. X-Linked Bilateral Polymicrogyria With Epilepsy and Intellectual Disability Associated With a Novel KIF4A Variant. Am J Med Genet A 2025; 197:e63860. [PMID: 39268972 DOI: 10.1002/ajmg.a.63860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/19/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024]
Abstract
We studied three brothers and a maternal half-brother featuring global developmental delay, mild to moderate intellectual disability, epilepsy, microcephaly, and strabismus. All had bilateral perisylvian and perirolandic polymicrogyria, while some also had malformations of the hippocampus (malrotation and dysplasia), cerebellum (heterotopias and asymmetric aplasia), corpus callosum dysgenesis, and brainstem asymmetric dysplasia. Exome sequencing showed that all four patients had a novel variant (c.1597C>T:p.Leu533Phe) on the KIF4A gene on chromosome X. We discuss how this variant is possibly pathogenic and could explain the reported phenotype.
Collapse
Affiliation(s)
- Naomi Laflamme
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Valérie Triassi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Bioinformatics Program, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Laurence Martineau
- Neurology Division, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Dènahin Hinnoutondji Toffa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | | | - Annie Laplante
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Patrick Cossette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Division of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Martine Tétreault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| |
Collapse
|
2
|
Lai L, Miao Q. TFDP1 transcriptionally activates KIF22 to enhance aggressiveness and stemness in endometrial cancer: implications for prognosis and targeted therapy. J Mol Histol 2024; 56:40. [PMID: 39672972 DOI: 10.1007/s10735-024-10293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/24/2024] [Indexed: 12/15/2024]
Abstract
This study aims to elucidate the role of Kinesin Family Member 22 (KIF22) as a critical regulator of aggressive behavior in endometrial cancer (uterine corpus endometrial carcinoma, UCEC) and to uncover its underlying mechanisms, thereby providing a molecular rationale for future targeted treatment. Bioinformatics analyses were employed to assess KIF22 and TFDP1 expression in UCEC, examining their prognostic value and associations with disease progression. Expression levels were validated in UCEC tissues using qRT-PCR and western blotting. Potential TFDP1 binding sites on the KIF22 promoter were predicted using the JASPAR database and confirmed via dual-luciferase reporter assays. Functional assays, including CCK-8, transwell, and spheroid formation assays, were conducted to evaluate the effects of KIF22 knockdown on UCEC cell behavior. A mouse xenograft model was utilized to investigate the in vivo impact of KIF22 suppression on tumor growth and stemness. KIF22 expression was significantly elevated in UCEC tissues, correlating with reduced overall survival in patients with high KIF22 levels. Overexpression of KIF22 enhanced the proliferation, migration, and sphere formation of UCEC cells. Similarly, high TFDP1 expression was associated with poorer patient outcomes. KIF22 was found to be positively regulated by the TFDP1 transcription factor, which bound to the KIF22 promoter and activated its expression in UCEC cells. In vivo, KIF22 knockdown markedly impeded the tumor formation of cells and reduced stemness marker expression. KIF22, upregulated by TFDP1, enhances UCEC cell aggressiveness and is linked to poor prognosis, highlighting its potential as a target for therapeutic intervention in endometrial cancer.
Collapse
Affiliation(s)
- Limei Lai
- Department of Gynaecological Oncology, Jinhua Guangfu Oncology Hospital, Surgical Building, Wucheng District, Jinhua, Zhejiang Province, China
| | - Qian Miao
- Department of Medical Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Avenue, Kecheng District, Quzhou City, 324000, Zhejiang Province, China.
| |
Collapse
|
3
|
Laragione T, Harris C, Gulko PS. KIF1C and new Huntingtin-interacting protein 1 binding proteins regulate rheumatoid arthritis fibroblast-like synoviocytes' phenotypes. Front Immunol 2024; 15:1323410. [PMID: 38726004 PMCID: PMC11079228 DOI: 10.3389/fimmu.2024.1323410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Huntingtin-interacting protein-1 (HIP1) is a new arthritis severity gene implicated in the regulation of the invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). These invasive properties of FLS strongly correlate with radiographic and histology damage in patients with RA and rodent models of arthritis. While HIP1 has several intracellular functions, little is known about its binding proteins, and identifying them has the potential to expand our understanding of its role in cell invasion and other disease-contributing phenotypes, and potentially identify new targets for therapy. Methods FLS cell lines from arthritic DA (highly invasive) and from arthritis-protected congenic rats R6 (minimally invasive), which differ in an amino-acid changing HIP1 SNP, were cultured and lysed, and proteins were immunoprecipitated with an anti-HIP1 antibody. Immunoprecipitates were analyzed by mass spectrometry. Differentially detected (bound) proteins were selected for functional experiments using siRNA knockdown in human RA FLS to examine their effect in cell invasiveness, adhesion, cell migration and proliferation, and immunofluorescence microscopy. Results Proteins detected included a few known HIP1-binding proteins and several new ones. Forty-five proteins differed in levels detected in the DA versus R6 congenic mass spectrometry analyses. Thirty-two of these proteins were knocked down and studied in vitro, with 10 inducing significant changes in RA FLS phenotypes. Specifically, knockdown of five HIP1-binding protein genes (CHMP4BL1, COPE, KIF1C, YWHAG, and YWHAH) significantly decreased FLS invasiveness. Knockdown of KIF1C also reduced RA FLS migration. The binding of four selected proteins to human HIP1 was confirmed. KIF1C colocalized with lamellipodia, and its knockdown prevented RA FLS from developing an elongated morphology with thick linearized actin fibers or forming polarized lamellipodia, all required for cell mobility and invasion. Unlike HIP1, KIF1C knockdown did not affect Rac1 signaling. Conclusion We have identified new HIP1-binding proteins and demonstrate that 10 of them regulate key FLS phenotypes. These HIP1-binding proteins have the potential to become new therapeutic targets and help better understand the RA FLS pathogenic behavior. KIF1C knockdown recapitulated the morphologic changes previously seen in the absence of HIP1, but did not affect the same cell signaling pathway, suggesting involvement in the regulation of different processes.
Collapse
Affiliation(s)
| | | | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Zhong Q, Hong W, Xiong L. KIF3C: an emerging biomarker with prognostic and immune implications across pan-cancer types and its experiment validation in gastric cancer. Aging (Albany NY) 2024; 16:6163-6187. [PMID: 38552217 PMCID: PMC11042961 DOI: 10.18632/aging.205694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Wenbo Hong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
5
|
Zhou Y, Xu MF, Chen J, Zhang JL, Wang XY, Huang MH, Wei YL, She ZY. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp Cell Res 2024; 436:113975. [PMID: 38367657 DOI: 10.1016/j.yexcr.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Xin-Yao Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Min-Hui Huang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
6
|
Bhola PT, Mishra R, Posey JE, Hamilton LE, Graham GE, Punetha J, Lupski JR, Boycott KM, D'Amours D, Kernohan KD. Phenotypic heterogeneity associated with KIF21A: Two new cases and review of the literature. Am J Med Genet A 2024; 194:e63455. [PMID: 37921537 DOI: 10.1002/ajmg.a.63455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Our understanding of genetic and phenotypic heterogeneity associated with the clinical spectrum of rare diseases continues to expand. Thorough phenotypic descriptions and model organism functional studies are valuable tools in dissecting the biology of the disease process. Kinesin genes are well known to be associated with specific disease phenotypes and a subset of kinesin genes, including KIF21A, have been associated with more than one disease. Here we report two patients with KIF21A variants identified by exome sequencing; one with biallelic variants, supporting a novel KIF21A related syndrome with recessive inheritance and the second report of this condition, and another with a heterozygous de novo variant allele representing a phenotypic expansion of the condition described to date. We provide detailed phenotypic information on both families, including a novel neuropathology finding of neuroaxonal dystrophy associated with biallelic variants in KIF21A. Additionally, we studied the dominant variant in Saccharomyces cerevisiae to assess variant pathogenicity and found that this variant appears to impair protein function. KIF21A associated disease has mounting evidence for phenotypic heterogeneity; further patients and study of an allelic series are required to define the phenotypic spectrum and further explore the molecular etiology for each of these conditions.
Collapse
Affiliation(s)
- Priya T Bhola
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Radha Mishra
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Leslie E Hamilton
- Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Canada
| | - Gail E Graham
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Damien D'Amours
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario (NSO), Ottawa, Canada
| |
Collapse
|
7
|
Tolezano GC, Bastos GC, da Costa SS, Freire BL, Homma TK, Honjo RS, Yamamoto GL, Passos-Bueno MR, Koiffmann CP, Kim CA, Vianna-Morgante AM, de Lima Jorge AA, Bertola DR, Rosenberg C, Krepischi ACV. Burden of Rare Copy Number Variants in Microcephaly: A Brazilian Cohort of 185 Microcephalic Patients and Review of the Literature. J Autism Dev Disord 2024; 54:1181-1212. [PMID: 36502452 DOI: 10.1007/s10803-022-05853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.
Collapse
Affiliation(s)
- Giovanna Cantini Tolezano
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Giovanna Civitate Bastos
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Bruna Lucheze Freire
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Thais Kataoka Homma
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Celia Priszkulnik Koiffmann
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Chong Ae Kim
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Angela Maria Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Alexander Augusto de Lima Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 455 Avenida Doutor Arnaldo, São Paulo, SP, 01246-903, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, 647 Avenida Doutor Enéas Carvalho de Aguiar, São Paulo, SP, 05403-900, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, 106 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
- Institute of Biosciences, University of São Paulo, 277 Rua do Matão, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
8
|
Luchniak A, Roy PS, Kumar A, Schneider IC, Gelfand VI, Jernigan RL, Gupta ML. Tubulin CFEOM mutations both inhibit or activate kinesin motor activity. Mol Biol Cell 2024; 35:ar32. [PMID: 38170592 PMCID: PMC10916880 DOI: 10.1091/mbc.e23-01-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Kinesin-mediated transport along microtubules is critical for axon development and health. Mutations in the kinesin Kif21a, or the microtubule subunit β-tubulin, inhibit axon growth and/or maintenance resulting in the eye-movement disorder congenital fibrosis of the extraocular muscles (CFEOM). While most examined CFEOM-causing β-tubulin mutations inhibit kinesin-microtubule interactions, Kif21a mutations activate the motor protein. These contrasting observations have led to opposed models of inhibited or hyperactive Kif21a in CFEOM. We show that, contrary to other CFEOM-causing β-tubulin mutations, R380C enhances kinesin activity. Expression of β-tubulin-R380C increases kinesin-mediated peroxisome transport in S2 cells. The binding frequency, percent motile engagements, run length and plus-end dwell time of Kif21a are also elevated on β-tubulin-R380C compared with wildtype microtubules in vitro. This conserved effect persists across tubulins from multiple species and kinesins from different families. The enhanced activity is independent of tail-mediated kinesin autoinhibition and thus utilizes a mechanism distinct from CFEOM-causing Kif21a mutations. Using molecular dynamics, we visualize how β-tubulin-R380C allosterically alters critical structural elements within the kinesin motor domain, suggesting a basis for the enhanced motility. These findings resolve the disparate models and confirm that inhibited or increased kinesin activity can both contribute to CFEOM. They also demonstrate the microtubule's role in regulating kinesins and highlight the importance of balanced transport for cellular and organismal health.
Collapse
Affiliation(s)
- Anna Luchniak
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Ambuj Kumar
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Ian C. Schneider
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011
| | - Vladimir I. Gelfand
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Mohan L. Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
9
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
10
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
11
|
Marom R, Zhang B, Washington ME, Song IW, Burrage LC, Rossi VC, Berrier AS, Lindsey A, Lesinski J, Nonet ML, Chen J, Baldridge D, Silverman GA, Sutton VR, Rosenfeld JA, Tran AA, Hicks MJ, Murdock DR, Dai H, Weis M, Jhangiani SN, Muzny DM, Gibbs RA, Caswell R, Pottinger C, Cilliers D, Stals K, Eyre D, Krakow D, Schedl T, Pak SC, Lee BH. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling. PLoS Genet 2023; 19:e1011005. [PMID: 37934770 PMCID: PMC10656020 DOI: 10.1371/journal.pgen.1011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Bo Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anika Lindsey
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Lesinski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jian Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. John Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Carrie Pottinger
- All Wales Medical Genomics Service, Wrexham Maelor Hospital, Wrexham, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Human Genetics, Obstetrics & Gynecology, Orthopedic Surgery, University of California, Los Angeles, California, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
12
|
Mescia F, Bayati S, Brouwer E, Heeringa P, Toonen EJM, Beenes M, Ball MJ, Rees AJ, Kain R, Lyons PA, Nilsson P, Pin E. Autoantibody Profiling and Anti-Kinesin Reactivity in ANCA-Associated Vasculitis. Int J Mol Sci 2023; 24:15341. [PMID: 37895021 PMCID: PMC10607136 DOI: 10.3390/ijms242015341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
ANCA-associated vasculitides (AAV) are rare autoimmune diseases causing inflammation and damage to small blood vessels. New autoantibody biomarkers are needed to improve the diagnosis and treatment of AAV patients. In this study, we aimed to profile the autoantibody repertoire of AAV patients using in-house developed antigen arrays to identify previously unreported antibodies linked to the disease per se, clinical subgroups, or clinical activity. A total of 1743 protein fragments representing 1561 unique proteins were screened in 229 serum samples collected from 137 AAV patients at presentation, remission, and relapse. Additionally, serum samples from healthy individuals and patients with other type of vasculitis and autoimmune-inflammatory conditions were included to evaluate the specificity of the autoantibodies identified in AAV. Autoreactivity against members of the kinesin protein family were identified in AAV patients, healthy volunteers, and disease controls. Anti-KIF4A antibodies were significantly more prevalent in AAV. We also observed possible associations between anti-kinesin antibodies and clinically relevant features within AAV patients. Further verification studies will be needed to confirm these findings.
Collapse
Affiliation(s)
- Federica Mescia
- Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Shaghayegh Bayati
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Erik J M Toonen
- R&D Department, Hycult Biotech, 5405 PB Uden, The Netherlands
| | - Marijke Beenes
- R&D Department, Hycult Biotech, 5405 PB Uden, The Netherlands
| | - Miriam J Ball
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrew J Rees
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Peter Nilsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| |
Collapse
|
13
|
Wang J, Tu Q, Zhang S, He X, Ma C, Qian X, Wu R, Shi X, Yang Z, Liu Y, Dong Z, Liu M. Kif15 deficiency contributes to depression-like behavior in mice. Metab Brain Dis 2023; 38:2369-2381. [PMID: 37256467 DOI: 10.1007/s11011-023-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15-/- mice. In behavioral tests, Kif15-/- female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15-/- mice, along with the upregulation of Interleukin-6 and Interleukin-1β in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15-/- mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.
Collapse
Affiliation(s)
- Junpei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Qifeng Tu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Siming Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Xiaomei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Xinyu Shi
- Medical School of Nantong University, Jiangsu, 226001, China
| | - Zhangyi Yang
- Medical School of Nantong University, Jiangsu, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
14
|
He Y, He P, Lu S, Dong W. KIFC3 Regulates the progression and metastasis of gastric cancer via Notch1 pathway. Dig Liver Dis 2023; 55:1270-1279. [PMID: 36890049 DOI: 10.1016/j.dld.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION KIFC3 is a member of the kinesin family which has shown great promise in cancer therapy recently. In this study, we sought to elucidate the role of KIFC3 in the development of GC and its possible mechanisms. METHODS Two databases and a tissue microarray were used to explore the expression of KIFC3 and its correlation with patients' clinicopathological characteristics. Cell proliferation was examined by cell counting kit-8 assay and colony formation assay. Wound healing assay and transwell assay were performed to examine cell metastasis ability. EMT and Notch signaling related proteins were detected by western blot. Additionally, a xenograft tumor model was established to investigate the function of KIFC3 in vivo. RESULTS The expression of KIFC3 was upregulated in GC, and was associated with higher T stage and poor prognosis in GC patients. The proliferation and metastasis ability of GC cells were promoted by KIFC3 overexpression while inhibited by KIFC3 knockdown in vitro and in vivo. Furthermore, KIFC3 might activate the Notch1 pathway to facilitate the progression of GC, and DAPT, an inhibitor of Notch signaling, could reverse this effect. CONCLUSION Together, our data revealed that KIFC3 could enhance the progression and metastasis of GC by activating the Notch1 pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Shimin Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China.
| |
Collapse
|
15
|
Wu Y, Bayrak CS, Dong B, He S, Stenson PD, Cooper DN, Itan Y, Chen L. Identifying shared genetic factors underlying epilepsy and congenital heart disease in Europeans. Hum Genet 2023; 142:275-288. [PMID: 36352240 DOI: 10.1007/s00439-022-02502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Epilepsy (EP) and congenital heart disease (CHD) are two apparently unrelated diseases that nevertheless display substantial mutual comorbidity. Thus, while congenital heart defects are associated with an elevated risk of developing epilepsy, the incidence of epilepsy in CHD patients correlates with CHD severity. Although genetic determinants have been postulated to underlie the comorbidity of EP and CHD, the precise genetic etiology is unknown. We performed variant and gene association analyses on EP and CHD patients separately, using whole exomes of genetically identified Europeans from the UK Biobank and Mount Sinai BioMe Biobank. We prioritized biologically plausible candidate genes and investigated the enriched pathways and other identified comorbidities by biological proximity calculation, pathway analyses, and gene-level phenome-wide association studies. Our variant- and gene-level results point to the Voltage-Gated Calcium Channels (VGCC) pathway as being a unifying framework for EP and CHD comorbidity. Additionally, pathway-level analyses indicated that the functions of disease-associated genes partially overlap between the two disease entities. Finally, phenome-wide association analyses of prioritized candidate genes revealed that cerebral blood flow and ulcerative colitis constitute the two main traits associated with both EP and CHD.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Cigdem Sevim Bayrak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bosi Dong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shixu He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Peter D Stenson
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA.
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Liu S, He Y, Li S, Gao X, Yang F. Kinesin family member 3A induces related diseases via wingless-related integration site/β-catenin signaling pathway. Sci Prog 2023; 106:368504221148340. [PMID: 36594221 PMCID: PMC10358705 DOI: 10.1177/00368504221148340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinesin family member 3A is an important motor protein that participates in various physiological and pathological processes, including normal tissue development, homeostasis maintenance, tumor infiltration, and migration. The wingless-related integration site/β-catenin signaling pathway is essential for critical molecular mechanisms such as embryonic development, organogenesis, tissue regeneration, and carcinogenesis. Recent studies have examined the molecular mechanisms of kinesin family member 3A, among which the wingless-related integration site/β-catenin signaling pathway has gained attention. The interaction between kinesin family member 3A and the wingless-related integration site/β-catenin signaling pathway is compact and complex but is fascinating and worthy of further study. The upregulation and downregulation of kinesin family member 3A influence many diseases and patient survival through the wingless-related integration site/β-catenin signaling pathway. Therefore, this review mainly focuses on describing the kinesin family member 3A and wingless-related integration site/β-catenin signaling pathways and their associated diseases.
Collapse
Affiliation(s)
- Shupeng Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yang He
- Clinical Medicine College, North China University of Science and Technology, Tangshan, Hebei province, China
| | - Shifeng Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xuemin Gao
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi Province, China
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
17
|
Falb RJ, Müller AJ, Klein W, Grimmel M, Grasshoff U, Spranger S, Stöbe P, Gauck D, Kuechler A, Dikow N, Schwaibold EMC, Schmidt C, Averdunk L, Buchert R, Heinrich T, Prodan N, Park J, Kehrer M, Sturm M, Kelemen O, Hartmann S, Horn D, Emmerich D, Hirt N, Neumann A, Kristiansen G, Gembruch U, Haen S, Siebert R, Hentze S, Hoopmann M, Ossowski S, Waldmüller S, Beck-Wödl S, Gläser D, Tekesin I, Distelmaier F, Riess O, Kagan KO, Dufke A, Haack TB. Bi-allelic loss-of-function variants in KIF21A cause severe fetal akinesia with arthrogryposis multiplex. J Med Genet 2023; 60:48-56. [PMID: 34740919 PMCID: PMC9811090 DOI: 10.1136/jmedgenet-2021-108064] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.
Collapse
Affiliation(s)
- Ruth J Falb
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Amelie J Müller
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Petra Stöbe
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | | | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Natalia Prodan
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Martin Kehrer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Olga Kelemen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Denise Horn
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dirk Emmerich
- Practice for Ultrasound and Prenatal Medicine, Freiburg, Germany
| | - Nina Hirt
- Institute of Human Genetics, University Medical Center Freiburg, Freiburg, Germany
| | | | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Susanne Haen
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | | | - Markus Hoopmann
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | | | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany,Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Karl-Oliver Kagan
- Department of Women's Health, University Women's Hospital, Tuebingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany,Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany,Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Hoff KJ, Neumann AJ, Moore JK. The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure and microtubule regulation. Front Cell Neurosci 2022; 16:1023267. [PMID: 36406756 PMCID: PMC9666403 DOI: 10.3389/fncel.2022.1023267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Heterozygous, missense mutations in both α- and β-tubulin genes have been linked to an array of neurodevelopment disorders, commonly referred to as "tubulinopathies." To date, tubulinopathy mutations have been identified in three β-tubulin isotypes and one α-tubulin isotype. These mutations occur throughout the different genetic domains and protein structures of these tubulin isotypes, and the field is working to address how this molecular-level diversity results in different cellular and tissue-level pathologies. Studies from many groups have focused on elucidating the consequences of individual mutations; however, the field lacks comprehensive models for the molecular etiology of different types of tubulinopathies, presenting a major gap in diagnosis and treatment. This review highlights recent advances in understanding tubulin structural dynamics, the roles microtubule-associated proteins (MAPs) play in microtubule regulation, and how these are inextricably linked. We emphasize the value of investigating interactions between tubulin structures, microtubules, and MAPs to understand and predict the impact of tubulinopathy mutations at the cell and tissue levels. Microtubule regulation is multifaceted and provides a complex set of controls for generating a functional cytoskeleton at the right place and right time during neurodevelopment. Understanding how tubulinopathy mutations disrupt distinct subsets of those controls, and how that ultimately disrupts neurodevelopment, will be important for establishing mechanistic themes among tubulinopathies that may lead to insights in other neurodevelopment disorders and normal neurodevelopment.
Collapse
Affiliation(s)
| | | | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Reilly ML, Ain NU, Muurinen M, Tata A, Huber C, Simon M, Ishaq T, Shaw N, Rusanen S, Pekkinen M, Högler W, Knapen MFCM, van den Born M, Saunier S, Naz S, Cormier-Daire V, Benmerah A, Makitie O. Biallelic KIF24 Variants Are Responsible for a Spectrum of Skeletal Disorders Ranging From Lethal Skeletal Ciliopathy to Severe Acromesomelic Dysplasia. J Bone Miner Res 2022; 37:1642-1652. [PMID: 35748595 PMCID: PMC9545074 DOI: 10.1002/jbmr.4639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022]
Abstract
Skeletal dysplasias comprise a large spectrum of mostly monogenic disorders affecting bone growth, patterning, and homeostasis, and ranging in severity from lethal to mild phenotypes. This study aimed to underpin the genetic cause of skeletal dysplasia in three unrelated families with variable skeletal manifestations. The six affected individuals from three families had severe short stature with extreme shortening of forelimbs, short long-bones, and metatarsals, and brachydactyly (family 1); mild short stature, platyspondyly, and metaphyseal irregularities (family 2); or a prenatally lethal skeletal dysplasia with kidney features suggestive of a ciliopathy (family 3). Genetic studies by whole genome, whole exome, and ciliome panel sequencing identified in all affected individuals biallelic missense variants in KIF24, which encodes a kinesin family member controlling ciliogenesis. In families 1 and 3, with the more severe phenotype, the affected subjects harbored homozygous variants (c.1457A>G; p.(Ile486Val) and c.1565A>G; p.(Asn522Ser), respectively) in the motor domain which plays a crucial role in KIF24 function. In family 2, compound heterozygous variants (c.1697C>T; p.(Ser566Phe)/c.1811C>T; p.(Thr604Met)) were found C-terminal to the motor domain, in agreement with a genotype-phenotype correlation. In vitro experiments performed on amnioblasts of one affected fetus from family 3 showed that primary cilia assembly was severely impaired, and that cytokinesis was also affected. In conclusion, our study describes novel forms of skeletal dysplasia associated with biallelic variants in KIF24. To our knowledge this is the first report implicating KIF24 variants as the cause of a skeletal dysplasia, thereby extending the genetic heterogeneity and the phenotypic spectrum of rare bone disorders and underscoring the wide range of monogenetic skeletal ciliopathies. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Imagine Institute, Laboratory of Inherited Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1163, Université Paris Cité, Paris, France
| | - Noor Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.,Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mari Muurinen
- Folkhälsan Research Center, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Alice Tata
- Imagine Institute, Laboratory of Inherited Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1163, Université Paris Cité, Paris, France
| | - Céline Huber
- Imagine Institute, Laboratory of Molecular and Physiopathological bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1163, Université Paris Cité, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Marleen Simon
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tayyaba Ishaq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Nick Shaw
- Department of Endocrinology & Diabetes, Birmingham Children's Hospital, Birmingham, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Minna Pekkinen
- Folkhälsan Research Center, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Wolfgang Högler
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Maarten F C M Knapen
- Department of Obstetrics and Fetal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sophie Saunier
- Imagine Institute, Laboratory of Inherited Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1163, Université Paris Cité, Paris, France
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Valérie Cormier-Daire
- Imagine Institute, Laboratory of Molecular and Physiopathological bases of Osteochondrodysplasia, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1163, Université Paris Cité, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Alexandre Benmerah
- Imagine Institute, Laboratory of Inherited Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1163, Université Paris Cité, Paris, France
| | - Outi Makitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Research Center, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Flex E, Albadri S, Radio FC, Cecchetti S, Lauri A, Priolo M, Kissopoulos M, Carpentieri G, Fasano G, Venditti M, Magliocca V, Bellacchio E, Welch CL, Colombo PC, Kochav SM, Chang R, Barrick R, Trivisano M, Micalizzi A, Borghi R, Messina E, Mancini C, Pizzi S, De Santis F, Rosello M, Specchio N, Compagnucci C, McWalter K, Chung WK, Del Bene F, Tartaglia M. Dominantly acting KIF5B variants with pleiotropic cellular consequences cause variable clinical phenotypes. Hum Mol Genet 2022; 32:473-488. [PMID: 36018820 PMCID: PMC9851748 DOI: 10.1093/hmg/ddac213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.
Collapse
Affiliation(s)
- Elisabetta Flex
- To whom correspondence should be addressed at: Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy. Tel: +39 06 4990 2866; ; Marco Tartaglia, Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy. Tel: +39 06 6859 3742;
| | | | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Manuela Priolo
- UOSD Genetica Medica, Grande Ospedale Metropolitano "Bianchi Melacrino Morelli", 89124 Reggio Calabria, Italy
| | - Marta Kissopoulos
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Paolo C Colombo
- Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Stephanie M Kochav
- Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Richard Chang
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), CA, Orange 92868, USA
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), CA, Orange 92868, USA
| | - Marina Trivisano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Rossella Borghi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elena Messina
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Flavia De Santis
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215 Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, F-75012 Paris, France
| | - Nicola Specchio
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, NY, New York 10032, USA,Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | | | - Marco Tartaglia
- To whom correspondence should be addressed at: Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy. Tel: +39 06 4990 2866; ; Marco Tartaglia, Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy. Tel: +39 06 6859 3742;
| |
Collapse
|
21
|
Itai T, Wang Z, Nishimura G, Ohashi H, Guo L, Wakano Y, Sugiura T, Hayakawa H, Okada M, Saisu T, Kitta A, Doi H, Kurosawa K, Hotta Y, Hosono K, Sato M, Shimizu K, Takikawa K, Watanabe S, Ikeda N, Suzuki M, Fujita A, Uchiyama Y, Tsuchida N, Miyatake S, Miyake N, Matsumoto N, Ikegawa S. De novo heterozygous variants in KIF5B cause kyphomelic dysplasia. Clin Genet 2022; 102:3-11. [PMID: 35342932 DOI: 10.1111/cge.14133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Kyphomelic dysplasia is a heterogeneous group of skeletal dysplasias characterized by severe bowing of the limbs associated with other variable findings, such as narrow thorax and abnormal facies. We searched for the genetic etiology of this disorder. Four individuals diagnosed with kyphomelic dysplasia were enrolled. We performed whole-exome sequencing and evaluated the pathogenicity of the identified variants. All individuals had de novo heterozygous variants in KIF5B encoding kinesin-1 heavy chain: two with c.272A>G:p.(Lys91Arg), one with c.584C>A:p.(Thr195Lys), and the other with c.701G>T:p.(Gly234Val). All variants involved conserved amino acids in or close to the ATPase activity-related motifs in the catalytic motor domain of the KIF5B protein. All individuals had sharp angulation of the femora and humeri, distinctive facial features, and neonatal respiratory distress. Short stature was observed in three individuals. Three developed postnatal osteoporosis with subsequent fractures, two showed brachycephaly, and two were diagnosed with optic atrophy. Our findings suggest that heterozygous KIF5B deleterious variants cause a specific form of kyphomelic dysplasia. Furthermore, alterations in kinesins cause various symptoms known as kinesinopathies, and our findings also extend the phenotypic spectrum of kinesinopathies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Minato-ku, Tokyo, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Moroyama, Iruma-gun, Saitama, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Minato-ku, Tokyo, Japan
| | - Yasuhiro Wakano
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Takahiro Sugiura
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Hiromi Hayakawa
- Department of Obstetrics, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Mayumi Okada
- Department of Obstetrics and Gynecology, Genome Medical Center, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Takashi Saisu
- Chiba Child & Adult Orthopaedic Clinic, Chiba, Chiba, Japan
| | - Ayana Kitta
- Department of Orthopedic Surgery, Tokyo Women's Medical University, Yachiyo Medical Center, Yachiyo, Chiba, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Shimizu
- Division of Clinical Genetics and Cytogenetics, Shizuoka Children's Hospital, Shizuoka, Shizuoka, Japan
| | - Kazuharu Takikawa
- Department of Pediatric Orthopedics, Shizuoka Children's Hospital, Shizuoka, Shizuoka, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Izunokuni, Shizuoka, Japan
| | - Naho Ikeda
- Department of Neonatology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Minato-ku, Tokyo, Japan
| |
Collapse
|
22
|
Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, Laddach A, Shepherd MH, Hattersley AT, Watt FM, Sancho R. An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep 2022; 38:110425. [PMID: 35235779 PMCID: PMC8905088 DOI: 10.1016/j.celrep.2022.110425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and β cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1β and inhibits its function, and disrupting this interaction partially rescues HNF1β-dependent transcription. HNF1β overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1β overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues β cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1β-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients. MODY3 patient and CRISPR/Cas9 HNF1αp291fsinsC mutated iPSC lines are generated Mutant iPSCs show deficient pancreatic progenitor and β cell differentiation Mutant truncated HNF1α protein binds wild-type HNF1β protein to hinder its function HNF1β overexpression in MODY3 iPSC line partially rescues β cell differentiation
Collapse
Affiliation(s)
- Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | | | | | | | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK; Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
23
|
Kumar Sharma R, Chafik A, Bertolin G. Mitochondrial transport, partitioning and quality control at the heart of cell proliferation and fate acquisition. Am J Physiol Cell Physiol 2022; 322:C311-C325. [PMID: 35044857 DOI: 10.1152/ajpcell.00256.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation or turnover have been linked to complex pathologies such as neurodegenerative diseases or cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we will first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we will explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, stemness, and on the way cells adapt their metabolism. Last, we will focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation, or in the maintenance of stemness. Defining how mitochondrial transport, dynamics and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Abderrahman Chafik
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| |
Collapse
|
24
|
Vecchia SD, Tessa A, Dosi C, Baldacci J, Pasquariello R, Antenora A, Astrea G, Bassi MT, Battini R, Casali C, Cioffi E, Conti G, De Michele G, Ferrari AR, Filla A, Fiorillo C, Fusco C, Gallone S, Germiniasi C, Guerrini R, Haggiag S, Lopergolo D, Martinuzzi A, Melani F, Mignarri A, Panzeri E, Pini A, Pinto AM, Pochiero F, Primiano G, Procopio E, Renieri A, Romaniello R, Sancricca C, Servidei S, Spagnoli C, Ticci C, Rubegni A, Santorelli FM. Monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. J Neurol 2022; 269:437-450. [PMID: 34487232 DOI: 10.1007/s00415-021-10792-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Monoallelic variants in the KIF1A gene are associated with a large set of clinical phenotypes including neurodevelopmental and neurodegenerative disorders, underpinned by a broad spectrum of central and peripheral nervous system involvement. METHODS In a multicenter study conducted in patients presenting spastic gait or complex neurodevelopmental disorders, we analyzed the clinical, genetic and neuroradiological features of 28 index cases harboring heterozygous variants in KIF1A. We conducted a literature systematic review with the aim to comparing our findings with previously reported KIF1A-related phenotypes. RESULTS Among 28 patients, we identified nine novel monoallelic variants, and one a copy number variation encompassing KIF1A. Mutations arose de novo in most patients and were prevalently located in the motor domain. Most patients presented features of a continuum ataxia-spasticity spectrum with only five cases showing a prevalently pure spastic phenotype and six presenting congenital ataxias. Seventeen mutations occurred in the motor domain of the Kinesin-1A protein, but location of mutation did not correlate with neurological and imaging presentations. When tested in 15 patients, muscle biopsy showed oxidative metabolism alterations (6 cases), impaired respiratory chain complexes II + III activity (3/6) and low CoQ10 levels (6/9). Ubiquinol supplementation (1gr/die) was used in 6 patients with subjective benefit. CONCLUSIONS This study broadened our clinical, genetic, and neuroimaging knowledge of KIF1A-related disorders. Although highly heterogeneous, it seems that manifestations of ataxia-spasticity spectrum disorders seem to occur in most patients. Some patients also present secondary impairment of oxidative metabolism; in this subset, ubiquinol supplementation therapy might be appropriate.
Collapse
Affiliation(s)
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.
| | - Claudia Dosi
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Jacopo Baldacci
- Kode Solutions, Lungarno Galileo Galilei 1, 56125, Pisa, Italy
| | - Rosa Pasquariello
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Antonella Antenora
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, 56125, Pisa, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Greta Conti
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Anna Rita Ferrari
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Chiara Fiorillo
- Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Carlo Fusco
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Salvatore Gallone
- Clinical Neurogenetics, Department Neurosciences, Az. Osp. Città della Salute e della Scienza di Torino, 1026, Torino, Italy
| | - Chiara Germiniasi
- Neuromuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Shalom Haggiag
- Department of Neurology, Azienda Ospedaliera San Camillo Forlanini, 00152, Rome, Italy
| | - Diego Lopergolo
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Andrea Martinuzzi
- Scientific Institute IRCCS E. Medea, Unità Operativa Conegliano, 31015, Treviso, Italy
| | - Federico Melani
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Elena Panzeri
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRRCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Anna Maria Pinto
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Francesca Pochiero
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Guido Primiano
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Elena Procopio
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Cristina Sancricca
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Serenella Servidei
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.,Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | | |
Collapse
|
25
|
Kalantari S, Carlston C, Alsaleh N, Abdel-Salam GMH, Alkuraya F, Kato M, Matsumoto N, Miyatake S, Yamamoto T, Fares-Taie L, Rozet JM, Chassaing N, Vincent-Delorme C, Kang-Bellin A, McWalter K, Bupp C, Palen E, Wagner MD, Niceta M, Cesario C, Milone R, Kaplan J, Wadman E, Dobyns WB, Filges I. Expanding the KIF4A-associated phenotype. Am J Med Genet A 2021; 185:3728-3739. [PMID: 34346154 PMCID: PMC9291479 DOI: 10.1002/ajmg.a.62443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell‐cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype–phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.
Collapse
Affiliation(s)
- Silvia Kalantari
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Colleen Carlston
- Division of Medical Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Norah Alsaleh
- Division of Medical Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Fowzan Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Tatsuya Yamamoto
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Lucas Fares-Taie
- INSERM UMR1163, Imagine - Institute of Genetic Diseases, Paris Descartes University, Paris, France
| | - Jean-Michel Rozet
- INSERM UMR1163, Imagine - Institute of Genetic Diseases, Paris Descartes University, Paris, France
| | - Nicolas Chassaing
- Department of Medical Genetics, CHU Toulouse, Purpan Hospital, Toulouse, France
| | | | | | | | - Caleb Bupp
- Spectrum Health, Grand Rapids, Michigan, USA
| | - Emily Palen
- Autism & Developmental Medicine Institute, Danville, Pennsylvania, USA
| | - Monisa D Wagner
- Autism & Developmental Medicine Institute, Danville, Pennsylvania, USA
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberta Milone
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Julie Kaplan
- Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Erin Wadman
- Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - William B Dobyns
- Division of Genetics, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
27
|
Fu X, An Y, Wang H, Li P, Lin J, Yuan J, Yue R, Jin Y, Gao J, Chai R. Deficiency of Klc2 Induces Low-Frequency Sensorineural Hearing Loss in C57BL/6 J Mice and Human. Mol Neurobiol 2021; 58:4376-4391. [PMID: 34014435 DOI: 10.1007/s12035-021-02422-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The transport system in cochlear hair cells (HCs) is important for their function, and the kinesin family of proteins transports numerous cellular cargos via the microtubule network in the cytoplasm. Here, we found that Klc2 (kinesin light chain 2), the light chain of kinesin-1 that mediates cargo binding and regulates kinesin-1 motility, is essential for cochlear function. We generated mice lacking Klc2, and they suffered from low-frequency hearing loss as early as 1 month of age. We demonstrated that deficiency of Klc2 resulted in abnormal transport of mitochondria and the down-regulation of the GABAA receptor family. In addition, whole-genome sequencing (WGS) of patient showed that KLC2 was related to low-frequency hearing in human. Hence, to explore therapeutic approaches, we developed adeno-associated virus containing the Klc2 wide-type cDNA sequence, and Klc2-null mice delivered virus showed apparent recovery, including decreased ABR threshold and reduced out hair cell (OHC) loss. In summary, we show that the kinesin transport system plays an indispensable and special role in cochlear HC function in mice and human and that mitochondrial localization is essential for HC survival.
Collapse
Affiliation(s)
- Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Jing Lin
- Waksman Institute, the State University of New Jersey, RutgersNew Brunswick, NJ, USA
| | - Jia Yuan
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated To Shandong University, Jinan, China
| | - Yecheng Jin
- School of Life Science, Shandong University, Qingdao, China
| | - Jiangang Gao
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China. .,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
28
|
Molitor L, Bacher S, Burczyk S, Niessing D. The Molecular Function of PURA and Its Implications in Neurological Diseases. Front Genet 2021; 12:638217. [PMID: 33777106 PMCID: PMC7990775 DOI: 10.3389/fgene.2021.638217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
29
|
Konjikusic MJ, Gray RS, Wallingford JB. The developmental biology of kinesins. Dev Biol 2021; 469:26-36. [PMID: 32961118 PMCID: PMC10916746 DOI: 10.1016/j.ydbio.2020.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Kinesins are microtubule-based motor proteins that are well known for their key roles in cell biological processes ranging from cell division, to intracellular transport of mRNAs, proteins, vesicles, and organelles, and microtubule disassembly. Interestingly, many of the ~45 distinct kinesin genes in vertebrate genomes have also been associated with specific phenotypes in embryonic development. In this review, we highlight the specific developmental roles of kinesins, link these to cellular roles reported in vitro, and highlight remaining gaps in our understanding of how this large and important family of proteins contributes to the development and morphogenesis of animals.
Collapse
Affiliation(s)
- Mia J Konjikusic
- Department of Molecular Biosciences, USA; Department of Nutritional Sciences, University of Texas at Austin, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, USA.
| | | |
Collapse
|