1
|
AlAshwal SM, Yassin SH, Kalaw FGP, Borooah S. PRPH2-ASSOCIATED RETINAL DISEASES: A SYSTEMATIC REVIEW OF PHENOTYPIC FINDINGS. Am J Ophthalmol 2025; 271:7-30. [PMID: 39515456 DOI: 10.1016/j.ajo.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE PRPH2-associated retinal diseases (PARD) result from pathogenic PRPH2 variants, primarily affecting photoreceptor outer segments and retinal pigment epithelium. The focus of this article is to review and discuss the phenotyping of PARD subtypes. DESIGN A systematic review. METHODS The review followed PRISMA 2020 guidelines with searches on PubMed, Medline, Web of Science, Google Scholar, and Cochrane Library. Eligible studies were those which discussed molecularly confirmed PARD or described associated diseases such as butterfly pattern dystrophy. INCLUSION cross-sectional, cohort, case-control studies, book chapters. EXCLUSION non-English, conference papers, non-peer-reviewed, or non-full text articles. RESULTS PARD is responsible for 25% of pattern dystrophy and up to 5% of inherited retinal dystrophies. There is clear evidence of phenotypic variability between individuals carrying the same pathogenic variant. Fundus autofluorescence, fluorescein angiography, optical coherence tomography, while in research adaptive optics reveal detailed phenotypic characteristics, notably in retinal pigment epithelium changes and photoreceptor disruption. The phenotypic of PARD variability presents diagnostic challenges, with phenotypic features often overlapping with other retinal diseases including age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. CONCLUSIONS This review emphasizes revising diagnostic criteria by incorporating more recent imaging techniques and confirming diagnosis with the use of genetic testing. Understanding phenotypic diversity and intrafamilial variability in PARD is crucial for developing new treatments and for patient prognosis and future research should focus on larger cohorts studying genotype-phenotype correlations.
Collapse
Affiliation(s)
- Shadi M AlAshwal
- Shiley Eye Institute, University of California, La Jolla, California, USA
| | - Shaden H Yassin
- Shiley Eye Institute, University of California, La Jolla, California, USA
| | | | - Shyamanga Borooah
- Shiley Eye Institute, University of California, La Jolla, California, USA.
| |
Collapse
|
2
|
Huang G, Wang D, Xue J. Research Progress on the Relationship Between PRPF8 and Cancer. Curr Issues Mol Biol 2025; 47:150. [PMID: 40136404 PMCID: PMC11941625 DOI: 10.3390/cimb47030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression and protein diversity, influencing both normal cellular function and pathological conditions, including cancer. Protein pre-mRNA processing factor 8 (PRPF8), a core component of the spliceosome, is integral to the splicing process, ensuring accurate gene transcription and spliceosome assembly. Disruptions in PRPF8 function are linked to a variety of cancers, as mutations in this gene can induce abnormal splicing events that contribute to tumorigenesis, metastasis, and drug resistance. This review provides an in-depth analysis of the mechanisms by which PRPF8 regulates tumorigenesis through AS, exploring its role in diverse cancer types, including breast, liver, myeloid, and colorectal cancers. Furthermore, we examine the molecular pathways associated with PRPF8 dysregulation and their impact on cancer progression. We also discuss the emerging potential of targeting PRPF8 in cancer therapy, highlighting challenges in drug development.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | | | | |
Collapse
|
3
|
Srivastava D, Gowribidanur-Chinnaswamy P, Gaur P, Spies M, Swaroop A, Artemyev NO. Molecular basis of CRX/DNA recognition and stoichiometry at the Ret4 response element. Structure 2024; 32:1751-1759.e4. [PMID: 39084215 PMCID: PMC11455607 DOI: 10.1016/j.str.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
Two retinal transcription factors, cone-rod homeobox (CRX) and neural retina leucine zipper (NRL), cooperate functionally and physically to control photoreceptor development and homeostasis. Mutations in CRX and NRL cause severe retinal diseases. Despite the roles of NRL and CRX, insight into their functions at the molecular level is lacking. Here, we have solved the crystal structure of the CRX homeodomain in complex with its cognate response element (Ret4) from the rhodopsin proximal promoter region. The structure reveals an unexpected 2:1 stoichiometry of CRX/Ret4 and unique orientation of CRX molecules on DNA, and it explains the mechanisms of pathogenic mutations in CRX. Mutations R41Q and E42K disrupt the CRX protein-protein contacts based on the structure and reduce the CRX/Ret4 binding stoichiometry, suggesting a novel disease mechanism. Furthermore, we show that NRL alters the stoichiometry and increases affinity of CRX binding at the rhodopsin promoter, which may enhance transcription of rod-specific genes and suppress transcription of cone-specific genes.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Paras Gaur
- Department of Biochemistry and Molecular Biology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Trastulli G, Megalizzi D, Calvino G, Andreucci S, Zampatti S, Strafella C, Caltagirone C, Giardina E, Cascella R. RHO Variants and Autosomal Dominant Retinitis Pigmentosa: Insights from the Italian Genetic Landscape. Genes (Basel) 2024; 15:1158. [PMID: 39336749 PMCID: PMC11431160 DOI: 10.3390/genes15091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Autosomal dominant retinitis pigmentosa (AD-RP) is caused by several genes, among which RHO is one of the most investigated. This article will be focused on RHO and its role in explaining AD-RP cases in the Italian population, taking advantage of the experience of the Genomic Medicine Laboratory UILDM at the Santa Lucia Foundation IRCCS. The retrospective evaluation of the distribution of RHO variants in the Italian patients with a clinical suspicion of RP pointed out eight variants. Of them, four variants (c.632A>T, c.1040C>T, c.1030C>T, c.383_392del) were pathogenic and made it possible to confirm the diagnosis of AD-RP in nine affected patients, highlighting a lower frequency (17%) of RHO variants compared to previous studies (30-40%). In addition, this study identified four variants classified as Variants of Uncertain Significance (VUS). In conclusion, the experience of the Genomic Medicine Laboratory provides an overview of the distribution of RHO variants in the Italian population, highlighting a slightly lower frequency of these variants in our cases series compared to previous reports. However, further studies on RHO variants are essential to characterize peculiar RP phenotypes and extend the spectrum of disease associated with this gene.
Collapse
Affiliation(s)
- Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Sarah Andreucci
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1010 Tirana, Albania
| |
Collapse
|
5
|
Zhuang J, Zhang R, Zhou B, Cao Z, Zhou J, Chen X, Zhang N, Zhu Y, Yang J. Mutation analysis of RHO in patients with non-syndromic retinitis pigmentosa. Ophthalmic Genet 2024; 45:147-152. [PMID: 38284172 DOI: 10.1080/13816810.2023.2294843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To identify RHO mutations in patients with non-syndromic retinitis pigmentosa (NS-RP). METHODS A total of 143 probands (46 family history and 97 sporadic cases) with NS-RP were recruited from Southeast China. The coding exons and adjacent intronic regions of RHO were PCR-amplified and sequenced by Sanger sequencing. The candidate variant was evaluated by the guidelines of American College of Medical Genetics and further validated through co-segregation analysis within the family. RESULTS Five heterozygous mutations in RHO were detected in 5 out of 143 probands, where the frequency of RHO mutations in our cohort was approximately 3.5% (5/143) and 10.8% (5/46) for probands and families with NS-RP, respectively. Three known disease-causing mutations including c.C1030T (p.Q344X), c.C173G (p.T58R), and c.G266A (p.G89D) were identified in three unrelated families. The other two previously unreported mutations c.557C>A (p.S186X) and c.944delA (p.N315TfsX43) were confirmed in Family RP-087 and Family RP-139, respectively. These mutations co-segregated with available affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. CONCLUSIONS This report expands the mutational spectrum of RHO gene associated with NS-RP and demonstrates the frequency of RP RHO mutations in Southeast Chinese populations.
Collapse
Affiliation(s)
- Jianfu Zhuang
- Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Rongcai Zhang
- Fujian Baimeng Biotechnology Research Center, Fujian BioMed Technology Co. LTD, Fuzhou, Fujian, China
| | - Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Jie Zhou
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Shepherdson JL, Friedman RZ, Zheng Y, Sun C, Oh IY, Granas DM, Cohen BA, Chen S, White MA. Pathogenic variants in CRX have distinct cis-regulatory effects on enhancers and silencers in photoreceptors. Genome Res 2024; 34:243-255. [PMID: 38355306 PMCID: PMC10984388 DOI: 10.1101/gr.278133.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Dozens of variants in the gene for the homeodomain transcription factor (TF) cone-rod homeobox (CRX) are linked with human blinding diseases that vary in their severity and age of onset. How different variants in this single TF alter its function in ways that lead to a range of phenotypes is unclear. We characterized the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in mouse retina explants carrying knock-ins of two variants, one in the DNA-binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation in these mutant Crx retinas corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, and p.E168d2 has distinct effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are derepressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci are partially predictive of episomal MPRA activity, and distal elements whose accessibility increases later in retinal development are enriched for CREs with silencer activity. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers while having a qualitatively different impact on silencers.
Collapse
Affiliation(s)
- James L Shepherdson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Ryan Z Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Inez Y Oh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - David M Granas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Barak A Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Michael A White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
7
|
Zheng Y, Chen S. Transcriptional precision in photoreceptor development and diseases - Lessons from 25 years of CRX research. Front Cell Neurosci 2024; 18:1347436. [PMID: 38414750 PMCID: PMC10896975 DOI: 10.3389/fncel.2024.1347436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The vertebrate retina is made up of six specialized neuronal cell types and one glia that are generated from a common retinal progenitor. The development of these distinct cell types is programmed by transcription factors that regulate the expression of specific genes essential for cell fate specification and differentiation. Because of the complex nature of transcriptional regulation, understanding transcription factor functions in development and disease is challenging. Research on the Cone-rod homeobox transcription factor CRX provides an excellent model to address these challenges. In this review, we reflect on 25 years of mammalian CRX research and discuss recent progress in elucidating the distinct pathogenic mechanisms of four CRX coding variant classes. We highlight how in vitro biochemical studies of CRX protein functions facilitate understanding CRX regulatory principles in animal models. We conclude with a brief discussion of the emerging systems biology approaches that could accelerate precision medicine for CRX-linked diseases and beyond.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
| | - Shiming Chen
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Saint Louis, MO, United States
- Department of Ophthalmology and Visual Sciences, Saint Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
8
|
Jung YH, Kwak JJ, Joo K, Lee HJ, Park KH, Kim MS, Lee EK, Byeon SH, Lee CS, Han J, Lee J, Yoon CK, Woo SJ. Clinical and genetic features of Koreans with retinitis pigmentosa associated with mutations in rhodopsin. Front Genet 2023; 14:1240067. [PMID: 37712069 PMCID: PMC10497939 DOI: 10.3389/fgene.2023.1240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose: To investigate the clinical features, natural course, and genetic characteristics of Koreans with rhodopsin-associated retinitis pigmentosa (RHO-associated RP). Design: We conducted a retrospective, multicenter, observational cohort study. Participants: We reviewed the medical records of 42 patients with RHO-associated RP of 36 families who visited 4 hospitals in Korea. Methods: Patients with molecular confirmation of pathogenic variants of the RHO gene were included. The patients were divided into two subgroups: the generalized and sector RP groups. A central visual field of the better-seeing eye of <10° or a best-corrected visual acuity of the better-seeing eye <20/40 indicated the progression to late-stage RP. Results: The mean age at which symptoms first appeared was 26.3 ± 17.9 years (range: 8-78 years), and the mean follow-up period was 80.9 ± 68.7 months (range: 6-268 months). At the last follow-up visit, the generalized RP group showed a significantly higher rate of visual field impairment progression to late-stage RP than that of the sector RP group (22 of 35 [62.9%] vs. 0 of 7 [0.0%], p = 0.003). No cases in the sector RP group progressed to generalized RP. Best-corrected visual acuity deterioration to late-stage RP was observed only in the generalized RP group (13 of 35 patients; 37.1%), whereas no deterioration was observed in the sector RP group. We identified 16 known and three novel RHO mutations, including two missense mutations (p.T108P and p.G121R) and one deletion mutation (p.P347_A348del). The pathogenic variants were most frequently detected in exon 1 (14 of 36 [38.9%]). The most common pathogenic variants were p.P347L and T17M (5 of 36 [13.9%] families). Among 42 patients of 36 families, 35 patients of 29 families (80.6%) presented with the generalized RP phenotype, and seven patients of seven families (19.4%) presented with the sector RP phenotype. Three variants (p.T17M, p.G101E, and p.E181K) presented with both the generalized and sector RP phenotypes. Conclusion: This multicenter cohort study provided information on the clinical and genetic features of RHO-associated RP in Koreans. It is clinically important to expand the genetic spectrum and understand genotype-phenotype correlations to ultimately facilitate the development of gene therapy.
Collapse
Affiliation(s)
- Young Hoon Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jay Jiyong Kwak
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyuk Jun Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Seok Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Christopher Seungkyu Lee
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Ki Yoon
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Karali M, Testa F, Di Iorio V, Torella A, Zeuli R, Scarpato M, Romano F, Onore ME, Pizzo M, Melillo P, Brunetti-Pierri R, Passerini I, Pelo E, Cremers FPM, Esposito G, Nigro V, Simonelli F, Banfi S. Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy. Sci Rep 2022; 12:20815. [PMID: 36460718 PMCID: PMC9718770 DOI: 10.1038/s41598-022-24636-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.
Collapse
Affiliation(s)
- Marianthi Karali
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Testa
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Valentina Di Iorio
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Annalaura Torella
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Roberta Zeuli
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Margherita Scarpato
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Francesca Romano
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Maria Elena Onore
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Pizzo
- grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paolo Melillo
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Raffaella Brunetti-Pierri
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Ilaria Passerini
- grid.24704.350000 0004 1759 9494Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Elisabetta Pelo
- grid.24704.350000 0004 1759 9494Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Frans P. M. Cremers
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gabriella Esposito
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy ,CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vincenzo Nigro
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Francesca Simonelli
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Sandro Banfi
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
10
|
Li CH, Chan MH, Liang SM, Chang YC, Hsiao M. Fascin-1: Updated biological functions and therapeutic implications in cancer biology. BBA ADVANCES 2022; 2:100052. [PMID: 37082587 PMCID: PMC10074911 DOI: 10.1016/j.bbadva.2022.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Filopodia are cellular protrusions that respond to a variety of stimuli. Filopodia are formed when actin is bound to the protein Fascin, which may play a crucial role in cellular interactions and motility during cancer metastasis. Significantly, the noncanonical features of Fascin-1 are gradually being clarified, including the related molecular network contributing to metabolic reprogramming, chemotherapy resistance, stemness ac-tivity, and tumor microenvironment events. However, the relationship between biological characteristics and pathological features to identify effective therapeutic strategies needs to be studied further. The pur-pose of this review article is to provide a broad overview of the latest molecular networks and multiomics research regarding fascins and cancer. It also highlights their direct and indirect effects on available cancer treatments. With this multidisciplinary approach, researchers and clinicians can gain the most relevant in-formation on the function of fascins in cancer progression, which may facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Corresponding authors.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding authors.
| |
Collapse
|
11
|
Rodríguez-Muñoz A, García-Bohórquez B, Udaondo P, Hervás-Ontiveros A, Salom D, Aller E, Jaijo T, García-García G, Millán J. CONCOMITANT MUTATIONS IN INHERITED RETINAL DYSTROPHIES: Why the Reproductive and Therapeutic Counseling Should Be Addressed Cautiously. Retina 2021; 41:1966-1975. [PMID: 33411470 DOI: 10.1097/iae.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To highlight the challenge of correct reproductive and therapeutic counseling in complex pedigrees with different inherited retinal dystrophies (IRD). METHODS Two hundred eight patients diagnosed with nonsyndromic IRD underwent full ophthalmologic examination and molecular analysis using targeted next-generation sequencing. RESULTS Five families (4%) carried mutations in more than one gene that contribute to different IRD. Family fRPN-NB had a dominant mutation in SNRNP200, which was present in nine affected individuals and four unaffected, and a mutation in RP2 among 11 family members. Family fRPN-142 carried a mutation in RPGR that cosegregated with the disease in all affected individuals. In addition, the proband also harbored two disease-causing mutations in the genes BEST1 and SNRNP200. Family fRPN-169 beared compound heterozygous mutations in USH2A and a dominant mutation in RP1. Genetic testing of fRPN-194 determined compound heterozygous mutations in CNGA3 and a dominant mutation in PRPF8 only in the proband. Finally, fRPN-219 carried compound heterozygous mutations in the genes ABCA4 and TYR. CONCLUSION These findings reinforce the complexity of IRD and underscore the need for the combination of high-throughput genetic testing and clinical characterization. Because of these features, the reproductive and therapeutic counseling for IRD must be approached with caution.
Collapse
Affiliation(s)
- Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - Patricia Udaondo
- Department of Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ana Hervás-Ontiveros
- Department of Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - David Salom
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
- Department of Ophthalmology Hospital de Manises, Valencia, Spain; and
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
- Unit of Genetics, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
- Unit of Genetics, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
| | - José Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, Valencia, Spain
- Joint Unit of Rare Diseases IIS La Fe-CIPF, Valencia, Spain
- Biomedical Research Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
12
|
Sodi A, Mucciolo DP, Giorgio D, Passerini I, Pacini B, Bruschi M, Verdina T, Virgili G, Giansanti F, Murro V. Clinical and molecular findings in patients with pattern dystrophy. Ophthalmic Genet 2021; 42:577-587. [PMID: 34240658 DOI: 10.1080/13816810.2021.1938140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purposes: To study the clinical and genetic background of a series of Italian patients affected by pattern dystrophy (PD).Methods: We reviewed patients with a clinical diagnosis of PD examined at the Eye Clinic in Florence from 2012 to 2019. We took into consideration patients with a standard ophthalmological examination, personal and familial ophthalmological history, fundus imaging, and molecular genetic analysis of genes PRPH2 and BEST1. We labelled patients with BEST1 and PRPH2 mutations as m-PD group (mutated) whereas patients with no mutations in these 2 genes as nm-PD group (non-mutated).Results: Seventy-seven PD patients were assessed (average age 59.7 ± 14.2, range 31-88 years). Fifty patients were placed in the nm-PD group and 27 in the m-PD. Pathogenic BEST1 and PRPH2 mutations were detected in 7% and 22% of PD patients, respectively. In total, we reported 1 BEST1 and 8 PRPH2 novel mutations. Ten patients were characterized by drusen in the nm-PD group whereas in no patients in the m-PD group drusen were detected at the fundus.Conclusions: An important proportion of patients affected by PD showed BEST1 or PRPH2 mutations. Patients affected by drusen represent a different sub-phenotype. Genetic examination is recommended for a correct clinical management.
Collapse
Affiliation(s)
- Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Pasquale Mucciolo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,Ophthalmology Unit, San Jacopo Hospital, Pistoia, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Bianca Pacini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Mario Bruschi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Tommaso Verdina
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianni Virgili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione G. B. Bietti, Roma, Italy
| | - Fabrizio Giansanti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Kukhtar D, Rubio-Peña K, Serrat X, Cerón J. Mimicking of splicing-related retinitis pigmentosa mutations in C. elegans allow drug screens and identification of disease modifiers. Hum Mol Genet 2021; 29:756-765. [PMID: 31919495 DOI: 10.1093/hmg/ddz315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas and the high conservation of the spliceosome components facilitate the mimicking of human pathological mutations in splicing factors of model organisms. The degenerative retinal disease retinitis pigmentosa (RP) is caused by mutations in distinct types of genes, including missense mutations in splicing factors that provoke RP in an autosomal dominant form (s-adRP). Using CRISPR in Caenorhabditis elegans, we generated mutant strains to mimic s-adRP mutations reported in PRPF8 and SNRNP200. Whereas these inherited mutations are present in heterozygosis in patients, C. elegans allows the maintenance of these mutations as homozygotes, which is advantageous for genetic and drug screens. We found that snrp-200(cer23[V676L]) and prp-8(cer14[H2302del]) display pleiotropic phenotypes, including reduced fertility. However, snrp-200(cer24[S1080L]) and prp-8(cer22[R2303G]) are weak alleles suitable for RNAi screens for identifying genetic interactions, which could uncover potential disease modifiers. We screened a collection of RNAi clones for splicing-related genes and identified three splicing factors: isy-1/ISY1, cyn-15/PPWD1 and mog-2/SNRPA1, whose partial inactivation may modify the course of the disease. Interestingly, these three genes act as modifiers of prp-8(cer22) but not of snrp-200(cer24). Finally, a screen of the strong allele prp-8(cer14) with FDA-approved drugs did not identify molecules capable of alleviating the temperature-sensitive sterility. Instead, we detected drugs, such as dequalinium chloride, which exacerbated the phenotype, and therefore, are potentially harmful to s-adRP patients since they may accelerate the progression of the disease.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Karinna Rubio-Peña
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Xènia Serrat
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group. Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08908 Barcelona, Spain
| |
Collapse
|
14
|
Xiao T, Xie Y, Zhang X, Xu K, Zhang X, Jin ZB, Li Y. Variant Profiling of a Large Cohort of 138 Chinese Families With Autosomal Dominant Retinitis Pigmentosa. Front Cell Dev Biol 2021; 8:629994. [PMID: 33598457 PMCID: PMC7882618 DOI: 10.3389/fcell.2020.629994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy, and 15–25% of RP is transmitted as an autosomal dominant (ad) trait. The objectives of this study were to establish the variant profile in a large cohort of adRP families and to elucidate the variant spectrum of each adRP gene in Chinese patients. A total of 138 probands clinically diagnosed with RP as a presumed autosomal dominant trait were recruited. All probands underwent ophthalmic examinations by specialists. A combination of molecular screening methods, including targeted next-generation sequencing, Sanger DNA sequencing, and multiplex ligation probe amplification assay, was used to detect variants. We identified heterozygous variants of 11 adRP genes in 73 probands, hemizygous, or heterozygous variants of X-linked RP genes in six patients, compound heterozygous variants of autosomal recessive RP genes in three pseudodominant families, and one heterozygous variant of one ad cone and rod dystrophy gene in one proband. One proband was found carrying both variants in RPGR and FAM161A. The overall detection rate was 59.4% (82/138). We detected 72 distinct disease-causing variants involving 16 RP genes and one cone-rod dystrophy gene; 33 of these variants have not been reported previously. Disease-causing variants were identified in the adRP genes in 52.9% of the families, followed by 4.3% in the X-linked RP genes, and 2.2% in the autosomal recessive genes. The most frequent mutant genes were RHO, PRPF31, RP1, SNRNP200, and PRPF8, which explained up to 78.0% of the genetically diagnosed families. Most of the variants identified in adRP genes were missense, and copy number variations were common (7/20) in the PRPF31 gene. We established the profile of the mutated genes and the variant spectrum of adRP genes in a large cohort of Chinese patients, providing essential information for genetic counseling and future development of therapeutics for retinal dystrophy inherited as a dominant trait.
Collapse
Affiliation(s)
- Ting Xiao
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Zhang
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wood KA, Eadsforth MA, Newman WG, O'Keefe RT. The Role of the U5 snRNP in Genetic Disorders and Cancer. Front Genet 2021; 12:636620. [PMID: 33584830 PMCID: PMC7876476 DOI: 10.3389/fgene.2021.636620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is performed by the spliceosome, a dynamic macromolecular complex consisting of five small uridine-rich ribonucleoprotein complexes (the U1, U2, U4, U5, and U6 snRNPs) and numerous auxiliary splicing factors. A plethora of human disorders are caused by genetic variants affecting the function and/or expression of splicing factors, including the core snRNP proteins. Variants in the genes encoding proteins of the U5 snRNP cause two distinct and tissue-specific human disease phenotypes – variants in PRPF6, PRPF8, and SNRP200 are associated with retinitis pigmentosa (RP), while variants in EFTUD2 and TXNL4A cause the craniofacial disorders mandibulofacial dysostosis Guion-Almeida type (MFDGA) and Burn-McKeown syndrome (BMKS), respectively. Furthermore, recurrent somatic mutations or changes in the expression levels of a number of U5 snRNP proteins (PRPF6, PRPF8, EFTUD2, DDX23, and SNRNP40) have been associated with human cancers. How and why variants in ubiquitously expressed spliceosome proteins required for pre-mRNA splicing in all human cells result in tissue-restricted disease phenotypes is not clear. Additionally, why variants in different, yet interacting, proteins making up the same core spliceosome snRNP result in completely distinct disease outcomes – RP, craniofacial defects or cancer – is unclear. In this review, we define the roles of different U5 snRNP proteins in RP, craniofacial disorders and cancer, including how disease-associated genetic variants affect pre-mRNA splicing and the proposed disease mechanisms. We then propose potential hypotheses for how U5 snRNP variants cause tissue specificity resulting in the restricted and distinct human disorders.
Collapse
Affiliation(s)
- Katherine A Wood
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Megan A Eadsforth
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - William G Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Raymond T O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Perea-Romero I, Gordo G, Iancu IF, Del Pozo-Valero M, Almoguera B, Blanco-Kelly F, Carreño E, Jimenez-Rolando B, Lopez-Rodriguez R, Lorda-Sanchez I, Martin-Merida I, Pérez de Ayala L, Riveiro-Alvarez R, Rodriguez-Pinilla E, Tahsin-Swafiri S, Trujillo-Tiebas MJ, Garcia-Sandoval B, Minguez P, Avila-Fernandez A, Corton M, Ayuso C. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci Rep 2021; 11:1526. [PMID: 33452396 PMCID: PMC7810997 DOI: 10.1038/s41598-021-81093-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
Abstract
Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.
Collapse
Affiliation(s)
- Irene Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Gordo
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ionut F Iancu
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Almoguera
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Carreño
- Department of Ophthalmology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Belen Jimenez-Rolando
- Department of Ophthalmology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Rosario Lopez-Rodriguez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Martin-Merida
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Pérez de Ayala
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elvira Rodriguez-Pinilla
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Saoud Tahsin-Swafiri
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria J Trujillo-Tiebas
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Blanca Garcia-Sandoval
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Ophthalmology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Minguez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Corton
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Luo H, Xiao X, Li S, Sun W, Yi Z, Wang P, Zhang Q. Spectrum-frequency and genotype-phenotype analysis of rhodopsin variants. Exp Eye Res 2020; 203:108405. [PMID: 33347869 DOI: 10.1016/j.exer.2020.108405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
Mutations in RHO are the most common cause of autosomal dominant retinitis pigmentosa. However, the pathogenicity of many RHO variants is questionable. This study was designed to investigate the genotype-phenotype correlation for RHO variants. These RHO variants were collected from the in-house exome sequencing data of 7092 probands suffering from different types of eye conditions. The variants were classified using bioinformatics tools, family segregation, and clinical phenotypes. The RHO variants were assessed using multiple online tools and a genotype-phenotype analysis based on the data collected from of ours, gnomAD, and published literature. Totally, 52 heterozygous variants of RHO were detected in the 7092 probands. Of these 52, 17 were potentially pathogenic, were present in 35 families, and comprised 15 missense variants, one inframe deletion and one nonsense variant. All the 15 missense variants were predicted to be damaging by five different online tools. The analysis of the clinical data of the patients from the 35 families revealed certain common features, of an early damage to both the rods and the cones, relatively preserved visual acuity in adulthood, and mid-peripheral tapetoretinal degeneration with pigmentation or RPE atrophy. Our data, the data from gnomAD, and the systematic review of the 246 previously reported variants suggest that approximately two-thirds of the rare missense variants and most of the truncated variants involving upstream of K296 are likely benign. This study provides a brief summary of the characteristics of the pathogenic RHO variants. It emphasizes that the systematic evaluation of these variants at the individual-gene level is crucial in the current era of clinical genetic testing even for a well-known gene such as RHO.
Collapse
Affiliation(s)
- Hualei Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
19
|
Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa. J Clin Med 2020; 9:jcm9072224. [PMID: 32668775 PMCID: PMC7408925 DOI: 10.3390/jcm9072224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy (IRD) with a prevalence of 1:4000, characterized by initial rod photoreceptor loss and subsequent cone photoreceptor loss with accompanying nyctalopia, visual field deficits, and visual acuity loss. A diversity of causative mutations have been described with autosomal dominant, autosomal recessive, and X-linked inheritance and sporadic mutations. The diversity of mutations makes gene therapy challenging, highlighting the need for mutation-agnostic treatments. Neural leucine zipper (NRL) and NR2E3 are factors important for rod photoreceptor cell differentiation and homeostasis. Germline mutations in NRL or NR2E3 leads to a loss of rods and an increased number of cones with short wavelength opsin in both rodents and humans. Multiple groups have demonstrated that inhibition of NRL or NR2E3 activity in the mature retina could endow rods with certain properties of cones, which prevents cell death in multiple rodent RP models with diverse mutations. In this review, we summarize the literature on NRL and NR2E3, therapeutic strategies of NRL/NR2E3 modulation in preclinical RP models, as well as future directions of research. In summary, inhibition of the NRL/NR2E3 pathway represents an intriguing mutation agnostic and disease-modifying target for the treatment of RP.
Collapse
|
20
|
Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies. Genes (Basel) 2020; 11:genes11050473. [PMID: 32349249 PMCID: PMC7290804 DOI: 10.3390/genes11050473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.
Collapse
|
21
|
Yi Z, Xiao X, Li S, Sun W, Zhang Q. Pathogenicity discrimination and genetic test reference for CRX variants based on genotype-phenotype analysis. Exp Eye Res 2019; 189:107846. [PMID: 31626798 DOI: 10.1016/j.exer.2019.107846] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
The cone-rod homeobox (CRX) gene is specifically expressed in developing and mature photoreceptors and is relatively conserved, with limited polymorphisms in coding regions. Rare variants in CRX are usually considered causative for different forms of retinal degeneration, but this might be problematic based on recent data. This study aimed to classify CRX variants based on a genotype-phenotype analysis of our data and the literature. Twenty-four CRX variants, including 14 novel variants, were detected in 37 Chinese families based on exome sequencing data obtained from 4971 Chinese probands with different forms of eye diseases. After detailed phenotypic analysis and cosegregation analysis in families with CRX variants, the 24 variants could be classified into three groups: benign (six), likely benign (six), and pathogenic (12). Somatic mosaicism was identified in a family with unaffected parents (the father had a mutant allele that was detected in approximately 17% of his leukocyte DNA) and two affected sons. Furthermore, a thorough reassessment was systematically performed for all 113 heterozygous variants as well as for their associated phenotypes from our cohort and patients previously reported. Two critical findings on the pathogenicity of CRX variants were obtained based on the genotype-phenotype correlation, family segregation and ensemble predicting methods: 1) approximately half of heterozygous missense variants are likely benign, and 2) heterozygous truncating variants affecting the homeodomain are likely benign. Truncating mutations after the homeodomain are likely associated with a more severe phenotype. Although most heterozygous pathogenic variants in CRX are associated with autosomal dominant retinal degeneration, a homozygous c.268C> T (p.Arg90Trp) substitution and homozygous complete deletion of CRX have been reported to cause Leber congenital amaurosis. In conclusion, many rare missense variants and some truncating variants in CRX are likely benign, although previously, they might have been predicted to be damaging by some online tools. Evaluation of the pathogenicity of a CRX variant should consider both its nature and location. The information obtained in this study is critical in the era of routine clinical genetic test, not only for CRX but also for many other genes with many more variants. Functional studies and additional genotype-phenotype analyses are expected to confirm these associations.
Collapse
Affiliation(s)
- Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
22
|
Nikopoulos K, Cisarova K, Quinodoz M, Koskiniemi-Kuendig H, Miyake N, Farinelli P, Rehman AU, Khan MI, Prunotto A, Akiyama M, Kamatani Y, Terao C, Miya F, Ikeda Y, Ueno S, Fuse N, Murakami A, Wada Y, Terasaki H, Sonoda KH, Ishibashi T, Kubo M, Cremers FPM, Kutalik Z, Matsumoto N, Nishiguchi KM, Nakazawa T, Rivolta C. A frequent variant in the Japanese population determines quasi-Mendelian inheritance of rare retinal ciliopathy. Nat Commun 2019; 10:2884. [PMID: 31253780 PMCID: PMC6599023 DOI: 10.1038/s41467-019-10746-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary retinal degenerations (HRDs) are Mendelian diseases characterized by progressive blindness and caused by ultra-rare mutations. In a genomic screen of 331 unrelated Japanese patients, we identify a disruptive Alu insertion and a nonsense variant (p.Arg1933*) in the ciliary gene RP1, neither of which are rare alleles in Japan. p.Arg1933* is almost polymorphic (frequency = 0.6%, amongst 12,000 individuals), does not cause disease in homozygosis or heterozygosis, and yet is significantly enriched in HRD patients (frequency = 2.1%, i.e., a 3.5-fold enrichment; p-value = 9.2 × 10-5). Familial co-segregation and association analyses show that p.Arg1933* can act as a Mendelian mutation in trans with the Alu insertion, but might also associate with disease in combination with two alleles in the EYS gene in a non-Mendelian pattern of heredity. Our results suggest that rare conditions such as HRDs can be paradoxically determined by relatively common variants, following a quasi-Mendelian model linking monogenic and complex inheritance.
Collapse
Affiliation(s)
- Konstantinos Nikopoulos
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Katarina Cisarova
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Hanna Koskiniemi-Kuendig
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Pietro Farinelli
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Atta Ur Rehman
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Andrea Prunotto
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Nobuo Fuse
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, 980-8573, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yuko Wada
- Yuko Wada Eye Clinic, Sendai, 980-0011, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Carlo Rivolta
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- University of Basel, 4001, Basel, Switzerland.
| |
Collapse
|
23
|
Rhodopsin gene mutation analysis in Iranian patients with autosomal dominant retinitis pigmentosa. Int Ophthalmol 2019; 39:2523-2531. [PMID: 30972525 DOI: 10.1007/s10792-019-01099-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Retinitis pigmentosa (RP) is the most common hereditary retinal degeneration and an important cause of visual disability worldwide. Rhodopsin gene is one of the most important genes implicated in autosomal dominant RP (ADRP). In this study, we investigated rhodopsin gene mutations in Iranian patients with ADRP. METHODS Twenty-one patients from 21 unrelated families with a total of 51 affected members were enrolled in this study. After complete history taking, ophthalmic examination and genetic counseling, peripheral blood samples were obtained. Following genomic DNA extraction, all five exons and intron-exon boundaries of RHO gene were sequenced using Sanger method. Interpretation of detected variants was carried out using appropriate databases and bioinformatic tools. Novel variants were screened in 150 unrelated healthy subjects. RESULTS Results of direct sequencing revealed that five of 21 patients (23.8%) had mutation in the rhodopsin gene. Two of them had previously identified p.P347L mutation, and three had novel variants including p.L95P, p.R177K and p.N310K. None of these novel variants were detected in healthy controls. The p.L95P variant was associated with predominantly inferior retinal involvement. CONCLUSIONS Our study showed that mutations of the rhodopsin gene are relatively frequent in Iranian patients with ADRP and could be considered in further researches in the future. The novel p.L95P variant may be associated with a specific pattern of retinal degeneration in this population.
Collapse
|
24
|
Foltz LP, Howden SE, Thomson JA, Clegg DO. Functional Assessment of Patient-Derived Retinal Pigment Epithelial Cells Edited by CRISPR/Cas9. Int J Mol Sci 2018; 19:E4127. [PMID: 30572641 PMCID: PMC6321630 DOI: 10.3390/ijms19124127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa is the most common form of inherited blindness and can be caused by a multitude of different genetic mutations that lead to similar phenotypes. Specifically, mutations in ubiquitously expressed splicing factor proteins are known to cause an autosomal dominant form of the disease, but the retina-specific pathology of these mutations is not well understood. Fibroblasts from a patient with splicing factor retinitis pigmentosa caused by a missense mutation in the PRPF8 splicing factor were used to produce three diseased and three CRISPR/Cas9-corrected induced pluripotent stem cell (iPSC) clones. We differentiated each of these clones into retinal pigment epithelial (RPE) cells via directed differentiation and analyzed the RPE cells in terms of gene and protein expression, apicobasal polarity, and phagocytic ability. We demonstrate that RPE cells can be produced from patient-derived and corrected cells and they exhibit morphology and functionality similar but not identical to wild-type RPE cells in vitro. Functionally, the RPE cells were able to establish apicobasal polarity and phagocytose photoreceptor outer segments at the same capacity as wild-type cells. These data suggest that patient-derived iPSCs, both diseased and corrected, are able to differentiate into RPE cells with a near normal phenotype and without differences in phagocytosis, a result that differs from previous mouse models. These RPE cells can now be studied to establish a disease-in-a-dish system relevant to retinitis pigmentosa.
Collapse
Affiliation(s)
- Leah P Foltz
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Sara E Howden
- Murdoch Children's Research Institute, University of Melbourne, Parkville 3052, Australia.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - James A Thomson
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
25
|
Xu CL, Park KS, Tsang SH. CRISPR/Cas9 genome surgery for retinal diseases. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:23-32. [PMID: 30205877 DOI: 10.1016/j.ddtec.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/17/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Retinal diseases that impair vision can impose heavy physical and emotional burdens on patients' lives. Currently, clustered regularly interspaced short palindromic repeats (CRISPR) is a prevalent gene-editing tool that can be harnessed to generate disease model organisms for specific retinal diseases, which are useful for elucidating pathophysiology and revealing important links between genetic mutations and phenotypic defects. These retinal disease models are fundamental for testing various therapies and are indispensible for potential future clinical trials. CRISPR-mediated procedures involving CRISPR-associated protein 9 (Cas9) may also be used to edit genome sequences and correct mutations. Thus, if used for future therapies, CRISPR/Cas9 genome surgery could eliminate the need for patients with retinal diseases to undergo repetitive procedures such as drug injections. In this review, we will provide an overview of CRISPR/Cas9, discuss the different types of Cas9, and compare Cas9 to other endonucleases. Furthermore, we will explore the many ways in which researchers are currently utilizing this versatile tool, as CRISPR/Cas9 may have far-reaching effects in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Christine L Xu
- Edward S Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Karen Sophia Park
- Edward S Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Edward S Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA; Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology & Cell Biology, Institute of Human Nutrition, Columbia Stem Cell Initiative, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Katagiri S, Hayashi T, Mizobuchi K, Yoshitake K, Iwata T, Nakano T. Autosomal dominant retinitis pigmentosa with macular involvement associated with a disease haplotype that included a novel PRPH2 variant (p.Cys250Gly). Ophthalmic Genet 2018; 39:357-365. [DOI: 10.1080/13816810.2018.1459737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazutoshi Yoshitake
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis GC, Leocani L, Andreazzoli M, Broccoli V. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 2018; 27:761-779. [PMID: 29281027 DOI: 10.1093/hmg/ddx438] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2024] Open
Abstract
P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.
Collapse
Affiliation(s)
- Serena G Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| | - Tommaso Cabassi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | | | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Institute of Neuroscience, National Research Council (CNR), 20129 Milan, Italy
| |
Collapse
|
28
|
Occelli LM, Tran NM, Narfström K, Chen S, Petersen-Jones SM. CrxRdy Cat: A Large Animal Model for CRX-Associated Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci 2017; 57:3780-92. [PMID: 27427859 PMCID: PMC4960999 DOI: 10.1167/iovs.16-19444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Purpose Mutations in the retinal transcription factor cone-rod homeobox (CRX) gene result in severe dominant retinopathies. A large animal model, the Rdy cat, carrying a spontaneous frameshift mutation in Crx, was reported previously. The present study aimed to further understand pathogenesis in this model by thoroughly characterizing the Rdy retina. Methods Structural and functional changes were found in a comparison between the retinas of CrxRdy/+ kittens and those of wild-type littermates and were determined at various ages by fundus examination, electroretinography (ERG), optical coherence tomography, and histologic analyses. RNA and protein expression changes of Crx and key target genes were analyzed using quantitative reverse-transcribed PCR, Western blot analysis, and immunohistochemistry. Transcription activity of the mutant Crx was measured by a dual-luciferase transactivation assay. Results CrxRdy/+ kittens had no recordable cone ERGs. Rod responses were delayed in development and markedly reduced at young ages and lost by 20 weeks. Photoreceptor outer segment development was incomplete and was followed by progressive outer retinal thinning starting in the cone-rich area centralis. Expression of cone and rod Crx target genes was significantly down-regulated. The mutant Crx allele was overexpressed, leading to high levels of the mutant protein lacking transactivation activity. Conclusions The CrxRdy mutation exerts a dominant negative effect on wild-type Crx by overexpressing mutant protein. These findings, consistent with those of studies in a mouse model, support a conserved pathogenic mechanism for CRX frameshift mutations. The similarities between the feline eye and the human eye with the presence of a central region of high cone density makes the CrxRdy/+ cat a valuable model for preclinical testing of therapies for dominant CRX diseases.
Collapse
Affiliation(s)
- Laurence M Occelli
- Small Animal Clinical Sciences Michigan State University, East Lansing, Michigan, United States
| | - Nicholas M Tran
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kristina Narfström
- Department of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, Missouri, United States
| | - Shiming Chen
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
29
|
Malinová A, Cvačková Z, Matějů D, Hořejší Z, Abéza C, Vandermoere F, Bertrand E, Staněk D, Verheggen C. Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 2017; 216:1579-1596. [PMID: 28515276 PMCID: PMC5461031 DOI: 10.1083/jcb.201701165] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
The pre-mRNA splicing factor PRPF8 is a crucial component of the U5 snRNP. Using quantitative proteomics, Malinová et al. show that assembly of the U5 snRNP is controlled by the HSP90/R2TP chaperones and that Retinitis pigmentosa–associated mutations in PRPF8 impair PRPF8 quality control and U5 snRNP chaperone-mediated assembly. Splicing is catalyzed by the spliceosome, a complex of five major small nuclear ribonucleoprotein particles (snRNPs). The pre-mRNA splicing factor PRPF8 is a crucial component of the U5 snRNP, and together with EFTUD2 and SNRNP200, it forms a central module of the spliceosome. Using quantitative proteomics, we identified assembly intermediates containing PRPF8, EFTUD2, and SNRNP200 in association with the HSP90/R2TP complex, its ZNHIT2 cofactor, and additional proteins. HSP90 and R2TP bind unassembled U5 proteins in the cytoplasm, stabilize them, and promote the formation of the U5 snRNP. We further found that PRPF8 mutants causing Retinitis pigmentosa assemble less efficiently with the U5 snRNP and bind more strongly to R2TP, with one mutant retained in the cytoplasm in an R2TP-dependent manner. We propose that the HSP90/R2TP chaperone system promotes the assembly of a key module of U5 snRNP while assuring the quality control of PRPF8. The proteomics data further reveal new interactions between R2TP and the tuberous sclerosis complex (TSC), pointing to a potential link between growth signals and the assembly of key cellular machines.
Collapse
Affiliation(s)
- Anna Malinová
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Daniel Matějů
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zuzana Hořejší
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Claire Abéza
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, University of Montpellier, 34293 Montpellier, France
| | - Franck Vandermoere
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, University of Montpellier, 34090 Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, University of Montpellier, 34293 Montpellier, France
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
30
|
Van Cauwenbergh C, Coppieters F, Roels D, De Jaegere S, Flipts H, De Zaeytijd J, Walraedt S, Claes C, Fransen E, Van Camp G, Depasse F, Casteels I, de Ravel T, Leroy BP, De Baere E. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families. PLoS One 2017; 12:e0170038. [PMID: 28076437 PMCID: PMC5226823 DOI: 10.1371/journal.pone.0170038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations.
Collapse
Affiliation(s)
- Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Dimitri Roels
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helena Flipts
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Charlotte Claes
- Center for Medical Genetics Antwerp, Antwerp University, Antwerp, Belgium
| | - Erik Fransen
- Center for Medical Genetics Antwerp, Antwerp University, Antwerp, Belgium
| | - Guy Van Camp
- Center for Medical Genetics Antwerp, Antwerp University, Antwerp, Belgium
| | - Fanny Depasse
- Department of Ophthalmology, Hôpital Erasme-ULB, Brussels, Belgium
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Bart P. Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology & Center for Cellular & Molecular Therapy, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
31
|
Unravelling the Complexity of Inherited Retinal Dystrophies Molecular Testing: Added Value of Targeted Next-Generation Sequencing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6341870. [PMID: 28127548 PMCID: PMC5227126 DOI: 10.1155/2016/6341870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022]
Abstract
To assess the clinical utility of targeted Next-Generation Sequencing (NGS) for the diagnosis of Inherited Retinal Dystrophies (IRDs), a total of 109 subjects were enrolled in the study, including 88 IRD affected probands and 21 healthy relatives. Clinical diagnoses included Retinitis Pigmentosa (RP), Leber Congenital Amaurosis (LCA), Stargardt Disease (STGD), Best Macular Dystrophy (BMD), Usher Syndrome (USH), and other IRDs with undefined clinical diagnosis. Participants underwent a complete ophthalmologic examination followed by genetic counseling. A custom AmpliSeq™ panel of 72 IRD-related genes was designed for the analysis and tested using Ion semiconductor Next-Generation Sequencing (NGS). Potential disease-causing mutations were identified in 59.1% of probands, comprising mutations in 16 genes. The highest diagnostic yields were achieved for BMD, LCA, USH, and STGD patients, whereas RP confirmed its high genetic heterogeneity. Causative mutations were identified in 17.6% of probands with undefined diagnosis. Revision of the initial diagnosis was performed for 9.6% of genetically diagnosed patients. This study demonstrates that NGS represents a comprehensive cost-effective approach for IRDs molecular diagnosis. The identification of the genetic alterations underlying the phenotype enabled the clinicians to achieve a more accurate diagnosis. The results emphasize the importance of molecular diagnosis coupled with clinic information to unravel the extensive phenotypic heterogeneity of these diseases.
Collapse
|
32
|
Beryozkin A, Levy G, Blumenfeld A, Meyer S, Namburi P, Morad Y, Gradstein L, Swaroop A, Banin E, Sharon D. Genetic Analysis of the Rhodopsin Gene Identifies a Mosaic Dominant Retinitis Pigmentosa Mutation in a Healthy Individual. Invest Ophthalmol Vis Sci 2016; 57:940-7. [PMID: 26962691 PMCID: PMC4788094 DOI: 10.1167/iovs.15-18702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a group of clinically and genetically heterogeneous hereditary retinal diseases that result in blindness due to photoreceptor degeneration. Mutations in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP) and are responsible for 16% to 35% of adRP cases in the Western population. Our purpose was to investigate the contribution of RHO to adRP in the Israeli and Palestinian populations. Methods Thirty-two adRP families participated in the study. Mutation detection was performed by whole exome sequencing (WES) and Sanger sequencing of RHO exons. Fluorescence PCR reactions of serially diluted samples were used to predict the percentage of mosaic cells in blood samples. Results Eight RHO disease-causing mutations were identified in nine families, with only one novel mutation, c.548-638dup91bp, identified in a family where WES failed to detect any causal variant. Segregation analysis revealed that the origin of the mutation is in a mosaic healthy individual carrying the mutation in approximately 13% of blood cells. Conclusions This is the first report of the mutation spectrum of a known adRP gene in the Israeli and Palestinian populations, leading to the identification of seven previously reported mutations and one novel mutation. Our study shows that RHO mutations are a major cause of adRP in this cohort and are responsible for 28% of adRP families. The novel mutation exhibits a unique phenomenon in which an unaffected individual is mosaic for an adRP-causing mutation.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gal Levy
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anat Blumenfeld
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Segev Meyer
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Prasanthi Namburi
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yair Morad
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Clalit Health Services and Soroka University Medical Center, Beer-Sheva, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Eyal Banin
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Departments of Ophthalmology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
33
|
Xu Y, Xiao X, Li S, Jia X, Xin W, Wang P, Sun W, Huang L, Guo X, Zhang Q. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands. Exp Eye Res 2016; 149:93-99. [PMID: 27375279 DOI: 10.1016/j.exer.2016.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 04/28/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Xin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
34
|
Abstract
A majority of human genes contain non-coding intervening sequences – introns that must be precisely excised from the pre-mRNA molecule. This event requires the coordinated action of five major small nuclear ribonucleoprotein particles (snRNPs) along with additional non-snRNP splicing proteins. Introns must be removed with nucleotidal precision, since even a single nucleotide mistake would result in a reading frame shift and production of a non-functional protein. Numerous human inherited diseases are caused by mutations that affect splicing, including mutations in proteins which are directly involved in splicing catalysis. One of the most common hereditary diseases associated with mutations in core splicing proteins is retinitis pigmentosa (RP). So far, mutations in more than 70 genes have been connected to RP. While the majority of mutated genes are expressed specifically in the retina, eight target genes encode for ubiquitous core snRNP proteins (Prpf3, Prpf4, Prpf6, Prpf8, Prpf31, and SNRNP200/Brr2) and splicing factors (RP9 and DHX38). Why mutations in spliceosomal proteins, which are essential in nearly every cell in the body, causes a disease that displays such a tissue-specific phenotype is currently a mystery. In this review, we recapitulate snRNP functions, summarize the missense mutations which are found in spliceosomal proteins as well as their impact on protein functions and discuss specific models which may explain why the retina is sensitive to these mutations.
Collapse
Affiliation(s)
- Šárka Růžičková
- a Department of RNA Biology , Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - David Staněk
- a Department of RNA Biology , Institute of Molecular Genetics AS CR , Prague , Czech Republic
| |
Collapse
|
35
|
Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods Cell Biol 2016; 135:259-88. [PMID: 27443930 DOI: 10.1016/bs.mcb.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From a fixed number of genes carried in all cells, organisms create considerable diversity in cellular phenotype through differential regulation of gene expression. One prevalent source of transcriptome diversity is alternative pre-mRNA splicing, which is manifested in many different forms. Zebrafish models of splicing dysfunction due to mutated spliceosome components provide opportunity to link biochemical analyses of spliceosome structure and function with whole organism phenotypic outcomes. Drawing from experience with two zebrafish mutants: cephalophŏnus (a prpf8 mutant, isolated for defects in granulopoiesis) and caliban (a rnpc3 mutant, isolated for defects in digestive organ development), we describe the use of glycerol gradient sedimentation and native gel electrophoresis to resolve components of aberrant splicing complexes. We also describe how RNAseq can be employed to examine relatively rare alternative splicing events including intron retention. Such experimental approaches in zebrafish can promote understanding of how splicing variation and dysfunction contribute to phenotypic diversity and disease pathogenesis.
Collapse
|
36
|
Mebed R, Ali YB, Solouma N, Eldib A, Amer M, Osman A. Rhodopsin mutations are scarcely implicated in autosomal recessive retinitis pigmentosa: A preliminary study of Egyptian retinitis pigmentosa patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Fernandez-San Jose P, Blanco-Kelly F, Corton M, Trujillo-Tiebas MJ, Gimenez A, Avila-Fernandez A, Garcia-Sandoval B, Lopez-Molina MI, Hernan I, Carballo M, Riveiro-Alvarez R, Ayuso C. Prevalence of Rhodopsin mutations in autosomal dominant Retinitis Pigmentosa in Spain: clinical and analytical review in 200 families. Acta Ophthalmol 2015; 93:e38-44. [PMID: 25408095 DOI: 10.1111/aos.12486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/24/2014] [Indexed: 01/31/2023]
Abstract
PURPOSE We aimed to determine the prevalence of mutations in the RHO gene in Spanish families with autosomal dominant Retinitis Pigmentosa (adRP), to assess genotype-phenotype correlations and to establish an accurate diagnostic algorithm after 23 years of data collection. PATIENTS AND METHODS Two hundred patients were analysed through a combination of denaturing gradient gel electrophoresis, single-strand conformation polymorphism, genotyping microarray and Sanger sequencing of the RHO gene. RESULTS Overall, 42 of 200 Spanish adRP families were mutated for RHO (21.0%). Twenty-seven different RHO mutations were detected; seven of them were novel. A genotype-phenotype correlation was established with clinical data from 107 patients. The most prevalent p.Pro347Leu mutation, responsible for 4.5% (9/200) of all mutated adRP families, was associated with a phenotype of early onset and severe course diffuse RP. CONCLUSIONS This retrospective study provides a wide spectrum of mutations in the RHO gene in Spanish patients with adRP. Also, the prevalence of mutations is similar to that reported in European population. Genotyping microarray followed by RHO sequencing is proposed as a first step in molecular diagnosis of adRP Spanish families. An increasing understanding of causal RHO alleles in adRP facilitates disease diagnosis and prognosis, especially for the prevalent p.Pro347Leu mutation.
Collapse
Affiliation(s)
- Patricia Fernandez-San Jose
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Fiona Blanco-Kelly
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Marta Corton
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Maria-Jose Trujillo-Tiebas
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Ascension Gimenez
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Almudena Avila-Fernandez
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Blanca Garcia-Sandoval
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
- Department of Ophthalmology; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
| | - Maria-Isabel Lopez-Molina
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
- Department of Ophthalmology; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
| | - Inma Hernan
- Molecular Genetics Unit; Hospital de Terrassa; Terrassa Barcelona Spain
| | - Miguel Carballo
- Molecular Genetics Unit; Hospital de Terrassa; Terrassa Barcelona Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| | - Carmen Ayuso
- Department of Genetics; Health Research Institute Fundacion Jimenez Diaz; University Hospital (IIS-FJD, UAM); Madrid Spain
- Centre for Biomedical Network Research on Rare Diseases CIBERER; ISCIII; Madrid Spain
| |
Collapse
|
38
|
Manes G, Guillaumie T, Vos WL, Devos A, Audo I, Zeitz C, Marquette V, Zanlonghi X, Defoort-Dhellemmes S, Puech B, Said SM, Sahel JA, Odent S, Dollfus H, Kaplan J, Dufier JL, Le Meur G, Weber M, Faivre L, Cohen FB, Béroud C, Picot MC, Verdier C, Sénéchal A, Baudoin C, Bocquet B, Findlay JB, Meunier I, Dhaenens CM, Hamel CP. High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features. Am J Ophthalmol 2015; 159:302-14. [PMID: 25447119 DOI: 10.1016/j.ajo.2014.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients. DESIGN Retrospective clinical and molecular genetic study. METHODS Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot. RESULTS We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families. CONCLUSIONS The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed.
Collapse
|
39
|
Tran NM, Chen S. Mechanisms of blindness: animal models provide insight into distinct CRX-associated retinopathies. Dev Dyn 2014; 243:1153-66. [PMID: 24888636 DOI: 10.1002/dvdy.24151] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/24/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The homeodomain transcription factor CRX is a crucial regulator of mammalian photoreceptor gene expression. Mutations in the human CRX gene are associated with dominant inherited retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD), and Leber Congenital Amaurosis (LCA), of varying severity. In vitro and in vivo assessment of mutant CRX proteins have revealed pathogenic mechanisms for several mutations, but no comprehensive mutation-disease correlation has yet been reported. RESULTS Here we describe four different classes of disease-causing CRX mutations, characterized by mutation type, pathogenetic mechanism, and the molecular activity of the mutant protein: (1) hypomorphic missense mutations with reduced DNA binding, (2) antimorphic missense mutations with variable DNA binding, (3) antimorphic frameshift/nonsense mutations with intact DNA binding, and (4) antimorphic frameshift mutations with reduced DNA binding. Mammalian models representing three of these classes have been characterized. CONCLUSIONS Models carrying Class I mutations display a mild dominant retinal phenotype and recessive LCA, while models carrying Class III and IV mutations display characteristically distinct dominant LCA phenotypes. These animal models also reveal unexpected pathogenic mechanisms underlying CRX-associated retinopathies. The complexity of genotype-phenotype correlation for CRX-associated diseases highlights the value of developing comprehensive "true-to-disease" animal models for understanding pathologic mechanisms and testing novel therapeutic approaches.
Collapse
Affiliation(s)
- Nicholas M Tran
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | | |
Collapse
|
40
|
Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet 2014; 133:1255-71. [DOI: 10.1007/s00439-014-1460-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/03/2014] [Indexed: 12/01/2022]
|
41
|
Eisenberger T, Neuhaus C, Khan AO, Decker C, Preising MN, Friedburg C, Bieg A, Gliem M, Issa PC, Holz FG, Baig SM, Hellenbroich Y, Galvez A, Platzer K, Wollnik B, Laddach N, Ghaffari SR, Rafati M, Botzenhart E, Tinschert S, Börger D, Bohring A, Schreml J, Körtge-Jung S, Schell-Apacik C, Bakur K, Al-Aama JY, Neuhann T, Herkenrath P, Nürnberg G, Nürnberg P, Davis JS, Gal A, Bergmann C, Lorenz B, Bolz HJ. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PLoS One 2013; 8:e78496. [PMID: 24265693 PMCID: PMC3827063 DOI: 10.1371/journal.pone.0078496] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/12/2013] [Indexed: 01/30/2023] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
Collapse
Affiliation(s)
| | | | - Arif O. Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Markus N. Preising
- Department of Ophthalmology, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg GmbH, Giessen Campus, Giessen, Germany
| | - Christoph Friedburg
- Department of Ophthalmology, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg GmbH, Giessen Campus, Giessen, Germany
| | - Anika Bieg
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Shahid M. Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | - Alberto Galvez
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Konrad Platzer
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Saeed Reza Ghaffari
- Comprehensive Genetic Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rafati
- Avicenna Biotechnology Research Institute, Tehran, Iran
| | | | - Sigrid Tinschert
- Institute of Clinical Genetics, Technical University Dresden, Dresden, Germany
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Axel Bohring
- Institute of Human Genetics, Westfälische Wilhelms-University, Münster, Germany
| | - Julia Schreml
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | | | - Khadijah Bakur
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y. Al-Aama
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Peter Herkenrath
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Gudrun Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Center for Genomics and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Center for Genomics and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - John S. Davis
- Department of Ophthalmology, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Andreas Gal
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bergmann
- Bioscientia Center for Human Genetics, Ingelheim, Germany
- Center for Clinical Research, University Hospital of Freiburg, Freiburg, Germany
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg GmbH, Giessen Campus, Giessen, Germany
| | - Hanno J. Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
42
|
Sullivan LS, Bowne SJ, Reeves MJ, Blain D, Goetz K, Ndifor V, Vitez S, Wang X, Tumminia SJ, Daiger SP. Prevalence of mutations in eyeGENE probands with a diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54:6255-61. [PMID: 23950152 DOI: 10.1167/iovs.13-12605] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To screen samples from patients with presumed autosomal dominant retinitis pigmentosa (adRP) for mutations in 12 disease genes as a contribution to the research and treatment goals of the National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE). METHODS DNA samples were obtained from eyeGENE. A total of 170 probands with an intake diagnosis of adRP were tested through enrollment in eyeGENE. The 10 most common genes causing adRP (IMPDH1, KLHL7, NR2E3, PRPF3/RP18, PRPF31/RP11, PRPF8/RP13, PRPH2/RDS, RHO, RP1, and TOPORS) were chosen for PCR-based dideoxy sequencing, along with the two X-linked RP genes, RPGR and RP2. RHO, PRPH2, PRPF31, RPGR, and RP2 were completely sequenced, while only mutation hotspots in the other genes were analyzed. RESULTS Disease-causing mutations were identified in 52% of the probands. The frequencies of disease-causing mutations in the 12 genes were consistent with previous studies. CONCLUSIONS The Laboratory for Molecular Diagnosis of Inherited Eye Disease at the University of Texas in Houston has thus far received DNA samples from 170 families with a diagnosis of adRP from the eyeGENE Network. Disease-causing mutations in autosomal genes were identified in 48% (81/170) of these families while mutations in X-linked genes accounted for an additional 4% (7/170). Of the 55 distinct mutations detected, 19 (33%) have not been previously reported. All diagnostic results were returned by eyeGENE to participating patients via their referring clinician. These genotyped samples along with their corresponding phenotypic information are also available to researchers who may request access to them for further study of these ophthalmic disorders. (ClinicalTrials.gov number, NCT00378742.).
Collapse
Affiliation(s)
- Lori S Sullivan
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fu Q, Wang F, Wang H, Xu F, Zaneveld JE, Ren H, Keser V, Lopez I, Tuan HF, Salvo JS, Wang X, Zhao L, Wang K, Li Y, Koenekoop RK, Chen R, Sui R. Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54:4158-66. [PMID: 23661369 DOI: 10.1167/iovs.13-11672] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease; therefore, an accurate molecular diagnosis is essential for appropriate disease treatment and family planning. The prevalence of RP in China had been reported at 1 in 3800, resulting in an estimated total of 340,000 Chinese RP patients. However, genetic studies of Chinese RP patients have been very limited. To date, no comprehensive molecular diagnosis has been done for Chinese RP patients. With the emergence of next-generation sequencing (NGS), comprehensive molecular diagnosis of RP is now within reach. The purpose of this study was to perform the first NGS-based comprehensive molecular diagnosis for Chinese RP patients. METHODS Thirty-one well-characterized autosomal recessive RP (arRP) families were recruited. For each family, the DNA sample from one affected member was sequenced using our custom capture panel, which includes 163 retinal disease genes. Variants were called, filtered, and annotated by our in-house automatic pipeline. RESULTS Twelve arRP families were successfully molecular diagnosed, achieving a diagnostic rate of approximately 40%. Interestingly, approximately 63% of the pathogenic mutations we identified are novel, which is higher than that observed in a similar study on European descent (45%). Moreover, the clinical diagnoses of two families were refined based on the pathogenic mutations identified in the patients. CONCLUSIONS We conclude that comprehensive molecular diagnosis can be vital for an accurate clinical diagnosis of RP. Applying this tool on patients from different ethnic groups is essential for enhancing our knowledge of the global spectrum of RP disease-causing mutations.
Collapse
Affiliation(s)
- Qing Fu
- Department of Ophthalmology, North Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bocquet B, Lacroux A, Surget MO, Baudoin C, Marquette V, Manes G, Hebrard M, Sénéchal A, Delettre C, Roux AF, Claustres M, Dhaenens CM, Rozet JM, Perrault I, Bonnefont JP, Kaplan J, Dollfus H, Amati-Bonneau P, Bonneau D, Reynier P, Audo I, Zeitz C, Sahel JA, Paquis-Flucklinger V, Calvas P, Arveiler B, Kohl S, Wissinger B, Blanchet C, Meunier I, Hamel CP. Relative Frequencies of Inherited Retinal Dystrophies and Optic Neuropathies in Southern France: Assessment of 21-year Data Management. Ophthalmic Epidemiol 2013; 20:13-25. [DOI: 10.3109/09286586.2012.737890] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Siemiatkowska AM, Astuti GD, Arimadyo K, den Hollander AI, Faradz SM, Cremers FP, Collin RW. Identification of a novel nonsense mutation in RP1 that causes autosomal recessive retinitis pigmentosa in an Indonesian family. Mol Vis 2012; 18:2411-9. [PMID: 23077400 PMCID: PMC3472925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 10/01/2012] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The purpose of this study was to identify the underlying molecular genetic defect in an Indonesian family with three affected individuals who had received a diagnosis of retinitis pigmentosa (RP). METHODS Clinical evaluation of the family members included measuring visual acuity and fundoscopy, and assessing visual field and color vision. Genomic DNA of the three affected individuals was analyzed with Illumina 700k single nucleotide polymorphism (SNP) arrays, and homozygous regions were identified using PLINK software. Mutation analysis was performed with sequence analysis of the retinitis pigmentosa 1 (RP1) gene that resided in one of the homozygous regions. The frequency of the identified mutation in the Indonesian population was determined with TaqI restriction fragment length polymorphism analysis. RESULTS A novel homozygous nonsense mutation in exon 4 of the RP1 gene, c.1012C>T (p.R338*), was identified in the proband and her two affected sisters. Unaffected family members either carried two wild-type alleles or were heterozygous carriers of the mutation. The mutation was not present in 184 Indonesian control samples. CONCLUSIONS Most of the previously reported RP1 mutations are inherited in an autosomal dominant mode, and appear to cluster in exon 4. Here, we identified a novel homozygous p.R338* mutation in exon 4 of RP1, and speculate on the mutational mechanisms of different RP1 mutations underlying dominant and recessive RP.
Collapse
Affiliation(s)
- Anna M. Siemiatkowska
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Galuh D.N. Astuti
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Kentar Arimadyo
- Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia,Department of Ophthalmology, Faculty of Medicine, Diponegoro University/Dr. Kariadi Hospital, Semarang, Indonesia
| | - Anneke I. den Hollander
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sultana M.H. Faradz
- Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Frans P.M. Cremers
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Huang L, Xiao X, Li S, Jia X, Wang P, Guo X, Zhang Q. CRX variants in cone-rod dystrophy and mutation overview. Biochem Biophys Res Commun 2012; 426:498-503. [PMID: 22960069 DOI: 10.1016/j.bbrc.2012.08.110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
Mutations in the cone-rod homeobox gene (CRX) are associated with cone-rod dystrophy (CORD), Leber congenital amaurosis (LCA), and, in rare cases, retinitis pigmentosa (RP). In this study, three variations were detected in 3 of 130 families with CORD, including two novel mutations, c.239A>G (p.Glu80Gly) and c.362C>T (p.Ala121Val). So far, 49 mutations in CRX were reported, affecting about 2.35% of LCA, 4.76% of CORD, and 0.80% of RP. These mutations can be classified as missense (38.78%), nonsense (4.08%), deletion (36.73%), insertion (16.33%), and indel (4.08%). They distributed in the three coding exons without mutation hot spots. No clear genotype-phenotype correlation could be established so far.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype. PLoS One 2012; 7:e43251. [PMID: 22927954 PMCID: PMC3424119 DOI: 10.1371/journal.pone.0043251] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 01/31/2023] Open
Abstract
Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3rd exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.
Collapse
|
48
|
Blanco-Kelly F, García-Hoyos M, Cortón M, Ávila-Fernández A, Riveiro-Álvarez R, Giménez A, Hernan I, Carballo M, Ayuso C. Genotyping microarray: mutation screening in Spanish families with autosomal dominant retinitis pigmentosa. Mol Vis 2012; 18:1478-83. [PMID: 22736939 PMCID: PMC3380913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/31/2012] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Presently, 22 genes have been described in association with autosomal dominant retinitis pigmentosa (adRP); however, they explain only 50% of all cases, making genetic diagnosis of this disease difficult and costly. The aim of this study was to evaluate a specific genotyping microarray for its application to the molecular diagnosis of adRP in Spanish patients. METHODS We analyzed 139 unrelated Spanish families with adRP. Samples were studied by using a genotyping microarray (adRP). All mutations found were further confirmed with automatic sequencing. Rhodopsin (RHO) sequencing was performed in all negative samples for the genotyping microarray. RESULTS The adRP genotyping microarray detected the mutation associated with the disease in 20 of the 139 families with adRP. As in other populations, RHO was found to be the most frequently mutated gene in these families (7.9% of the microarray genotyped families). The rate of false positives (microarray results not confirmed with sequencing) and false negatives (mutations in RHO detected with sequencing but not with the genotyping microarray) were established, and high levels of analytical sensitivity (95%) and specificity (100%) were found. Diagnostic accuracy was 15.1%. CONCLUSIONS The adRP genotyping microarray is a quick, cost-efficient first step in the molecular diagnosis of Spanish patients with adRP.
Collapse
Affiliation(s)
- Fiona Blanco-Kelly
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - María García-Hoyos
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Marta Cortón
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Ávila-Fernández
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Rosa Riveiro-Álvarez
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ascensión Giménez
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Inma Hernan
- Unidad de Genética Molecular, Hospital de Terrassa, Terrassa, Barcelona, Spain
| | - Miguel Carballo
- Unidad de Genética Molecular, Hospital de Terrassa, Terrassa, Barcelona, Spain
| | - Carmen Ayuso
- Servicio de Genética, IIS Fundación Jiménez Díaz, Madrid. Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
49
|
Nalbantoglu SM, Shahbazov C, Berdeli A. A molecular case report of autosomal dominant retinitis pigmentosa: RP1/RHO sequence variants in a Turkish family. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:18-23. [PMID: 22321012 DOI: 10.1089/omi.2011.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Retinitis pigmentosa (RP) is an inherited progressive retinal disease with a complex inheritance pattern affecting about 1 in 3,500 people worldwide. To date, a large number of sequence changes in the causal contributor genes of wide-spectrum heterogeneous RP were reported, including deletions, insertions, or substitutions that lead missense mutations or truncations. Here we present an association between the clinical presentations of adRP and sequence variants involving novel M216L mutation in the RHO gene together with nonsynonimous sequence changes R872H, N985Y, A1670T, S1691P, C2033Y, and synonimous Q1725Q with novel, N1521N, and T1733T SNPs in the RP1 gene of uncertain pathogenicity in a Turkish family with autosomal dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Sinem M Nalbantoglu
- Ege University, School of Medicine, Children's Hospital, Molecular Medicine Laboratory, Bornova, Izmir, Turkey.
| | | | | |
Collapse
|
50
|
Audo I, Mohand-Saïd S, Dhaenens CM, Germain A, Orhan E, Antonio A, Hamel C, Sahel JA, Bhattacharya SS, Zeitz C. RP1 and autosomal dominant rod-cone dystrophy: Novel mutations, a review of published variants, and genotype-phenotype correlation. Hum Mutat 2011; 33:73-80. [DOI: 10.1002/humu.21640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/06/2011] [Indexed: 01/19/2023]
|