1
|
Charng WL, Nikolov M, Shrestha I, Seeley MA, Josyula NS, Justice AE, Dobbs MB, Gurnett CA. Exome sequencing of 1190 non-syndromic clubfoot cases reveals HOXD12 as a novel disease gene. J Med Genet 2024; 61:699-706. [PMID: 38663984 PMCID: PMC11228210 DOI: 10.1136/jmg-2024-109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Clubfoot, presenting as a rigid inward and downward turning of the foot, is one of the most common congenital musculoskeletal anomalies. The aetiology of clubfoot is poorly understood and variants in known clubfoot disease genes account for only a small portion of the heritability. METHODS Exome sequence data were generated from 1190 non-syndromic clubfoot cases and their family members from multiple ethnicities. Ultra-rare variant burden analysis was performed comparing 857 unrelated clubfoot cases with European ancestry with two independent ethnicity-matched control groups (1043 in-house and 56 885 gnomAD controls). Additional variants in prioritised genes were identified in a larger cohort, including probands with non-European ancestry. Segregation analysis was performed in multiplex families when available. RESULTS Rare variants in 29 genes were enriched in clubfoot cases, including PITX1 (a known clubfoot disease gene), HOXD12, COL12A1, COL9A3 and LMX1B. In addition, rare variants in posterior HOX genes (HOX9-13) were enriched overall in clubfoot cases. In total, variants in these genes were present in 8.4% (100/1190) of clubfoot cases with both European and non-European ancestry. Among these, 3 are de novo and 22 show variable penetrance, including 4 HOXD12 variants that segregate with clubfoot. CONCLUSION We report HOXD12 as a novel clubfoot disease gene and demonstrate a phenotypic expansion of known disease genes (myopathy gene COL12A1, Ehlers-Danlos syndrome gene COL9A3 and nail-patella syndrome gene LMX1B) to include isolated clubfoot.
Collapse
Affiliation(s)
- Wu-Lin Charng
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Momchil Nikolov
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Isabel Shrestha
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Mark A Seeley
- Department of Orthopaedics, Geisinger Medical Center, Danville, Pennsylvania, USA
| | | | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Matthew B Dobbs
- Paley Orthopedic & Spine Institute, West Palm Beach, Florida, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
2
|
Golshan-Tafti M, Dastgheib SA, Alijanpour K, Bahrami R, Mazaheri M, Neamatzadeh H. A thorough analysis of data on the correlation between COL9A1 polymorphisms and the susceptibility to congenital talipes equinovarus: a meta-analysis. J Orthop Surg Res 2024; 19:345. [PMID: 38858754 PMCID: PMC11163731 DOI: 10.1186/s13018-024-04834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Congenital talipes equinovarus (CTEV) is a prevalent pediatric deformity with a multifactorial etiology. The objective of this meta-analysis was to explore the association between genetic variations in COL9A1 and the susceptibility to CTEV. METHODS A comprehensive analysis of pertinent literature released before November 15, 2023, in electronic bibliographic databases was carried out. The importance of the connection was clarified through odds ratios (ORs) with 95% confidence intervals (CIs), utilizing random or fixed-effects models depending on study heterogeneity. Statistical analysis was executed using Comprehensive Meta-Analysis software (Version 4.0). RESULTS A total of eight case-control studies involving 833 CTEV patients and 1280 healthy individuals were included in the analysis. Among these, four studies investigated the rs1135056 variant, encompassing 432 CTEV cases and 603 controls; two studies examined the rs35470562 variant, with 189 CTEV cases and 378 controls; and two studies explored the rs592121 variant, including 212 CTEV cases and 299 controls. The results revealed a significant association between the rs1135056 and rs35470562 polymorphisms in the COL9A1 gene, suggesting an increased risk of CTEV in the overall population. Conversely, no such association was found for the rs592121 variant. CONCLUSION Our findings reveal a substantial association between the genetic variants COL9A1 rs1135056 and rs35470562 and susceptibility to CTEV. Conversely, the variant rs592121 did not exhibit any corresponding link. However, the limitations imposed by the small study population have compromised the statistical reliability and generalizability of the results.
Collapse
Affiliation(s)
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Alijanpour
- General Practitioner, Babol University of Medical Sciences, Babol, Iran.
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahta Mazaheri
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Yavuz Saricay L, Hoyek S, Ashit Parikh A, Baldwin G, Bodamer OA, Gonzalez E, Patel NA. A case of Aicardi syndrome associated with duplication event of Xp22 including SHOX. Ophthalmic Genet 2023; 44:591-594. [PMID: 36728747 DOI: 10.1080/13816810.2023.2172190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Aicardi syndrome is a neurodevelopmental disorder characterized by a triad of partial or complete agenesis of the corpus callosum, infantile spasms, and pathognomonic chorioretinal lacunae. METHODS Examination, multimodal imaging, and genetic testing were used to guide diagnosis. RESULTS We report a case of a pediatric patient who was initially diagnosed with refractory infantile spasms. The patient was unresponsive to conventional antiepileptic therapy, and genetic testing with whole exome and mitochondrial genome sequencing could not identify the underlying cause, so vigabatrin was initiated. The ophthalmic examination under anesthesia for vigabatrin toxicity screening revealed chorioretinal atrophy in the retinal periphery of both eyes, with two 3-disc diameter chorioretinal lacunae superotemporal and inferonasal to the optic nerve in the left eye. Given the neuroimaging findings of corpus callosum hypoplasia with polymicrogyria and ocular findings, the patient was diagnosed with Aicardi syndrome. Genetic testing revealed a novel duplication event at the Xp22 locus. CONCLUSIONS Aicardi syndrome, albeit a rare condition, should always be considered in the differential diagnosis when investigating a female child with refractory seizures in early childhood. Genetic testing may help further our understanding of AIS and the search for a genetic etiology.
Collapse
Affiliation(s)
- Leyla Yavuz Saricay
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra Hoyek
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ayush Ashit Parikh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Baldwin
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Efren Gonzalez
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Panza R, Albano F, Casto A, Del Vecchio C, Laforgia N, Dibello D. Incidence and prevalence of congenital clubfoot in Apulia: a regional model for future prospective national studies. Ital J Pediatr 2023; 49:151. [PMID: 37964341 PMCID: PMC10648723 DOI: 10.1186/s13052-023-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Congenital clubfoot is a fairly common and severe congenital malformation, most often of idiopathic origin. A smaller percentage of cases is related to chromosomal abnormalities and genetic syndromes. It is estimated that 0.5/1000 newborns are affected worldwide, with a male to female ratio of 2:1 and greater distribution in developing countries (80%). The "European Surveillance of Congenital Anomalies (EUROCAT)" reported clubfoot prevalence in European newborns, but data regarding Italy are missing or poor. We aim to provide detailed data on clubfoot incidence according to the Apulian Regional Registry on Congenital Malformations and to report current knowledge on clubfoot genetic factors. METHODS We extrapolated data from the Regional Registry of Congenital Malformations to evaluate incidence and prevalence of congenital clubfoot in Apulia, Italy over a period of four years (2015-2018). We also performed a narrative review focusing on genetic mutations leading to congenital clubfoot. RESULTS Over the period from 2015 to 2018 in Apulia, Italy, 124,017 births were recorded and 209 cases of clubfoot were found, accounting for an incidence rate of 1.7/1,000 and a prevalence rate of 1.6/1,000. Six families of genes have been reported to have an etiopathogenetic role on congenital clubfoot. CONCLUSIONS Incidence and prevalence of congenital clubfoot in Apulia, Italy, are comparable with those reported in the other Italian regions but higher than those reported in previous studies from Europe. Genetic studies to better classify congenital clubfoot in either syndromic or isolated forms are desirable.
Collapse
Affiliation(s)
- Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari Aldo Moro, Bari, Italy
| | - Federica Albano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Casto
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Cosimo Del Vecchio
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari Aldo Moro, Bari, Italy.
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Dibello
- Unit of Pediatric Orthopaedics and Traumatology, Giovanni XXIII Children's Hospital, Via Giovanni Amendola, Bari, 70126, Italy
| |
Collapse
|
5
|
Cai M, Que Y, Chen M, Zhang M, Huang H, Xu L, Lin N. Pathogenic copy number variations are associated with foetal short femur length in a tertiary referral centre study. J Cell Mol Med 2023; 27:2354-2361. [PMID: 37401003 PMCID: PMC10424293 DOI: 10.1111/jcmm.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Shortened foetal femur length (FL) is a common abnormal phenotype that often causes anxiety in pregnant women, and standard clinical treatments remain unavailable. We investigated the clinical characteristics, genetic aetiology and obstetric pregnancy outcomes of foetuses with short FL and provided a reference for perinatal management of such cases. Chromosomal microarray analysis was used to analyse the copy number variations (CNV) in short FL foetuses. Of the 218 foetuses with short FL, 33 foetuses exhibited abnormal CNVs, including 19 with pathogenic CNVs and 14 with variations of uncertain clinical significance. Of the 19 foetuses with pathogenic CNVs, four had aneuploidy, 14 had deletions/duplications, and one had pathogenic uniparental diploidy. The 7q11.23 microdeletion was detected in three foetuses. The severity of short FL was not associated with the rate of pathogenic CNVs. The duration of short FL for the intrauterine ultrasound phenotype in foetuses carrying a pathogenic CNV was independent of the gestational age. Further, maternal age was not associated with the incidence of foetal pathogenic CNVs. Adverse pregnancy outcomes occurred in 77 cases, including termination of pregnancy in 63 cases, postnatal dwarfed foetuses with intellectual disability in 11 cases, and three deaths within 3 months of birth. Pathogenic CNVs closely related to foetal short FL were identified, among which the 7q11.23 microdeletion was highly associated with short FL development. This study provides a reference for the perinatal management of foetuses with short FL.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Yanting Que
- College of Clinical Medicine for Obstetrics and Gynecology and PediatricsFujian Medical UniversityFuzhouChina
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| |
Collapse
|
6
|
Bunyan DJ, Hobbs JI, Duncan-Flavell PJ, Howarth RJ, Beal S, Baralle D, Thomas NS. SHOX Whole Gene Duplications Are Overrepresented in SHOX Haploinsufficiency Phenotype Cohorts. Cytogenet Genome Res 2023; 162:587-598. [PMID: 36927524 DOI: 10.1159/000530171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Transcription of SHOX is dependent upon the interaction of the gene with a complex array of flanking regulatory elements. Duplications that contain flanking regulatory elements but not the SHOX gene have been reported in individuals with SHOX haploinsufficiency syndromes, suggesting that alterations to the physical organisation or genomic architecture may affect SHOX transcription. Individuals with tall stature and an additional X or Y chromosome have an extra copy of both the SHOX gene and the entire SHOX regulatory region, so all three copies of SHOX can be expressed fully. However, for a duplication of the SHOX gene that does not include all of the flanking regulatory elements, the potential effect on SHOX expression is difficult to predict. We present nine unpublished individuals with a SHOX whole gene duplication in whom the duplication contains variable amounts of the SHOX regulatory region, and we review 29 similar cases from the literature where phenotypic data were clearly stated. While tall stature was present in a proportion of these cases, we present evidence that SHOX whole gene duplications can also result in a phenotype more typically associated with SHOX haploinsufficiency and are significantly overrepresented in Leri-Weill dyschondrosteosis and idiopathic short stature probands compared to population controls. Although similar-looking duplications do not always produce a consistent phenotype, there may be potential genotype-phenotype correlations regarding the duplication size, regulatory element content, and the breakpoint proximity to the SHOX gene. Although ClinGen does not currently consider SHOX whole gene duplications to be clinically significant, the ClinGen triplosensitivity score does not take into account the context of the duplication, and more is now known about SHOX duplications and the role of flanking elements in SHOX regulation. The evidence presented here suggests that these duplications should not be discounted without considering the extent of the duplication and the patient phenotype, and should be included in diagnostic laboratory reports as variants of uncertain significance. Given the uncertain pathogenicity of these duplications, any reports should encourage the exclusion of all other causes of short stature where possible.
Collapse
Affiliation(s)
- David J Bunyan
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James I Hobbs
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
| | | | - Rachel J Howarth
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
| | - Sarah Beal
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nicholas Simon Thomas
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
McAdow J, Yang S, Ou T, Huang G, Dobbs MB, Gurnett CA, Greenberg MJ, Johnson AN. A pathogenic mechanism associated with myopathies and structural birth defects involves TPM2-directed myogenesis. JCI Insight 2022; 7:e152466. [PMID: 35579956 PMCID: PMC9309062 DOI: 10.1172/jci.insight.152466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nemaline myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle-specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as cap myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found 4 variants significantly affected muscle development and muscle function. Transient overexpression of the 4 variants also disrupted the morphogenesis of mouse myotubes in vitro and negatively affected zebrafish muscle development in vivo. We used transient overexpression assays in zebrafish to characterize 2 potentially novel TPM2 variants and 1 recurring variant that we identified in patients with DA (V129A, E139K, A155T, respectively) and found these variants caused musculoskeletal defects similar to those of known pathogenic variants. The consistency of musculoskeletal phenotypes in our assays correlated with the severity of clinical phenotypes observed in our patients with DA, suggesting disrupted myogenesis is a potentially novel pathomechanism of TPM2 disorders and that our myogenic assays can predict the clinical severity of TPM2 variants.
Collapse
Affiliation(s)
- Jennifer McAdow
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shuo Yang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary Huang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew B. Dobbs
- Paley Orthopedic and Spine Institute, West Palm Beach, Florida, USA
| | - Christina A. Gurnett
- Department of Neurology
- Department of Orthopedic Surgery
- Department of Pediatrics, and
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Tayebi N, Charng WL, Dickson PI, Dobbs MB, Gurnett CA. Diagnostic yield of exome sequencing in congenital vertical talus. Eur J Med Genet 2022; 65:104514. [PMID: 35487415 PMCID: PMC10039454 DOI: 10.1016/j.ejmg.2022.104514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/23/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Congenital vertical talus (CVT), also known as "rocker-bottom foot", is a rare foot deformity associated with a dislocation of the talonavicular joint. Although genetic causes of CVT have been described in single isolated and syndromic families, whole-exome sequencing (WES) of large cohorts have not yet been reported. METHODS In this study, 62 probands with CVT were evaluated for likely causative single nucleotide variants (SNVs) and copy number variants (CNVs) using WES. Segregation of variants within families was determined by Sanger sequencing. RESULTS In this cohort, CVT occurred as an isolated anomaly in 75.8% (47/62) and was familial in 19.3% (12/62) of cases. Analysis of WES data led to the identification of likely causative variants in known disease genes in 30.6% (19/62) of all CVT probands. More than one proband had likely causative SNVs in TSHZ1, GDF5, and LMX1B. Only two probands had likely causative CNVs: a chromosome 12q13.13 deletion of the 5' HOXC gene cluster, and a chromosome 18q22.3q23 deletion involving TSHZ1. Familial CVT was strongly predictive of identifying a molecular diagnosis [75% (9/12) of familial cases compared to 20% (10/50) of non-familial cases (Chi-square test, P-value = 0.0002)]. There was no difference in the solved rate based on isolated or syndromic presentation, unilateral or bilateral affectation, or sex. CONCLUSIONS CVT is genetically heterogeneous and more often caused by SNVs than CNVs. There is a high yield of WES in familial CVT cases (∼75%). Additional research is needed to identify the causes of sporadic CVT, which had much lower solved rates.
Collapse
Affiliation(s)
- Naeimeh Tayebi
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Wu-Lin Charng
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Patricia I Dickson
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - Matthew B Dobbs
- Department of Paley Orthopedic and Spine Institute, West Palm Beach, FL, 33401, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
9
|
Hordyjewska-Kowalczyk E, Nowosad K, Jamsheer A, Tylzanowski P. Genotype-phenotype correlation in clubfoot (talipes equinovarus). J Med Genet 2021; 59:209-219. [PMID: 34782442 DOI: 10.1136/jmedgenet-2021-108040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot-the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.
Collapse
Affiliation(s)
- Ewa Hordyjewska-Kowalczyk
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Karol Nowosad
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Przemko Tylzanowski
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|