1
|
Qin S, Zeng J, Wang J, Ye M, Deng Q, Wang X, Zhang Z, Yi D, Wu Y, Li-Ling J. Delineation of an inverted tandem Xq23-26.3 duplication in a female featuring extremely short stature and mild mental deficiency. Mol Cytogenet 2023; 16:33. [PMID: 38031145 PMCID: PMC10685508 DOI: 10.1186/s13039-023-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Partial duplications involving the long arm of the X chromosome are associated with mental retardation, short stature, microcephaly, and a wide range of physical findings. Female carriers usually have no clinical phenotype. Occasionally, they may also have heterogeneous features due to non-random inactivation of the X chromosome. METHODS The peripheral blood sample was collected from the patient and subjected to a few genetic testing, including chromosomal karyotyping, Chromosomal microarray analysis (CMA), Optical genome mapping, short tandem repeat (STR) analysis for Determination of parental origin, and X chromosome inactivation (XCI) analysis. RESULTS We have identified a de novo Xq23-Xq26.3 duplication in an adult female featuring extremely short stature and mild mental deficiency. Chromosome analysis detected a duplication on Xq23-q26.3 with a size of approximately 20 Mb. The duplication region has encompassed a number of genes, among which ARHGEF6, PHF6, HPRT1 and SLC9A6 are associated with X-linked mental retardation. Further analysis suggested that the duplication has derived from her father, was of the inversion duplication type and involved various degrees of skewed X chromosome inactivation. CONCLUSION Correlation with her phenotypes might indicate new mechanisms by which the X chromosome may lead to short stature and mental retardation. Our findings thereby may shed more light on the phenotypic implication of functional disomy of X-chromosome genes.
Collapse
Affiliation(s)
- Shengfang Qin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China.
| | - Jiuzhi Zeng
- West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Mengling Ye
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Qin Deng
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Zhuo Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Dangying Yi
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Yang Wu
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China
| | - Jesse Li-Ling
- West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, Sichuan, China.
| |
Collapse
|
2
|
Correa-Silva SR, Kunii I, Mitne-Neto M, Moreira CM, Dias-da-Silva MR, Abucham J. Copy number variation in pituitary stalk interruption syndrome: A large case series of sporadic non-syndromic patients and literature review. J Neuroendocrinol 2023; 35:e13221. [PMID: 36495109 DOI: 10.1111/jne.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Abnormal hypothalamic/posterior pituitary development appears to be a major determinant of pituitary stalk interruption syndrome (PSIS). The observation of familial cases and associated congenital abnormalities suggests a genetic basis. Single-gene mutations explain less than 5% of the cases, and whole exome sequencing has shown heterogeneous results. The present study aimed to assess copy number variation (CNV) using array-based comparative genomic hybridization (aCGH) in patients with non-syndromic PSIS and comprehensively review data from the literature on CNV analysis in congenital hypopituitarism (CH) patients. Twenty-one patients with sporadic CH from our outpatient clinics presented with ectopic posterior pituitary (EPP) and no central nervous system abnormalities on magnetic resonance image (MRI) or any other malformations on physical examination at presentation were enrolled in the study. aCGH using a whole-genome customized 400K oligonucleotide platform was performed in our patients. For the literature review, we searched for case reports of patients with CH and CNV detected by either karyotype or aCGH reported in PubMed up to November 2021. Thirty-five distinct rare CNVs were observed in 18 patients (86%) and two of them (6%) were classified as pathogenic: one deletion of 1.8 Mb in chromosome 17 (17q12) and one deletion of 15 Mb in chromosome 18 (18p11.32p11.21), each one in a distinct patient. In the literature review, 67 pathogenic CNVs were published in 83 patients with CH, including the present study. Most of these patients had EPP (78% out of the 45 evaluated by sellar MRI) and were syndromic (70%). The most frequently affected chromosomes were X, 18, 20 and 1. Our study has found that CNV can be a mechanism of genetic abnormality in non-syndromic patients with CH and EPP. In future studies, one or more genes in those CNVs, both pathogenic and variant of uncertain significance, may be considered as good candidate genes.
Collapse
Affiliation(s)
- Silvia R Correa-Silva
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ilda Kunii
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Magnus R Dias-da-Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Julio Abucham
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Yang X, Yuan M, Li Z, Ying Y, Hou L, Luo X. Isolated growth hormone deficiency type IA due to a novel GH1 variant: a case report. BMC Med Genomics 2021; 14:210. [PMID: 34470639 PMCID: PMC8411534 DOI: 10.1186/s12920-021-01057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A case of isolated growth hormone deficiency type IA (IGHD IA) caused by novel compound heterozygous mutation in the GH1 gene was reported in this study, which aimed to provide insights that will benefit future diagnosis and treatment. CASE PRESENTATION We analyzed and summarized the clinical data and genetic test results from a patient with IGHD admitted in March 2019 to the Department of Pediatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. We described the results from a 1-year-9-months old female, whose chief complaint was "growth retardation for more than one year". Her birth length was 49.0 cm, and her birth weight was 3.05 kg. Suboptimal intake (breastfeeding) jaundice lasted for approximately two months following birth. When evaluated at the age of 1-year-9-months old, the patient's height was 61.0 cm (- 7.24 SD), and her weight was 6.4 kg (- 1.50 SD). The patient's physical characteristics included yellowish hair, large and unclosed anterior fontanelles, raised forehead, and a low and flat nose. The major abnormalities observed from the auxiliary examinations included low GH (< 0.05 μg/l), low IGF-1 (16.99 μg/l), and elevated TSH (6.97 mIU/l). Genetic testing revealed two heterozygous variants: a splicing mutation (NG_011676.1(NM_022560.4): c.10 + 1G>T, inherited from her mother) in intron 1 of the GH1 gene and a deletion that encompassed the same gene (chr17: 61973811-61996255, inherited from her father). After hormone replacement therapy with L-thyroxine and recombinant human GH (rhGH), the patient's thyroid function returned to normal, and her serum IGF-1 level significantly improved, which resulted in an accelerated increase in height. CONCLUSION This study described a case of IGHD caused by novel compound heterozygous mutations in the GH1 gene. This study suggested that closer attention should be directed to genetic testing and diagnosis based on clinical characteristics to avoid misdiagnosis.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Mingming Yuan
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, 518038, People's Republic of China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China.
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| |
Collapse
|
4
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
5
|
Arya VB, Chawla G, Nambisan AKR, Muhi-Iddin N, Vamvakiti E, Ajzensztejn M, Hulse T, Ferreira Pinto C, Lahiri N, Bint S, Buchanan CR, Kapoor RR. Xq27.1 Duplication Encompassing SOX3: Variable Phenotype and Smallest Duplication Associated with Hypopituitarism to Date - A Large Case Series of Unrelated Patients and a Literature Review. Horm Res Paediatr 2020; 92:382-389. [PMID: 31678974 DOI: 10.1159/000503784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/28/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Xq27.1 duplication encompassing SOX3 has been implicated in the aetiology of X-linked hypopituitarism associated with intellectual disability and neural tube defects. We describe the largest case series to date of 5 unrelated patients with SOX3 duplication with a variable clinical phenotype, including the smallest reported SOX3 duplication. CASE REPORTS Five male patients who presented with congenital hypopituitarism (CH) were identified to have Xq27.1 duplication encompassing SOX3. The size of the duplication ranged from 323.8 kb to 11 Mb. The duplication was maternally inherited or de novo in 2 patients each (and of unknown inheritance in 1 patient). The age at presentation was variable. Three patients had multiple pituitary hormone deficiencies, whereas 2 patients had isolated growth hormone deficiency. All patients had micropenis and/or small undescended testes. Structural pituitary and/or other midline cranial abnormalities (callosal hypogenesis/absence of the septum pellucidum) were present in all patients. Two patients had a neural tube defect in addition to CH. CONCLUSIONS This is the largest series reported to date of unrelated patients with CH in association with Xq27.1 duplication encompassing SOX3. The clinical phenotype is variable, which may be due to genetic redundancy or other unknown aetiological factors. We have expanded the phenotypic spectrum through description of the smallest Xq27.1 duplication (323.8 kb) with CH reported to date, as well as a second family with CH and a neural tube defect.
Collapse
Affiliation(s)
- Ved Bhushan Arya
- Department of Paediatric Endocrinology, King's College Hospital NHS Foundation Trust, London, United Kingdom,
| | - Garima Chawla
- Department of Paediatric Endocrinology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Aparna K R Nambisan
- Department of Paediatric Endocrinology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Nadia Muhi-Iddin
- Department of Paediatrics, East Sussex Healthcare NHS Trust, Eastbourne, United Kingdom
| | - Ekaterini Vamvakiti
- Department of Paediatrics, Western Sussex Hospitals NHS Foundation Trust, Worthing, United Kingdom
| | - Michal Ajzensztejn
- Department of Paediatric Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Tony Hulse
- Department of Paediatric Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Clare Ferreira Pinto
- South West Thames Regional Genetics Laboratory, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nayana Lahiri
- Clinical Genetics Department, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Susan Bint
- Viapath Genetics Laboratories, Guy's Hospital, London, United Kingdom
| | - Charles R Buchanan
- Department of Paediatric Endocrinology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ritika R Kapoor
- Department of Paediatric Endocrinology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Rosolowsky ET, Stein R, Marks SD, Leonard N. Marked phenotypic variable expression among brothers with duplication of Xq27.1 involving the SOX3 gene. J Pediatr Endocrinol Metab 2020; 33:443-447. [PMID: 26352083 DOI: 10.1515/jpem-2015-0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/17/2015] [Indexed: 11/15/2022]
Abstract
We describe four phenotypically different brothers who share the same microduplication of Xq27.1, which contains the SOX3 gene. SOX3 mutations have been associated with growth hormone deficiency, variable degrees of additional pituitary hormone deficiencies, and mental retardation. SOX3 also appears to play an important role in pharyngeal arch segmentation that gives rise to craniofacial structures. While these four brothers have inherited the same mutation, they manifest a spectrum of phenotypes, ranging from complete, multiple pituitary hormone deficiencies to no apparent pituitary hormone deficiency with or without craniopharyngeal/facial dysmorphisms. We look to the literature to provide putative explanations for the variable expression of the brothers' shared SOX3 mutation.
Collapse
Affiliation(s)
- Elizabeth T Rosolowsky
- Division of Endocrinology, Department of Pediatrics, University of Alberta, 4-509 11405-87th Ave, Edmonton, AB Canada T6G1C9, Canada, Phone: +780-248-5483, Fax: +888-775-8879
| | - Robert Stein
- Division of Pediatric Endocrinology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Seth D Marks
- Section of Pediatric Endocrinology and Metabolism, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Norma Leonard
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Duplication of The SOX3 Gene in an Sry-negative 46,XX Male with Associated Congenital Anomalies of Kidneys and the Urinary Tract: Case Report and Review of the Literature. Balkan J Med Genet 2019; 22:81-88. [PMID: 31523625 PMCID: PMC6714342 DOI: 10.2478/bjmg-2019-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disorders of sex development (DSD) are a group of rare conditions characterized by discrepancy between chromosomal sex, gonads and external genitalia. Congenital abnormalities of the kidney and urinary tract are often associated with DSD, mostly in multiple malformation syndromes. We describe the case of an 11-year-old Caucasian boy, with right kidney hypoplasia and hypospadias. Genome-wide copy number variation (CNV) analysis revealed a unique duplication of about 550 kb on chromosome Xq27, and a 46,XX karyotype, consistent with a sex reversal phenotype. This region includes multiple genes, and, among these, SOX3 emerged as the main phenotypic driver. This is the fifth case reporting a genomic imbalance involving the SOX3 gene in a 46,XX SRY-negative male, and the first with associated renal malformations. Our data provide plausible links between SOX3 gene dosage and kidney malformations. It is noteworthy that the current and reported SOX3 gene duplications are below the detection threshold of standard karyotypes and were found only by analyzing CNVs using DNA microarrays. Therefore, all 46,XX SRY-negative males should be screened for SOX3 gene duplications with DNA microarrays.
Collapse
|
8
|
Capkova P, Srovnal J, Capkova Z, Staffova K, Becvarova V, Trkova M, Adamova K, Santava A, Curtisova V, Hajduch M, Prochazka M. MLPA is a practical and complementary alternative to CMA for diagnostic testing in patients with autism spectrum disorders and identifying new candidate CNVs associated with autism. PeerJ 2019; 6:e6183. [PMID: 30647996 PMCID: PMC6330045 DOI: 10.7717/peerj.6183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex heterogeneous developmental disease with a significant genetic background that is frequently caused by rare copy number variants (CNVs). Microarray-based whole-genome approaches for CNV detection are widely accepted. However, the clinical significance of most CNV is poorly understood, so results obtained using such methods are sometimes ambiguous. We therefore evaluated a targeted approach based on multiplex ligation-dependent probe amplification (MLPA) using selected probemixes to detect clinically relevant variants for diagnostic testing of ASD patients. We compare the reliability and efficiency of this test to those of chromosomal microarray analysis (CMA) and other tests available to our laboratory. In addition, we identify new candidate genes for ASD identified in a cohort of ASD-diagnosed patients. METHOD We describe the use of MLPA, CMA, and karyotyping to detect CNV in 92 ASD patients and evaluate their clinical significance. RESULT Pathogenic and likely pathogenic mutations were identified by CMA in eight (8.07% of the studied cohort) and 12 (13.04%) ASD patients, respectively, and in eight (8.07%) and four (4.35%) patients, respectively, by MLPA. The detected mutations include the 22q13.3 deletion, which was attributed to ring chromosome 22 formation based on karyotyping. CMA revealed a total of 91 rare CNV in 55 patients: eight pathogenic, 15 designated variants of unknown significance (VOUS)-likely pathogenic, 10 VOUS-uncertain, and 58 VOUS-likely benign or benign. MLPA revealed 18 CNV in 18 individuals: eight pathogenic, four designated as VOUS-likely pathogenic, and six designated as VOUS-likely benign/benign. Rare CNVs were detected in 17 (58.62%) out of 29 females and 38 (60.32%) out of 63 males in the cohort. Two genes, DOCK8 and PARK2, were found to be overlapped by CNV designated pathogenic, VOUS-likely pathogenic, or VOUS-uncertain in multiple patients. Moreover, the studied ASD cohort exhibited significant (p < 0.05) enrichment of duplications encompassing DOCK8. CONCLUSION Multiplex ligation-dependent probe amplification and CMA yielded concordant results for 12 patients bearing CNV designated pathogenic or VOUS-likely pathogenic. Unambiguous diagnoses were achieved for eight patients (corresponding to 8.7% of the total studied population) by both MLPA and CMA, for one (1.09%) patient by karyotyping, and for one (1.09%) patient by FRAXA testing. MLPA and CMA thus achieved identical reliability with respect to clinically relevant findings. As such, MLPA could be useful as a fast and inexpensive test in patients with syndromic autism. The detection rate of potentially pathogenic variants (VOUS-likely pathogenic) achieved by CMA was higher than that for MLPA (13.04% vs. 4.35%). However, there was no corresponding difference in the rate of unambiguous diagnoses of ASD patients. In addition, the results obtained suggest that DOCK8 may play a role in the etiology of ASD.
Collapse
Affiliation(s)
- Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Josef Srovnal
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | | | - Katerina Adamova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Alena Santava
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Vaclava Curtisova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Martin Prochazka
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
9
|
Yu T, Chang G, Cheng Q, Yao R, Li J, Xu Y, Li G, Ding Y, Qing Y, Li N, Shen Y, Wang X, Wang J. Increased transactivation and impaired repression of β-catenin-mediated transcription associated with a novel SOX3 missense mutation in an X-linked hypopituitarism pedigree with modest growth failure. Mol Cell Endocrinol 2018; 478:133-140. [PMID: 30125608 DOI: 10.1016/j.mce.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
SOX3, a transcription factor of the SRY-related high mobility group box family, has been implicated in the etiology of X-linked hypopituitarism. Here, we report a Chinese pedigree of X-linked hypopituitarism with variable phenotypes. Despite the complete growth hormone deficiency, the growth failure of the patients was relatively modest. A rare point variant of SOX3 (c.424C > A; p. P142T) was identified in the pedigree via target panel sequencing. An in vitro study showed that both the expression and nuclear targeting of SOX3 remained unaffected by the variant. However, increased transcriptional activation and impaired repression of β-catenin-mediated transcription were noticed as a result of the SOX3 variant. This is the first study to report that the rare SOX3 missense variant associated with hypopituitarism possibly due to increased activation of SOX3 target genes and disregulation of β-catenin target genes. In addition, we have expanded the phenotypic spectrum associated with SOX3 mutations.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Cheng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanrong Qing
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Cheung SW, Bi W. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev Mol Diagn 2018; 18:531-542. [PMID: 29848116 DOI: 10.1080/14737159.2018.1479253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Collapse
Affiliation(s)
- Sau W Cheung
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Weimin Bi
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Baylor Genetics , Houston , TX , USA
| |
Collapse
|
11
|
Jelsig AM, Diness BR, Kreiborg S, Main KM, Larsen VA, Hove H. A complex phenotype in a family with a pathogenic SOX3 missense variant. Eur J Med Genet 2017; 61:168-172. [PMID: 29175558 DOI: 10.1016/j.ejmg.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
Abstract
Duplications and deletions of Xq26-27 including SOX3 (Xq27.1) have been associated with X-linked mental retardation and isolated growth hormone deficiency (OMIM 300123) or X-linked panhypopituitarism (OMIM 312000). Yet, pathogenic point mutations seem to be extremely rare. We report a family with three affected males with several clinical features including mild intellectual disability, microphthalmia, coloboma, hypopituitarism, facial dysmorphology and dental anomalies, including microcephaly, retrognathia and a solitary median maxillary central incisor amongst other features. Using Whole Exome Sequencing a missense variant in SOX3, NM_005634.2:c.449C>A; p.(Ser150Tyr) was identified. Segregation analysis in the family demonstrated that the variant was inherited through healthy females with its origin in the maternal grandmother showing germline mosaicism. Thus, we report one of the first cases of a pathogenic variant in SOX3 and germline mosaicism of this variant.
Collapse
Affiliation(s)
- Anne M Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Birgitte R Diness
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Sven Kreiborg
- Department of Pediatric Dentistry and Clinical Genetics, School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | - Vibeke A Larsen
- Department of Radiology, University of Copenhagen, Rigshospitalet, Denmark
| | - Hanne Hove
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Yang K, Yu B, Cheng C, Cheng T, Yuan B, Li K, Xiao J, Qiu Z, Zhou Y. Mir505-3p regulates axonal development via inhibiting the autophagy pathway by targeting Atg12. Autophagy 2017; 13:1679-1696. [PMID: 28820282 DOI: 10.1080/15548627.2017.1353841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In addition to the canonical role in protein homeostasis, autophagy has recently been found to be involved in axonal dystrophy and neurodegeneration. Whether autophagy may also be involved in neural development remains largely unclear. Here we report that Mir505-3p is a crucial regulator for axonal elongation and branching in vitro and in vivo, through modulating autophagy in neurons. We identify that the key target gene of Mir505-3p in neurons is Atg12, encoding ATG12 (autophagy-related 12) which is an essential component of the autophagy machinery during the initiation and expansion steps of autophagosome formation. Importantly, axonal development is compromised in brains of mir505 knockout mice, in which autophagy signaling and formation of autophagosomes are consistently enhanced. These results define Mir505-3p-ATG12 as a vital signaling cascade for axonal development via the autophagy pathway, further suggesting the critical role of autophagy in neural development.
Collapse
Affiliation(s)
- Kan Yang
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China.,b Department of Environmental Science and Engineering, College of Environmental Science & Engineering , Donghua University , Shanghai , China.,c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Bin Yu
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Cheng Cheng
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Tianlin Cheng
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Bo Yuan
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Kai Li
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China
| | - Junhua Xiao
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China.,b Department of Environmental Science and Engineering, College of Environmental Science & Engineering , Donghua University , Shanghai , China
| | - Zilong Qiu
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Yuxun Zhou
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China
| |
Collapse
|
13
|
Li L, Ng NKL, Koon AC, Chan HYE. Expanded polyalanine tracts function as nuclear export signals and promote protein mislocalization via eEF1A1 factor. J Biol Chem 2017; 292:5784-5800. [PMID: 28246169 DOI: 10.1074/jbc.m116.763599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S-transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases.
Collapse
Affiliation(s)
- Li Li
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Nelson Ka Lam Ng
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,Biochemistry Program.,Cell and Molecular Biology Program, and.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, and.,the Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
14
|
Abstract
Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects.
Collapse
Affiliation(s)
- Mara Giordano
- Department of Health Sciences, Laboratory of Human Genetics, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
15
|
Hughes JN, Aubert M, Heatlie J, Gardner A, Gecz J, Morgan T, Belsky J, Thomas PQ. Identification of an IGSF1-specific deletion in a five-generation pedigree with X-linked Central Hypothyroidism without macroorchidism. Clin Endocrinol (Oxf) 2016; 85:609-15. [PMID: 27146357 DOI: 10.1111/cen.13094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVES IGSF1 deficiency syndrome (IDS) is a recently described X-linked congenital central hypothyroidism disorder characterized by loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene. The phenotypic spectrum and intrafamilial variability associated with IDS remain unclear due to a paucity of large, well-characterized pedigrees. Here, we present phenotypic analysis and molecular characterization of a five-generation pedigree with IGSF1 deficiency containing 10 affected males. PATIENTS AND METHODS Pituitary function was assessed in all available family members (n = 8 affected males and n = 5 carrier females). Molecular characterization of the family was performed by Sanger sequencing of PCR products amplified from the IGSF1 locus and by array comparative genomic hybridization. RESULTS A 42-kb IGSF1 deletion spanning the entire coding sequence was identified in all affected males. TSH deficiency, although subclinical in one case, was identified in all affected males (n = 8). PRL and GH deficiency were also present in 5 of 6 and 4 of 8 affected males, respectively. In contrast to previous reports, macroorchidism was not detected in any of the four affected males who were examined for this feature. Only 1 of 5 carrier females had pituitary dysfunction (TSH and GH deficiency). CONCLUSION Individuals with identical IGSF1 deletions can exhibit variable pituitary hormone deficiencies, of which overt TSH deficiency is the most consistent feature. We also show that macroorchidism is not obligatory in males with IDS. Mutations of IGSF1 should therefore be considered in males with isolated hypopituitarism that includes TSH deficiency.
Collapse
Affiliation(s)
- James N Hughes
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Aubert
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jessica Heatlie
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Alison Gardner
- School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - Thomas Morgan
- Novartis Institutes of Biomedical Research, Biomarkers Division, Cambridge, MA, USA
| | - Joseph Belsky
- Department of Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Paul Q Thomas
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Puvabanditsin S, Van Gurp J, February M, Khalil M, Mayne J, Ai McConnell J, Mehta R. VATER/VACTERL Association and Caudal Regression with Xq25-q27.3 Microdeletion: A Case Report. Fetal Pediatr Pathol 2016; 35:133-41. [PMID: 26881326 DOI: 10.3109/15513815.2016.1139019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report a term female neonate with vertebral anomalies, anal and urethral atresia, esophageal atresia with tracheoesophageal fistula (TEF), renal agenesis, pulmonary hypoplasia, genital and sacral appendages, and a single umbilical artery. Genetic studies revealed a 20.91 Mb interstitial deletion of the long arm of X chromosome: Xq25-q27.3. This is a new case of VATER/VACTERL association with Xq25 microdeletion.
Collapse
Affiliation(s)
- Surasak Puvabanditsin
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - James Van Gurp
- b Pathology, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Melissa February
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Marwa Khalil
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Julia Mayne
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Jennifer Ai McConnell
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| | - Rajeev Mehta
- a Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick , New Jersey , USA
| |
Collapse
|
17
|
Castinetti F, Reynaud R, Quentien MH, Jullien N, Marquant E, Rochette C, Herman JP, Saveanu A, Barlier A, Enjalbert A, Brue T. Combined pituitary hormone deficiency: current and future status. J Endocrinol Invest 2015; 38:1-12. [PMID: 25200994 DOI: 10.1007/s40618-014-0141-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.
Collapse
Affiliation(s)
- F Castinetti
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France.
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France.
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France.
| | - R Reynaud
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Enfants, Service de Pédiatrie multidisciplinaire, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - M-H Quentien
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - N Jullien
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
| | - E Marquant
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Enfants, Service de Pédiatrie multidisciplinaire, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - C Rochette
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - J-P Herman
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
| | - A Saveanu
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - A Barlier
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - A Enjalbert
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - T Brue
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| |
Collapse
|
18
|
Clinical impacts of genomic copy number gains at Xq28. Hum Genome Var 2014; 1:14001. [PMID: 27081496 PMCID: PMC4785515 DOI: 10.1038/hgv.2014.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 11/09/2022] Open
Abstract
Duplications of the Xq28 region are the most frequent chromosomal aberrations observed in patients with intellectual disability (ID), especially in males. These duplications occur by variable mechanisms, including interstitial duplications mediated by segmental duplications in this region and terminal duplications (functional disomy) derived from translocation with other chromosomes. The most commonly duplicated region includes methyl CpG-binding protein 2 gene (MECP2), which has a minimal duplicated size of 0.2 Mb. Patients with MECP2 duplications show severe ID, intractable seizures and recurrent infections. Duplications in the telomeric neighboring regions, which include GDP dissociation inhibitor 1 gene (GDI1) and ras-associated protein RAB39B gene (RAB39B), are independently associated with ID, and many segmental duplications located in this region could mediate these frequently observed interstitial duplications. In addition, large duplications, including MECP2 and GDI1, induce hypoplasia of the corpus callosum. Abnormalities observed in the white matter, revealed by brain magnetic resonance imaging, are a common finding in patients with MECP2 duplications. As primary sequence analysis cannot be used to determine the region responsible for chromosomal duplication syndrome, finding this region relies on the collection of genotype-phenotype data from patients.
Collapse
|
19
|
Vuillaume ML, Naudion S, Banneau G, Diene G, Cartault A, Cailley D, Bouron J, Toutain J, Bourrouillou G, Vigouroux A, Bouneau L, Nacka F, Kieffer I, Arveiler B, Knoll-Gellida A, Babin PJ, Bieth E, Jouret B, Julia S, Sarda P, Geneviève D, Faivre L, Lacombe D, Barat P, Tauber M, Delrue MA, Rooryck C. New candidate loci identified by array-CGH in a cohort of 100 children presenting with syndromic obesity. Am J Med Genet A 2014; 164A:1965-75. [PMID: 24782328 DOI: 10.1002/ajmg.a.36587] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
Abstract
Syndromic obesity is defined by the association of obesity with one or more feature(s) including developmental delay, dysmorphic traits, and/or congenital malformations. Over 25 syndromic forms of obesity have been identified. However, most cases remain of unknown etiology. The aim of this study was to identify new candidate loci associated with syndromic obesity to find new candidate genes and to better understand molecular mechanisms involved in this pathology. We performed oligonucleotide microarray-based comparative genomic hybridization in a cohort of 100 children presenting with syndromic obesity of unknown etiology, after exhaustive clinical, biological, and molecular studies. Chromosomal copy number variations were detected in 42% of the children in our cohort, with 23% of patients with potentially pathogenic copy number variants. Our results support that chromosomal rearrangements are frequently associated with syndromic obesity with a variety of contributory genes having relevance to either obesity or developmental delay. A list of inherited or apparently de novo duplications and deletions including their enclosed genes and not previously linked to syndromic obesity was established. Proteins encoded by several of these genes are involved in lipid metabolism (ACOXL, MSMO1, MVD, and PDZK1) linked with nervous system function (BDH1 and LINGO2), neutral lipid storage (PLIN2), energy homeostasis and metabolic processes (CDH13, CNTNAP2, CPPED1, NDUFA4, PTGS2, and SOCS6).
Collapse
Affiliation(s)
- Marie-Laure Vuillaume
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France; Univ. Bordeaux, Maladies Rares : Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bauters M, Frints SG, Van Esch H, Spruijt L, Baldewijns MM, de Die-Smulders CEM, Fryns JP, Marynen P, Froyen G. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects. Am J Med Genet A 2014; 164A:1947-52. [PMID: 24737742 DOI: 10.1002/ajmg.a.36580] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
Abstract
Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects.
Collapse
Affiliation(s)
- Marijke Bauters
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium; Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Helle JR, Barøy T, Misceo D, Braaten Ø, Fannemel M, Frengen E. Hyperphagia, mild developmental delay but apparently no structural brain anomalies in a boy without SOX3 expression. Am J Med Genet A 2013; 161A:1137-42. [PMID: 23463539 DOI: 10.1002/ajmg.a.35823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 11/10/2022]
Abstract
The transcription factor SOX3 is widely expressed in early vertebrate brain development. In humans, duplication of SOX3 and polyalanine expansions at its C-terminus may cause intellectual disability and hypopituitarism. Sox3 knock-out mice show a variable phenotype including structural and functional anomalies affecting the branchial arches and midline cerebral structures such as the optic chiasm and the hypothalamo-pituitary axis. SOX3 is claimed to be required in normal brain development and function in mice and humans, as well as in pituitary and craniofacial development. We report on an 8-year-old boy with a 2.1 Mb deletion in Xq27.1q27.2, which was found to be inherited from his healthy mother. To our knowledge, this is the smallest deletion including the entire SOX3 gene in a male reported to date. He is mildly intellectually disabled with language delay, dysarthria, behavior problems, minor facial anomalies, and hyperphagia. Hormone levels including growth, adrenocorticotropic and thyroid stimulating hormones are normal. Magnetic resonance imaging (MRI) at age 6 years showed no obvious brain anomalies. Genetic redundancy between the three members of the B1 subfamily of SOX proteins during early human brain development likely explains the apparently normal development of brain structures in our patient who is nullisomic for SOX3.
Collapse
Affiliation(s)
- Johan Robert Helle
- Faculty of Medicine, Department of Medical Genetics, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
22
|
Li K, Wang RW, Jiang YG, Zou YB, Guo W. Overexpression of Sox3 is Associated with Diminished Prognosis in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2012; 20 Suppl 3:S459-66. [DOI: 10.1245/s10434-012-2792-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/15/2022]
|
23
|
Kouprina N, Lee NCO, Pavlicek A, Samoshkin A, Kim JH, Lee HS, Varma S, Reinhold WC, Otstot J, Solomon G, Davis S, Meltzer PS, Schleutker J, Larionov V. Exclusion of the 750-kb genetically unstable region at Xq27 as a candidate locus for prostate malignancy in HPCX1-linked families. Genes Chromosomes Cancer 2012; 51:933-48. [PMID: 22733720 DOI: 10.1002/gcc.21977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/08/2012] [Indexed: 12/14/2022] Open
Abstract
Several linkage studies provided evidence for the presence of the hereditary prostate cancer locus, HPCX1, at Xq27-q28. The strongest linkage peak of prostate cancer overlies a variable region of ~750 kb at Xq27 enriched by segmental duplications (SDs), suggesting that the predisposition to prostate cancer may be a genomic disorder caused by recombinational interaction between SDs. The large size of SDs and their sequence similarity make it difficult to examine this region for possible rearrangements using standard methods. To overcome this problem, direct isolation of a set of genomic segments by in vivo recombination in yeast (a TAR cloning technique) was used to perform a mutational analysis of the 750 kb region in X-linked families. We did not detect disease-specific rearrangements within this region. In addition, transcriptome and computational analyses were performed to search for nonannotated genes within the Xq27 region, which may be associated with genetic predisposition to prostate cancer. Two candidate genes were identified, one of which is a novel gene termed SPANXL that represents a highly diverged member of the SPANX gene family, and the previously described CDR1 gene that is expressed at a high level in both normal and malignant prostate cells, and mapped 210 kb of upstream the SPANX gene cluster. No disease-specific alterations were identified in these genes. Our results exclude the 750-kb genetically unstable region at Xq27 as a candidate locus for prostate malignancy. Adjacent regions appear to be the most likely candidates to identify the elusive HPCX1 locus.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Molecular Pharmacology, NCI, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, Chitayat D. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet A 2012; 158A:1759-64. [PMID: 22678921 DOI: 10.1002/ajmg.a.35390] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/01/2012] [Indexed: 11/07/2022]
Abstract
Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY.
Collapse
Affiliation(s)
- Sharon Moalem
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Quiroz Y, Lopez M, Mavropoulos A, Motte P, Martial JA, Hammerschmidt M, Muller M. The HMG-box transcription factor Sox4b is required for pituitary expression of gata2a and specification of thyrotrope and gonadotrope cells in zebrafish. Mol Endocrinol 2012; 26:1014-27. [PMID: 22543271 DOI: 10.1210/me.2011-1319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pituitary is a complex gland comprising different cell types each secreting specific hormones. The extensive network of signaling molecules and transcription factors required for determination and terminal differentiation of specific cell types is still not fully understood. The SRY-like HMG-box (SOX) transcription factor Sox4 plays important roles in many developmental processes and has two homologs in zebrafish, Sox4a and Sox4b. We show that the sox4b gene is expressed in the pituitary anlagen starting at 24 h after fertilization (hpf) and later in the entire head region including the pituitary. At 48 hpf, sox4b mRNA colocalizes with that for TSH (tshβ), glycoprotein subunit α (gsuα), and the Zn finger transcription factor Gata2a. Loss of Sox4b function, using morpholino knockdown or expression of a dominant-negative Sox4 mutant, leads to a drastic decrease in tshβ and gsuα expression and reduced levels of gh, whereas other anterior pituitary gland markers including prl, slβ, pomc, and lim3 are not affected. Sox4b is also required for expression of gata2a in the pituitary. Knockdown of gata2a leads to decreased tshβ and gsuα expression at 48 hpf, similar to sox4b morphants. Injection of gata2a mRNA into sox4b morphants rescued tshβ and gsuα expression in thyrotrope cells. Finally, sox4b or gata2a knockdown causes a significant decrease of gonadotropin expression (lhβ and fshβ) at 4 d after fertilization. In summary, our results indicate that Sox4b is expressed in zebrafish during pituitary development and plays a crucial role in the differentiation of thyrotrope and gonadotrope cells through induction of gata2a expression in the developing pituitary.
Collapse
Affiliation(s)
- Yobhana Quiroz
- Laboratory for Molecular Biology and Genetic Engineering, University of Cologne, D-50674 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Lubs HA, Stevenson RE, Schwartz CE. Fragile X and X-linked intellectual disability: four decades of discovery. Am J Hum Genet 2012; 90:579-90. [PMID: 22482801 DOI: 10.1016/j.ajhg.2012.02.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/03/2012] [Accepted: 02/17/2012] [Indexed: 01/18/2023] Open
Abstract
X-Linked intellectual disability (XLID) accounts for 5%-10% of intellectual disability in males. Over 150 syndromes, the most common of which is the fragile X syndrome, have been described. A large number of families with nonsyndromal XLID, 95 of which have been regionally mapped, have been described as well. Mutations in 102 X-linked genes have been associated with 81 of these XLID syndromes and with 35 of the regionally mapped families with nonsyndromal XLID. Identification of these genes has enabled considerable reclassification and better understanding of the biological basis of XLID. At the same time, it has improved the clinical diagnosis of XLID and allowed for carrier detection and prevention strategies through gamete donation, prenatal diagnosis, and genetic counseling. Progress in delineating XLID has far outpaced the efforts to understand the genetic basis for autosomal intellectual disability. In large measure, this has been because of the relative ease of identifying families with XLID and finding the responsible mutations, as well as the determined and interactive efforts of a small group of researchers worldwide.
Collapse
Affiliation(s)
- Herbert A Lubs
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | | | | |
Collapse
|
27
|
Grigorieva IV, Thakker RV. Transcription factors in parathyroid development: lessons from hypoparathyroid disorders. Ann N Y Acad Sci 2012; 1237:24-38. [PMID: 22082362 DOI: 10.1111/j.1749-6632.2011.06221.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parathyroid developmental anomalies, which result in hypoparathyroidism, are common and may occur in one in 4,000 live births. Parathyroids, in man, develop from the endodermal cells of the third and fourth pharyngeal pouches, whereas, in the mouse they develop solely from the endoderm of the third pharyngeal pouches. In addition, neural crest cells that arise from the embryonic mid- and hindbrain also contribute to parathyroid gland development. The molecular signaling pathways that are involved in determining the differentiation of the pharyngeal pouch endoderm into parathyroid cells are being elucidated by studies of patients with hypoparathyroidism and appropriate mouse models. These studies have revealed important roles for a number of transcription factors, which include Tbx1, Gata3, Gcm2, Sox3, Aire1 and members of the homeobox (Hox) and paired box (Pax) families.
Collapse
Affiliation(s)
- Irina V Grigorieva
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | | |
Collapse
|
28
|
Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD). Indian J Pediatr 2012; 79:99-106. [PMID: 22139958 DOI: 10.1007/s12098-011-0614-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.
Collapse
|
29
|
Alatzoglou KS, Kelberman D, Cowell CT, Palmer R, Arnhold IJP, Melo ME, Schnabel D, Grueters A, Dattani MT. Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J Clin Endocrinol Metab 2011; 96:E685-90. [PMID: 21289259 DOI: 10.1210/jc.2010-1239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Correct gene dosage of SOX3 is critical for the development of the hypothalamo-pituitary axis. Both overdosage of SOX3, as a result of gene duplication, and loss of function resulting from expansion of the first polyalanine (PA) tract are associated with variable degrees of hypopituitarism, with or without mental retardation. The aim of this study was to further investigate the contribution of SOX3 in the etiology of hypopituitarism and the mechanisms involved in the phenotypic variability. METHODS We screened 154 patients with congenital hypopituitarism and an undescended posterior pituitary for mutations in SOX3 and variability in the length of the first PA tract. In addition, 300 patients with variable septooptic dysplasia were screened for variability of the PA tract. RESULTS We report a novel 18-base pair deletion (p.A243_A248del6, del6PA) in a female patient with hypopituitarism resulting in a 2-fold increase in transcriptional activation in vitro, compared with wild-type SOX3. We also identified a previously reported seven-alanine expansion (p.A240_A241ins7, +7PA) in two male siblings with isolated GH deficiency and a distinct phenotype, in addition to the nonsynonymous variant p.R5Q in an unrelated individual; this appears to have no functional effect on the protein. In contrast to +7PA, del6PA maintained its ability to repress β-catenin mediated transcription in vitro. CONCLUSION This is the first study to report that PA tract deletions associated with hypopituitarism have functional consequences in vitro, possibly due to increased activation of SOX3 target genes. In addition, we have expanded the phenotypic spectrum associated with PA tract expansion (+7PA) mutations to include panhypopituitarism or isolated GH deficiency, with or without mental retardation.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mullis PE. Genetics of GHRH, GHRH-receptor, GH and GH-receptor: its impact on pharmacogenetics. Best Pract Res Clin Endocrinol Metab 2011; 25:25-41. [PMID: 21396573 DOI: 10.1016/j.beem.2010.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required and, appropriate consideration should be given to genetic defects causing GH deficiency (GHD). Because Insulin-like-Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GHRH-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH-gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency they may present initially as GHD. These defects are discussed in various different chapters within this book, whereas, the impact of alterations of the GHRH-, GHRH-receptor- --as well as the GH-receptor (GHR) gene--will be discussed here.
Collapse
Affiliation(s)
- Primus-E Mullis
- Division of Paediatric Endocrinology, Diabetology & Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
31
|
Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, Rogers N, Knower K, Rowley L, Eyre H, Rizzoti K, McAninch D, Goncalves J, Slee J, Turbitt E, Bruno D, Bengtsson H, Harley V, Vilain E, Sinclair A, Lovell-Badge R, Thomas P. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 2010; 121:328-41. [PMID: 21183788 DOI: 10.1172/jci42580] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 10/27/2010] [Indexed: 01/14/2023] Open
Abstract
Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.
Collapse
Affiliation(s)
- Edwina Sutton
- School of Molecular and Biomedical Science and Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vogler C, Gschwind L, Röthlisberger B, Huber A, Filges I, Miny P, Auschra B, Stetak A, Demougin P, Vukojevic V, Kolassa IT, Elbert T, de Quervain DJF, Papassotiropoulos A. Microarray-based maps of copy-number variant regions in European and sub-Saharan populations. PLoS One 2010; 5:e15246. [PMID: 21179565 PMCID: PMC3002949 DOI: 10.1371/journal.pone.0015246] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/16/2010] [Indexed: 02/03/2023] Open
Abstract
The genetic basis of phenotypic variation can be partially explained by the presence of copy-number variations (CNVs). Currently available methods for CNV assessment include high-density single-nucleotide polymorphism (SNP) microarrays that have become an indispensable tool in genome-wide association studies (GWAS). However, insufficient concordance rates between different CNV assessment methods call for cautious interpretation of results from CNV-based genetic association studies. Here we provide a cross-population, microarray-based map of copy-number variant regions (CNVRs) to enable reliable interpretation of CNV association findings. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to scan the genomes of 1167 individuals from two ethnically distinct populations (Europe, N = 717; Rwanda, N = 450). Three different CNV-finding algorithms were tested and compared for sensitivity, specificity, and feasibility. Two algorithms were subsequently used to construct CNVR maps, which were also validated by processing subsamples with additional microarray platforms (Illumina 1M-Duo BeadChip, Nimblegen 385K aCGH array) and by comparing our data with publicly available information. Both algorithms detected a total of 42669 CNVs, 74% of which clustered in 385 CNVRs of a cross-population map. These CNVRs overlap with 862 annotated genes and account for approximately 3.3% of the haploid human genome. We created comprehensive cross-populational CNVR-maps. They represent an extendable framework that can leverage the detection of common CNVs and additionally assist in interpreting CNV-based association studies.
Collapse
Affiliation(s)
- Christian Vogler
- Department of Psychology, University of Basel, and Department of Biomedicine, University Children's Hospital, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Archer TC, Jin J, Casey ES. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol 2010; 350:429-40. [PMID: 21147085 DOI: 10.1016/j.ydbio.2010.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
Sox1, Sox2 and Sox3, the three members of the SoxB1 subgroup of transcription factors, have similar sequences, expression patterns and overexpression phenotypes. Thus, it has been suggested that they have redundant roles in the maintenance of neural stem cells in development. However, the long-term effect of overexpression or their function in combination with their putative co-factor Oct4 has not been tested. Here, we show that overexpression of sox1, sox2, sox3 or oct91, the Xenopus homologue of Oct4, results in the same phenotype: an expanded neural plate at the expense of epidermis and delayed neurogenesis. However, each of these proteins induced a unique profile of neural markers and the combination of Oct91 with each SoxB1 protein had different effects, as did continuous misexpression of the proteins. Overexpression studies indicate that Oct91 preferentially cooperates with Sox2 to maintain neural progenitor marker expression, while knockdown of Oct91 inhibits neural induction driven by either Sox2 or Sox3. Continuous expression of Sox1 and Sox2 in transgenic embryos represses neuron differentiation and inhibits anterior development while increasing cell proliferation. Constitutively active Sox3, however, leads to increased apoptosis suggesting that it functions as a tumor suppressor. While the SoxB1s have overlapping functions, they are not strictly redundant as they induce different sets of genes and are likely to partner with different proteins to maintain progenitor identity.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
34
|
Abstract
Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.
Collapse
|
35
|
E. Mullis P. Genetics of isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol 2010; 2:52-62. [PMID: 21274339 PMCID: PMC3014602 DOI: 10.4274/jcrpe.v2i2.52] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/04/2010] [Indexed: 12/31/2022] Open
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin-like Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GH-releasing hormone (GHRH)-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD.
Collapse
Affiliation(s)
- Primus E. Mullis
- Inselspital, Division of Paediatric Endocrinology, Diabetology&Metabolism, University Children’s Hospital, Bern, Switzerland
| |
Collapse
|
36
|
Rio M, Malan V, Boissel S, Toutain A, Royer G, Gobin S, Morichon-Delvallez N, Turleau C, Bonnefont JP, Munnich A, Vekemans M, Colleaux L. Familial interstitial Xq27.3q28 duplication encompassing the FMR1 gene but not the MECP2 gene causes a new syndromic mental retardation condition. Eur J Hum Genet 2010; 18:285-90. [PMID: 19844254 PMCID: PMC2987214 DOI: 10.1038/ejhg.2009.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/22/2009] [Accepted: 07/27/2009] [Indexed: 11/09/2022] Open
Abstract
X-linked mental retardation is a common disorder that accounts for 5-10% of cases of mental retardation in males. Fragile X syndrome is the most common form resulting from a loss of expression of the FMR1 gene. On the other hand, partial duplication of the long arm of the X chromosome is uncommon. It leads to functional disomy of the corresponding genes and has been reported in several cases of mental retardation in males. In this study, we report on the clinical and genetic characterization of a new X-linked mental retardation syndrome characterized by short stature, hypogonadism and facial dysmorphism, and show that this syndrome is caused by a small Xq27.3q28 interstitial duplication encompassing the FMR1 gene. This family broadens the phenotypic spectrum of FMR1 anomalies in an unexpected manner, and we suggest that this condition may represent the fragile X syndrome "contre-type".
Collapse
Affiliation(s)
- Marlène Rio
- Département de Génétique, Université Paris Descartes, INSERM U781, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ricks CB, Masand R, Fang P, Roney EK, Cheung SW, Scott DA. Delineation of a 1.65 Mb critical region for hemihyperplasia and digital anomalies on Xq25. Am J Med Genet A 2010; 152A:453-8. [DOI: 10.1002/ajmg.a.33227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Abstract
The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis. The development of the pituitary gland depends on the sequential temporal and spatial expression of transcription factors and signalling molecules. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3. Mutations in any of the genes involved in pituitary development may result in congenital hypopituitarism, which manifests as the deficiency in one or more pituitary hormones. The phenotype can be highly variable and may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Neonates with congenital hypopituitarism may present with non-specific symptoms, with or without associated developmental defects such as ocular, midline and genital abnormalities. Alternatively, they may be initially asymptomatic but at risk of developing pituitary hormone deficiencies over time. The overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified. Their characterization will further elucidate the pathogenesis of this complex condition and will shed light on normal pituitary development.
Collapse
|
39
|
Gécz J, Shoubridge C, Corbett M. The genetic landscape of intellectual disability arising from chromosome X. Trends Genet 2009; 25:308-16. [PMID: 19556021 DOI: 10.1016/j.tig.2009.05.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 01/07/2023]
Abstract
X-linked mental retardation (XLMR) or intellectual disability (ID) is a common, clinically complex and genetically heterogeneous disease arising from many mutations along the X chromosome. It affects between 1/600-1/1000 males and a substantial number of females. Research during the past decade has identified >90 different XLMR genes, affecting a wide range of cellular processes. Many more genes remain uncharacterized, especially for the non-syndromic XLMR forms. Currently, approximately 11% of X-chromosome genes are implicated in XLMR; however, apart from a few notable exceptions, most contribute individually to <0.1% of the total landscape, which arguably remains only about half complete. There remain many hills to climb and valleys to cross before the ID landscape is fully triangulated.
Collapse
Affiliation(s)
- Jozef Gécz
- Molecular Pathology, SA Pathology at Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | | | | |
Collapse
|
40
|
Stouffs K, Tournaye H, Liebaers I, Lissens W. Male infertility and the involvement of the X chromosome. Hum Reprod Update 2009; 15:623-37. [PMID: 19515807 DOI: 10.1093/humupd/dmp023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide problem, keeping many researchers puzzled. Besides environmental factors, much attention is paid to single gene defects. In this view, the sex chromosomes are particularly interesting since men only have a single copy of these chromosomes. The involvement of the Y chromosome in male infertility is obvious since the detection of Yq microdeletions. The role of the X chromosome, however, remains less understood. METHODS Articles were obtained by searching PubMed until December 2008. A first search attempted to identify genes located on the X chromosome potentially important for spermatogenesis. A second part of the study was focused on those genes for which the role has already been studied in infertile patients. RESULTS Multiple genes located on the X chromosome are expressed in testicular tissues. The function of many genes, especially the cancer-testis genes, has not been studied so far. There were striking differences between mouse and human genes. In the second part of the study, the results of mutation analyses of seven genes (AR, SOX3, USP26, NXF2, TAF7L, FATE and AKAP4) are described. Except for AR, no infertility causing mutations have, thus far, been described. It cannot be excluded that some of the observed changes should be considered as risk factors for impaired spermatogenesis. CONCLUSIONS It can be concluded that, so far, the mutation analysis of X-linked genes in humans, presumed to be crucial for spermatogenesis or sperm quality, has been disappointing. Other approaches to learn more about male infertility are necessary.
Collapse
Affiliation(s)
- Katrien Stouffs
- Department of Embryology and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
41
|
Messaed C, Rouleau G. Molecular mechanisms underlying polyalanine diseases. Neurobiol Dis 2009; 34:397-405. [DOI: 10.1016/j.nbd.2009.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022] Open
|
42
|
Lee CH, Wu CC, Wu YN, Chiang HS. Gene copy number variations in Asian patients with congenital bilateral absence of the vas deferens. Hum Reprod 2008; 24:748-55. [PMID: 19095672 DOI: 10.1093/humrep/den413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Congenital bilateral absence of the vas deferens (CBAVD) is a distinct clinical entity accounting for approximately 25% of obstructive azoospermia in infertile men. The association between CBAVD and mutated CFTR (cystic fibrosis transmembrane conductance regulator) alleles is well demonstrated in Caucasians, but the identity of CBAVD-susceptibility genes remains elusive in Asians. We investigate genomic copy number variations (CNVs) in a patient cohort of Taiwan. METHODS AND RESULTS Genome-wide screening for genetic CNVs was conducted on eight individuals with CBAVD using array-based comparative genomic hybridization. One recurrent CNV was detected on 3q26.1 in five patients, and another was detected on a reproduction-related gene PANK2 in two patients. For the former, we further characterized the breakpoints in CBAVD and assessed the incidence in healthy individuals by tiling path arrays. The deletion in each patient was confirmed, and seven out of the eight controls were also affected. Examination of the homozygous loss of PANK2 by PCR in a larger cohort showed a homozygous deletion in only one of the 26 CBAVD males, and not in any of the 20 azoospermic patients without CBAVD, nor in any of the 16 control subjects. CONCLUSIONS Our results suggest that 3q26.1 may not be a critical region for CBAVD. Additionally no strong association was found for PANK2 in this reproduction disorder. Other reproduction-related genes, such as PBX1, BRD3, COL18A1 and HMOX1, identified by this initial study may inspire further investigation.
Collapse
Affiliation(s)
- Chia-Huei Lee
- National Institute of Cancer Research, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, Republic of China
| | | | | | | |
Collapse
|
43
|
Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, Camper SA. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn 2008; 237:1006-20. [PMID: 18351662 DOI: 10.1002/dvdy.21511] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the role of WNT signaling in pituitary development by characterizing the pituitary phenotype of three WNT knockout mice and assessing the expression of WNT pathway components. Wnt5a mutants have expanded domains of Fgf10 and bone morphogenetic protein expression in the ventral diencephalon and a reduced domain of LHX3 expression in Rathke's pouch. Wnt4 mutants have mildly reduced cell differentiation, reduced POU1F1 expression, and mild anterior lobe hypoplasia. Wnt4, Wnt5a double mutants exhibit an additive pituitary phenotype of dysmorphology and mild hypoplasia. Wnt6 mutants have no obvious pituitary phenotype. We surveyed WNT expression and identified transcripts for numerous Wnts, Frizzleds, and downstream pathway members in the pituitary and ventral diencephalon. These findings support the emerging model that WNT signaling affects the pituitary gland via effects on ventral diencephalon signaling, and suggest additional Wnt genes that are worthy of functional studies.
Collapse
Affiliation(s)
- Mary Anne Potok
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sheffer-Babila S, Chandra M, Speiser PW. Growth hormone improves growth rate and preserves renal function in Dent disease. J Pediatr Endocrinol Metab 2008; 21:279-86. [PMID: 18540256 DOI: 10.1515/jpem.2008.21.3.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dent disease, an X-linked recessive renal tubular disease, results from loss-of-function mutations in the CLCN5 chloride channel gene. The effects of Dent disease on growth have not been described. We report siblings who presented with proteinuria, calciuria, and phosphaturia and growth failure who responded to growth hormone (GH) treatment. Genotyping revealed a novel c.2179delG frameshift mutation at codon 727, exon 12 of the CLCNS gene. Two years after initial presentation, linear growth had slowed, and evaluation revealed isolated GH deficiency. GH therapy resulted in more than two-fold increases in height velocity and serum IGF-I levels. There was no net change in estimated glomerular filtration rate, proteinuria or calciuria in response to GH therapy, but there was a delayed improvement in phosphaturia. These cases provide insight into the effects of GH on growth and renal function in Dent disease. Furthermore, we have reported a novel CLCN5 mutation.
Collapse
|
45
|
Mehta A, Dattani MT. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism. Best Pract Res Clin Endocrinol Metab 2008; 22:191-206. [PMID: 18279788 DOI: 10.1016/j.beem.2007.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a complex organ secreting six hormones from five different cell types. It is the end product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism or more complex disorders such as septo-optic dysplasia and holoprosencephaly. However, the overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified; characterization of these will further elucidate the pathogenesis of this complex condition and also shed light on normal pituitary development and function.
Collapse
Affiliation(s)
- Ameeta Mehta
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
46
|
Lugtenberg D, Veltman JA, van Bokhoven H. High-resolution genomic microarrays for X-linked mental retardation. Genet Med 2007; 9:560-5. [PMID: 17873643 DOI: 10.1097/gim.0b013e318149e647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Developments in genomic microarray technology have revolutionized the study of human genomic copy number variation. This has significantly affected many areas in human genetics, including the field of X-linked mental retardation (XLMR). Chromosome X-specific bacterial artificial chromosomes microarrays have been developed to specifically test this chromosome with a resolution of approximately 100 kilobases. Application of these microarrays in X-linked mental retardation studies has resulted in the identification of novel X-linked mental retardation genes, copy number variation at known X-linked mental retardation genes, and copy number variations harboring as yet unidentified X-linked mental retardation genes. Further enhancements in genomic microarray analysis will soon allow the reliable analysis of all copy number variations throughout this chromosome at the kilobase or single exon resolution. In this review, we describe the developments in this field and specifically highlight the impact of these microarray studies in the field of X-linked mental retardation.
Collapse
Affiliation(s)
- Dorien Lugtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
47
|
Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87:933-63. [PMID: 17615393 DOI: 10.1152/physrev.00006.2006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pituitary gland is a central endocrine organ regulating basic physiological functions, including growth, the stress response, reproduction, metabolic homeostasis, and lactation. Distinct hormone-producing cell types in the anterior pituitary arise from a common ectodermal primordium during development by extrinsic and intrinsic mechanisms, providing a powerful model system for elucidating general principles in mammalian organogenesis. The central purpose of this review is to inspect the integrated signaling and transcriptional events that affect precursor proliferation, cell lineage commitment, terminal differentiation, and physiological regulation by hypothalamic tropic factors.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
48
|
Salemi M, Romano C, Ragusa L, Di Vita G, Salluzzo R, Oteri I, Trovato ML, Romano C, Caraci F, Nicoletti F, Bosco P. A New 6-bp SOX-3 Polyalanine Tract Deletion Does Not Segregate with Mental Retardation. ACTA ACUST UNITED AC 2007; 11:124-7. [PMID: 17627381 DOI: 10.1089/gte.2006.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SOX-3 is a transcription factor expressed throughout the developing central nervous system and is involved in maintenance of pluripotency in self-renewing stem cells, specification events, lineage progression, and terminal differentiation. An association between growth hormone deficiency, mental retardation, and Sox-3 mutations in humans was previously reported. The occurrence of abnormalities affecting the polyalanine tract of the Sox-3 gene was determined in a group of 77 unrelated mentally retarded patients without a definite genetic diagnosis and in 84 control subjects. A new SOX-3 polyalanine tract deletion was identified in a mentally impaired boy, in his mother (homozygous), and in 2 healthy brothers of the proband. This new mutation does not segregate with mental retardation.
Collapse
Affiliation(s)
- Michele Salemi
- Laboratorio di Citogenetica, Oasi Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Solomon NM, Ross SA, Forrest SM, Thomas PQ, Morgan T, Belsky JL, Hol FA, Karnes PS, Hopwood NJ, Myers SE, Tan AS, Warne GL. Array comparative genomic hybridisation analysis of boys with X-linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. J Med Genet 2007; 44:e75. [PMID: 17400794 PMCID: PMC2598048 DOI: 10.1136/jmg.2007.049049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Chu TT, Fink MY, Mong JA, John G, Auger AP, Ge Y, Sealfon SC. Effective use of microarrays in neuroendocrine research. J Neuroendocrinol 2007; 19:145-61. [PMID: 17280588 DOI: 10.1111/j.1365-2826.2006.01523.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of microarray technology makes it possible to simultaneously assay the expression level of hundreds to tens of thousands of mRNA transcripts in one experiment. Genome-wide transcriptional analysis has increasing importance for many areas of neuroendocrinology research. The expense and technical complexity of microarray experiments can make it difficult to navigate the terrain of rival platforms and technologies. In this review, we provide a practical view and comparison of various microarray technologies. Affymetrix arrays, high-density cDNA arrays, membrane arrays and experimental design and data analysis are all discussed by researchers currently using these techniques to study gene regulation in neuroendocrine tissues.
Collapse
Affiliation(s)
- T T Chu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|