1
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
2
|
Szoszkiewicz A, Bukowska-Olech E, Jamsheer A. Molecular landscape of congenital vertebral malformations: recent discoveries and future directions. Orphanet J Rare Dis 2024; 19:32. [PMID: 38291488 PMCID: PMC10829358 DOI: 10.1186/s13023-024-03040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.
Collapse
Affiliation(s)
- Anna Szoszkiewicz
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A, 60-529, Poznan, Poland.
| |
Collapse
|
3
|
Albrecht C, Rajaram N, Broche J, Bashtrykov P, Jeltsch A. Locus-Specific and Stable DNA Demethylation at the H19/ IGF2 ICR1 by Epigenome Editing Using a dCas9-SunTag System and the Catalytic Domain of TET1. Genes (Basel) 2024; 15:80. [PMID: 38254969 PMCID: PMC10815749 DOI: 10.3390/genes15010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA methylation is critically involved in the regulation of chromatin states and cell-type-specific gene expression. The exclusive expression of imprinted genes from either the maternal or the paternal allele is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). Aberrant DNA hyper- or hypomethylation at the ICR1 of the H19/IGF2 imprinting locus is characteristic for the imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), respectively. In this paper, we performed epigenome editing to induce targeted DNA demethylation at ICR1 in HEK293 cells using dCas9-SunTag and the catalytic domain of TET1. 5-methylcytosine (5mC) levels at the target locus were reduced up to 90% and, 27 days after transient transfection, >60% demethylation was still observed. Consistent with the stable demethylation of CTCF-binding sites within the ICR1, the occupancy of the DNA methylation-sensitive insulator CTCF protein increased by >2-fold throughout the 27 days. Additionally, the H19 expression was increased by 2-fold stably, while IGF2 was repressed though only transiently. Our data illustrate the ability of epigenome editing to implement long-term changes in DNA methylation at imprinting control regions after a single transient treatment, potentially paving the way for therapeutic epigenome editing approaches in the treatment of imprinting disorders.
Collapse
Affiliation(s)
| | | | | | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (C.A.)
| |
Collapse
|
4
|
Tüysüz B, Kasap B, Uludağ Alkaya D, Alp Ünkar Z, Köseoğlu P, Geyik F, Özer E, Önal H, Gezdirici A, Ercan O. Investigation of (Epi)genetic causes in syndromic short children born small for gestational age. Eur J Med Genet 2023; 66:104854. [PMID: 37758162 DOI: 10.1016/j.ejmg.2023.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Intrauterine onset syndromic short stature constitutes a group of diseases that pose challenges in differential diagnosis due to their rarity and clinical as well as molecular heterogeneity. The aim of this study was to investigate the presence of (epi)genetic causes in children born small for gestational age (SGA) and manifesting clinically undiagnosed syndromic short stature. The study group comprised twenty-nine cases selected from the syndromic SGA cohort. Various analyses were performed, including chromosomal microarray (CMA), methylation-specific-multiple ligation probe amplification for chromosomes 6,14 and 20, and whole exome sequencing (WES). Pathogenic copy number variants (CNVs) on chromosomes 2q13, 22q11.3, Xp22.33, 17q21.31, 19p13.13 and 4p16.31 causing syndromic growth disturbance were detected in six patients. Maternal uniparental disomy 14 was identified in a patient. WES was performed in the remaining 22 patients, revealing pathogenic variants in nine cases; six were monoallelic (ACAN, ARID2, NIPBL, PIK3R1, SMAD4, BRIP1), two were biallelic (BRCA2, RFWD3) and one was hemizygous (HUWE1). Seven of these were novel. Craniofacial dysmorphism, which is an important clue for the diagnosis of syndromes, was very mild in all patients. This study unveiled, for the first time, that ARID2 mutatios can cause syndromic SGA. In conclusion, a high (55.2%) diagnosis rate was achieved through the utilization of CMA, epigenetic and WES analyzes; 15 rare syndromes were defined, who were born with SGA and had atypical and/or mild dysmorphic findings. This study not only drew attention to the association of some rare syndromes with SGA, but also introduced novel genes and CNVs as potential contributors to syndromic SGA.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey.
| | - Büşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Zeynep Alp Ünkar
- Department of Neonatology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Pınar Köseoğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Filiz Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Emre Özer
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Hasan Önal
- Department of Pediatric Endocrinology, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetic, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Oya Ercan
- Department of Pediatric Endocrinology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
5
|
Machado LS, Borges CM, de Lima MA, Sangalli JR, Therrien J, Pessôa LVDF, Fantinato Neto P, Perecin F, Smith LC, Meirelles FV, Bressan FF. Exogenous OCT4 and SOX2 Contribution to In Vitro Reprogramming in Cattle. Biomedicines 2023; 11:2577. [PMID: 37761017 PMCID: PMC10526180 DOI: 10.3390/biomedicines11092577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming. The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that the production of embryos by NT resulted in similar rates of in vitro developmental competence compared to control cells regardless of different profiles of pluripotency-related gene expression presented by donor cells; however, induced reprogramming was compromised after cell sorting.
Collapse
Affiliation(s)
- Lucas Simões Machado
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Camila Martins Borges
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Marina Amaro de Lima
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Lawrence Charles Smith
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada;
| | - Flavio Vieira Meirelles
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (J.R.S.); (L.V.d.F.P.); (P.F.N.); (F.P.)
| | - Fabiana Fernandes Bressan
- Post-Graduate Program of Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.S.M.); (C.M.B.); (M.A.d.L.); (L.C.S.); (F.V.M.)
| |
Collapse
|
6
|
Sheng N, Huang L, Lu Y, Wang H, Yang L, Gao L, Xie X, Fu Y, Wang Y. Data resources and computational methods for lncRNA-disease association prediction. Comput Biol Med 2023; 153:106527. [PMID: 36610216 DOI: 10.1016/j.compbiomed.2022.106527] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Increasing interest has been attracted in deciphering the potential disease pathogenesis through lncRNA-disease association (LDA) prediction, regarding to the diverse functional roles of lncRNAs in genome regulation. Whilst, computational models and algorithms benefit systematic biology research, even facilitate the classical biological experimental procedures. In this review, we introduce representative diseases associated with lncRNAs, such as cancers, cardiovascular diseases, and neurological diseases. Current publicly available resources related to lncRNAs and diseases have also been included. Furthermore, all of the 64 computational methods for LDA prediction have been divided into 5 groups, including machine learning-based methods, network propagation-based methods, matrix factorization- and completion-based methods, deep learning-based methods, and graph neural network-based methods. The common evaluation methods and metrics in LDA prediction have also been discussed. Finally, the challenges and future trends in LDA prediction have been discussed. Recent advances in LDA prediction approaches have been summarized in the GitHub repository at https://github.com/sheng-n/lncRNA-disease-methods.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
| | - Yuting Lu
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China; Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Ling Gao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuping Xie
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China; School of Artificial Intelligence, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Horii T, Morita S, Kimura M, Hatada I. Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system. Epigenetics Chromatin 2022; 15:40. [PMID: 36522780 PMCID: PMC9756621 DOI: 10.1186/s13072-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Epigenome-edited animal models enable direct demonstration of disease causing epigenetic mutations. Transgenic (TG) mice stably expressing epigenome-editing factors exhibit dramatic and stable changes in target epigenome modifications. Successful germline transmission of a transgene from founder mice to offspring will yield a sufficient number of epigenome-edited mice for phenotypic analysis; however, if the epigenetic mutation has a detrimental phenotypic effect, it can become difficult to obtain the next generation of animals. In this case, the phenotype of founder mice must be analyzed directly. Unfortunately, current TG mouse production efficiency (TG founders per pups born) is relatively low, and improvements would increase the versatility of this technology. RESULTS In the current study, we describe an approach to generate epigenome-edited TG mice using a combination of both the dCas9-SunTag and piggyBac (PB) transposon systems. Using this system, we successfully generated mice with demethylation of the differential methylated region of the H19 gene (H19-DMR), as a model for Silver-Russell syndrome (SRS). SRS is a disorder leading to growth retardation, resulting from low insulin-like growth factor 2 (IGF2) gene expression, often caused by epimutations at the H19-IGF2 locus. Under optimized conditions, the efficiency of TG mice production using the PB system was approximately threefold higher than that using the conventional method. TG mice generated by this system showed demethylation of the targeted DNA region and associated changes in gene expression. In addition, these mice exhibited some features of SRS, including intrauterine and postnatal growth retardation, due to demethylation of H19-DMR. CONCLUSIONS The dCas9-SunTag and PB systems serve as a simple and reliable platform for conducting direct experiments using epigenome-edited founder mice.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8512, Japan.
| | - Sumiyo Morita
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512 Japan
| | - Mika Kimura
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512 Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8512, Japan. .,Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
8
|
Lahmamssi FZ, Saadaoui L, Aynaou H, Salhi H, El Ouahabi H. An Unusual Association: Silver-Russell Syndrome and Ectopic Thyroid. Cureus 2022; 14:e24837. [PMID: 35698710 PMCID: PMC9186401 DOI: 10.7759/cureus.24837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/05/2022] Open
|
9
|
Abstract
Diabetes mellitus (DM) causes damage to major organs, including the heart, liver, brain, kidneys, eyes, and blood vessels, threatening the health of the individuals. Emerging evidence has demonstrated that lncRNAs has important functions in the pathogenesis of human diseases, such as cancers, neurodegenerative diseases, cardiac fibroblast phenotypes, hypertension, heart failure, atherosclerosis and diabetes. Recently, H19, a lncRNA, has been reported to shown to participate in the regulatory process of muscle differentiation, glucose metabolism, and tumor metastasis, as well as endometrial development. However, the roles of H19 in DM were still not completely understood. This review was conducted to summarize the functions of H19 in diabetes and discuss the challenges and possible strategies of H19 in DM.
Collapse
Affiliation(s)
- Ye Bi
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Özer E, Geyik F, Alp Ünkar Z, Ercan O, Tüysüz B. The Methylation Status in the Chromosome 11p15.5 Region and Metabolic Disorders in Children with Syndromic and Nonsyndromic Intrauterine Growth Restriction. Mol Syndromol 2022; 13:108-116. [PMID: 35418826 PMCID: PMC8928180 DOI: 10.1159/000518630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 10/03/2023] Open
Abstract
Loss of methylation (LoM) of the imprinting control region 1 (ICR1) in the chromosome 11p15.5 domain is detected in patients with Silver-Russell syndrome (SRS), characterized by asymmetric pre- and postnatal growth restriction, and typical craniofacial features. The patients with intrauterine growth restriction (IUGR) possess a high risk for adult metabolic problems. This study is aimed to investigate the methylation levels of the chromosome 11p15.5 region and metabolic problems in children with syndromic and nonsyndromic IUGR. Methylation analysis was performed for chromosome 11p15.5 in 49 patients (33 with suspected SRS and 16 nonsyndromic IUGR) with Netchine-Harbison clinical scoring (NHCS); uniparental disomy for chromosomes 6, 7, 14, and 20 was evaluated for those who were negative. LoM of ICR1 was detected in 14 of 33 suspected SRS patients with 3 or more criteria of NHCS, 5 had borderline LoM. Maternal uniparental disomy of the chromosomes 7 and 14 was found in 2 patients. The overall detection rate of SRS was 45.5%. While clinical findings were similar in patients with LoM and borderline LoM of ICR1, typical craniofacial findings were significantly less in the patients with normal methylation. Methylation patterns were not found to be impaired in the nonsyndromic IUGR group. Metabolic complications were evaluated in a total of 63 patients including 33 SRS-suspicious, 16 nonsyndromic IUGR, and 14 patients with 3M or SHORT syndrome. Increased rates of hypercalciuria, insulin resistance, and dyslipidemia were detected in patients with both syndromic and nonsyndromic IUGR. We would like to emphasize that detecting typical facial findings is effective in the diagnosis of SRS and paying attention to metabolic problems in the follow-up of patients with IUGR is recommended.
Collapse
Affiliation(s)
- Emre Özer
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Filiz Geyik
- Department of Genetics, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Turkey
| | - Zeynep Alp Ünkar
- Department of Neonatology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oya Ercan
- Department of Pediatric Endocrinology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
11
|
Epigenotype, Genotype, and Phenotype Analysis of Taiwanese Patients with Silver-Russell Syndrome. J Pers Med 2021; 11:jpm11111197. [PMID: 34834549 PMCID: PMC8624617 DOI: 10.3390/jpm11111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Silver–Russell syndrome (SRS) is a clinically and genetically heterogeneous disorder characterized by severe intrauterine growth retardation, poor postnatal growth, characteristic facial features, and body asymmetry. Hypomethylation of the imprinted genes of the chromosome 11p15.5 imprinting gene cluster and maternal uniparental disomy of chromosome 7 (mUPD7) are the major epigenetic disturbances. The aim of this study was to characterize the epigenotype, genotype, and phenotype of these patients in Taiwan. Methods: Two hundred and six subjects with clinically suspected SRS were referred for diagnostic testing, which was performed by profiling the methylation of H19-associated imprinting center (IC) 1 and the imprinted PEG1/MEST region using methylation-specific multiplex ligation-dependent probe amplification and high-resolution melting analysis with a methylation-specific polymerase chain reaction assay. We also applied a whole genome strategy to detect copy number changes and loss of heterozygosity. Clinical manifestations were recorded and analyzed according to the SRS scoring system proposed by Bartholdi et al. Results: Among the 206 referred subjects, 100 were classified as having a clinical diagnosis of SRS (score ≥ 8, maximum = 15) and 106 had an SRS score ≤ 7. Molecular lesions were detected in 45% (45/100) of the subjects with a clinical diagnosis of SRS, compared to 5% (5/106) of those with an SRS score ≤ 7. Thirty-seven subjects had IC1 hypomethylation, ten subjects had mUPD7, and three subjects had microdeletions. Several clinical features were found to be statistically different (p < 0.05) between the “IC1 hypomethylation” and “mUPD7” groups, including relative macrocephaly at birth (89% vs. 50%), triangular shaped face (89% vs. 50%), clinodactyly of the fifth finger (68% vs. 20%), and SRS score (11.4 ± 2.2 vs. 8.3 ± 2.5). Conclusions: The SRS score was positively correlated with the molecular diagnosis rate (p < 0.001). The SRS subjects with mUPD7 seemed to have fewer typical features and lower SRS scores than those with IC1 hypomethylation. Careful clinical observation and timely molecular confirmation are important to allow for an early diagnosis and multidisciplinary management of these patients.
Collapse
|
12
|
Leitao Braga B, Lisboa Gomes N, Nishi MY, Freire BL, Batista RL, D Faria Junior JA, Funari MFA, Figueredo Benedetti AF, de Moraes Narcizo A, Cavalca Cardoso L, Lerario AM, Guerra-Junior G, Frade Costa EM, Domenice S, Jorge AAL, Mendonca BB. Variants in 46,XY DSD-Related Genes in Syndromic and Non-Syndromic Small for Gestational Age Children with Hypospadias. Sex Dev 2021; 16:27-33. [PMID: 34518484 DOI: 10.1159/000518091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Hypospadias is a common congenital disorder of male genital formation. Children born small for gestational age (SGA) present a high frequency of hypospadias of undetermined etiology. No previous study investigated the molecular etiology of hypospadias in boys born SGA using massively parallel sequencing. Our objective is to report the genetic findings of a cohort of patients born SGA with medium or proximal hypospadias. We identified 46 individuals with this phenotype from a large cohort of 46,XY DSD patients, including 5 individuals with syndromic features. DNA samples from subjects were studied by either whole exome sequencing or target gene panel approach. Three of the syndromic patients have 5 main clinical features of Silver-Russell syndrome (SRS) and were first studied by MLPA. Among the syndromic patients, loss of DNA methylation at the imprinting control region H19/IGF2 was identified in 2 individuals with SRS clinical diagnosis. Two novel pathogenic variants in compound heterozygous state were identified in the CUL7 gene establishing the diagnosis of 3M syndrome in one patient, and a novel homozygous variant in TRIM37 was identified in another boy with Mulibrey nanism phenotype. Among the non-syndromic subjects, 7 rare heterozygous variants were identified in 6 DSD-related genes. However, none of the variants found can explain the phenotype by themselves. In conclusion, a genetic defect that clarifies the etiology of hypospadias was not found in most of the non-syndromic SGA children, supporting the hypothesis that multifactorial causes, new genes, and/or unidentified epigenetic defects may have an influence in this condition.
Collapse
Affiliation(s)
- Barbara Leitao Braga
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Nathalia Lisboa Gomes
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Bruna L Freire
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Rafael L Batista
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Jose A D Faria Junior
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Anna F Figueredo Benedetti
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda de Moraes Narcizo
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lais Cavalca Cardoso
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Elaine M Frade Costa
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil.,Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| |
Collapse
|
13
|
Isolated Hypomethylation of IGF2 Associated with Severe Hypoglycemia Responsive to Growth Hormone Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050749. [PMID: 33922271 PMCID: PMC8146043 DOI: 10.3390/diagnostics11050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
Hypomethylation of H19 and IGF2 can cause Silver-Russell syndrome (SRS), a clinically and genetically heterogeneous condition characterized by intrauterine growth restriction, poor postnatal growth, relative macrocephaly, craniofacial abnormalities, body asymmetry, hypoglycemia and feeding difficulties. Isolated hypomethylation of IGF2 has been reported in single cases of SRS as well. Here, we report on a 19-month-old patient who presented with two episodes of hypoglycemic seizures. No intrauterine growth restriction was observed, the patient did not present with SRS-typical facial features, and postnatal growth in the first months of life was along the lower normal percentiles. Exome sequencing did not reveal any likely pathogenic variants explaining the phenotype; however, hypomethylation studies revealed isolated hypomethylation of IGF2, while the methylation of H19 appeared normal. Hypoglycemia responded well to growth hormone therapy, and the boy showed good catch-up growth. Our case demonstrates that SRS and isolated IGF2 hypomethylation should be considered early in the diagnosis of recurrent hypoglycemia in childhood, especially in combination with small gestational age and poor growth.
Collapse
|
14
|
Cottrell E, Cabrera CP, Ishida M, Chatterjee S, Greening J, Wright N, Bossowski A, Dunkel L, Deeb A, Basiri IA, Rose SJ, Mason A, Bint S, Ahn JW, Hwa V, Metherell LA, Moore GE, Storr HL. Rare CNVs provide novel insights into the molecular basis of GH and IGF-1 insensitivity. Eur J Endocrinol 2020; 183:581-595. [PMID: 33055295 PMCID: PMC7592635 DOI: 10.1530/eje-20-0474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Copy number variation (CNV) has been associated with idiopathic short stature, small for gestational age and Silver-Russell syndrome (SRS). It has not been extensively investigated in growth hormone insensitivity (GHI; short stature, IGF-1 deficiency and normal/high GH) or previously in IGF-1 insensitivity (short stature, high/normal GH and IGF-1). DESIGN AND METHODS Array comparative genomic hybridisation was performed with ~60 000 probe oligonucleotide array in GHI (n = 53) and IGF-1 insensitivity (n = 10) subjects. Published literature, mouse models, DECIPHER CNV tracks, growth associated GWAS loci and pathway enrichment analyses were used to identify key biological pathways/novel candidate growth genes within the CNV regions. RESULTS Both cohorts were enriched for class 3-5 CNVs (7/53 (13%) GHI and 3/10 (30%) IGF-1 insensitivity patients). Interestingly, 6/10 (60%) CNV subjects had diagnostic/associated clinical features of SRS. 5/10 subjects (50%) had CNVs previously reported in suspected SRS: 1q21 (n = 2), 12q14 (n = 1) deletions and Xp22 (n = 1), Xq26 (n = 1) duplications. A novel 15q11 deletion, previously associated with growth failure but not SRS/GHI was identified. Bioinformatic analysis identified 45 novel candidate growth genes, 15 being associated with growth in GWAS. The WNT canonical pathway was enriched in the GHI cohort and CLOCK was identified as an upstream regulator in the IGF-1 insensitivity cohorts. CONCLUSIONS Our cohort was enriched for low frequency CNVs. Our study emphasises the importance of CNV testing in GHI and IGF-1 insensitivity patients, particularly GHI subjects with SRS features. Functional experimental evidence is now required to validate the novel candidate growth genes, interactions and biological pathways identified.
Collapse
Affiliation(s)
- Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Centre for Translational Bioinformatics, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Miho Ishida
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James Greening
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Neil Wright
- The University of Sheffield Faculty of Medicine, Dentistry and Health, Sheffield, UK
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Bialystok, Bialystok, Poland
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Asma Deeb
- Paediatric Endocrinology Department, Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | | | - Stephen J Rose
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gudrun E Moore
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Correspondence should be addressed to H L Storr;
| |
Collapse
|
15
|
Horii T, Morita S, Hino S, Kimura M, Hino Y, Kogo H, Nakao M, Hatada I. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol 2020; 21:77. [PMID: 32234052 PMCID: PMC7110793 DOI: 10.1186/s13059-020-01991-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/08/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation, play an important role in gene silencing and genome stability. Consequently, epigenetic dysregulation can cause several diseases, such as cancer, obesity, diabetes, autism, and imprinting disorders. RESULTS We validate three methods for the generation of epigenome-edited mice using the dCas9-SunTag and single-chain variable fragment-TET1 catalytic domain. We generate model mice for Silver-Russell syndrome (SRS), an imprinting disorder, by target-specific DNA demethylation in the H19 differentially methylated region. Like SRS patients, these mice show H19 upregulation and Igf2 downregulation, leading to severe intrauterine and postnatal growth retardation. CONCLUSION This is the first report of an imprinting disease model animal generated by targeted demethylation of specific loci of the epigenome in fertilized eggs. Epigenome-edited animals are also useful for exploring the causative epimutations in epigenetic diseases.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hiroshi Kogo
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
16
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
17
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
18
|
Castillejo-Lopez C, Pjanic M, Pirona AC, Hetty S, Wabitsch M, Wadelius C, Quertermous T, Arner E, Ingelsson E. Detailed Functional Characterization of a Waist-Hip Ratio Locus in 7p15.2 Defines an Enhancer Controlling Adipocyte Differentiation. iScience 2019; 20:42-59. [PMID: 31557715 PMCID: PMC6817687 DOI: 10.1016/j.isci.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
We combined CAGE sequencing in human adipocytes during differentiation with data from genome-wide association studies to identify an enhancer in the SNX10 locus on chromosome 7, presumably involved in body fat distribution. Using reporter assays and CRISPR-Cas9 gene editing in human cell lines, we characterized the role of the enhancer in adipogenesis. The enhancer was active during adipogenesis and responded strongly to insulin and isoprenaline. The allele associated with increased waist-hip ratio in human genetic studies was associated with higher enhancer activity. Mutations of the enhancer resulted in less adipocyte differentiation. RNA sequencing of cells with disrupted enhancer showed reduced expression of established adipocyte markers, such as ADIPOQ and LPL, and identified CHI3L1 on chromosome 1 as a potential gene involved in adipocyte differentiation. In conclusion, we identified and characterized an enhancer in the SNX10 locus and outlined its plausible mechanisms of action and downstream targets. An enhancer active during adipogenesis is located in an obesity GWAS locus The enhancer responded strongly to insulin and isoprenaline Mutation of the enhancer by CRISPR-Cas9 decreased adipocyte differentiation Knockout of CHI3L1 decreased adipocyte differentiation
Collapse
Affiliation(s)
- Casimiro Castillejo-Lopez
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna Chiara Pirona
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Hetty
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Erik Arner
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Burgevin M, Lacroix A, Brown G, Mikaty M, Coutinho V, Netchine I, Odent S. Intellectual functioning in Silver-Russell syndrome: First study in adults. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 28:391-402. [PMID: 31390893 DOI: 10.1080/23279095.2019.1644643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silver-Russell syndrome (SRS) is a rare genetic disorder (estimated incidence 1/30,000 to 100,000 live births). So far, only a few studies have focused on the cognitive profile of individuals with SRS, and these were conducted some time ago, concentrated on pediatric cohorts, and included patients who had been diagnosed using a variety of clinical diagnostic systems. There has yet to be any research on the intellectual functioning of adults with SRS. This study sought to establish the intelligence, strengths and weaknesses within intellectual profile of adults with SRS, compared with normative data. Ten individuals with 11p15 epimutation aged 18-39 years completed the Wechsler Adult Intelligence Scale-Fourth Edition. Measures of interest included participants' intelligence (Full Scale Intelligence Quotient [FSIQ]) and four domains of cognitive functioning: verbal comprehension, perceptual reasoning, working memory and processing speed. Discrepancy scores were calculated, and descriptive statistical and linear correlations were used to investigate factors associated with IQ outcome. Clinical and medical information such as rehabilitation, and perceived difficulties in daily life were collected by interviews and questionnaires. Results showed that the mean FSIQ score was in the average range (M = 95.40, SD = 18.55) and they performed best on verbal comprehension. Frequent daily difficulties were reported by patients and/or their families: learning disabilities and low self-esteem were perceived by 60% of adults. Early intervention and multidisciplinary care from childhood to adulthood are important in SRS for care potential medical, cognitive and psychosocial problems. This is the first study to document the intellectual functioning of adults with SRS.
Collapse
Affiliation(s)
- Mélissa Burgevin
- Univ Rennes, LP3C (Laboratoire de Psychologie: Cognition, Comportement, Communication), EA 1285, F-35000 Rennes, France
| | - Agnès Lacroix
- Univ Rennes, LP3C (Laboratoire de Psychologie: Cognition, Comportement, Communication), EA 1285, F-35000 Rennes, France
| | - Genavee Brown
- Univ Rennes, LP3C (Laboratoire de Psychologie: Cognition, Comportement, Communication), EA 1285, F-35000 Rennes, France
| | - Myriam Mikaty
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU de Rennes, Rennes, France
| | - Virginie Coutinho
- Service de Neuropédiatrie, Hôpital Armand Trousseau, Paris, France.,Centre de Recherche en Épidémiologie et Santé Des Populations, Inserm, Villejuif, France
| | - Irène Netchine
- Sorbonne Universités, Inserm, UMR S 938, Centre de Recherche Saint Antoine, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU de Rennes, Rennes, France.,Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
20
|
Yoon S, Nguyen HCT, Yoo YJ, Kim J, Baik B, Kim S, Kim J, Kim S, Nam D. Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2. Nucleic Acids Res 2019; 46:e60. [PMID: 29562348 PMCID: PMC6007455 DOI: 10.1093/nar/gky175] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/13/2018] [Indexed: 01/19/2023] Open
Abstract
Pathway-based analysis in genome-wide association study (GWAS) is being widely used to uncover novel multi-genic functional associations. Many of these pathway-based methods have been used to test the enrichment of the associated genes in the pathways, but exhibited low powers and were highly affected by free parameters. We present the novel method and software GSA-SNP2 for pathway enrichment analysis of GWAS P-value data. GSA-SNP2 provides high power, decent type I error control and fast computation by incorporating the random set model and SNP-count adjusted gene score. In a comparative study using simulated and real GWAS data, GSA-SNP2 exhibited high power and best prioritized gold standard positive pathways compared with six existing enrichment-based methods and two self-contained methods (alternative pathway analysis approach). Based on these results, the difference between pathway analysis approaches was investigated and the effects of the gene correlation structures on the pathway enrichment analysis were also discussed. In addition, GSA-SNP2 is able to visualize protein interaction networks within and across the significant pathways so that the user can prioritize the core subnetworks for further studies. GSA-SNP2 is freely available at https://sourceforge.net/projects/gsasnp2.
Collapse
Affiliation(s)
- Sora Yoon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hai C T Nguyen
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yun J Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea.,Department of Mathematics Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinhwan Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Bukyung Baik
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sounkou Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jin Kim
- SK Telecom, Seoul 04539, Republic of Korea
| | - Sangsoo Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Dougu Nam
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
21
|
Perrera V, Martello G. How Does Reprogramming to Pluripotency Affect Genomic Imprinting? Front Cell Dev Biol 2019; 7:76. [PMID: 31143763 PMCID: PMC6521591 DOI: 10.3389/fcell.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced Pluripotent Stem Cells (hiPSCs) have the capacity to generate a wide range of somatic cells, thus representing an ideal tool for regenerative medicine. Patient-derived hiPSCs are also used for in vitro disease modeling and drug screenings. Several studies focused on the identification of DNA mutations generated, or selected, during the derivation of hiPSCs, some of which are known to drive cancer formation. Avoiding such stable genomic aberrations is paramount for successful use of hiPSCs, but it is equally important to ensure that their epigenetic information is correct, given the critical role of epigenetics in transcriptional regulation and its involvement in a plethora of pathologic conditions. In this review we will focus on genomic imprinting, a prototypical epigenetic mechanism whereby a gene is expressed in a parent-of-origin specific manner, thanks to the differential methylation of specific DNA sequences. Conventional hiPSCs are thought to be in a pluripotent state primed for differentiation. They display a hypermethylated genome with an unexpected loss of DNA methylation at imprinted loci. Several groups recently reported the generation of hiPSCs in a more primitive developmental stage, called naïve pluripotency. Naïve hiPSCs share several features with early human embryos, such as a global genome hypomethylation, which is also accompanied by a widespread loss of DNA methylation at imprinted loci. Given that loss of imprinting has been observed in genetic developmental disorders as well as in a wide range of cancers, it is fundamental to make sure that hiPSCs do not show such epigenetic aberrations. We will discuss what specific imprinted genes, associated with human pathologies, have been found commonly misregulated in hiPSCs and suggest strategies to effectively detect and avoid such undesirable epigenetic abnormalities.
Collapse
Affiliation(s)
- Valentina Perrera
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| | - Graziano Martello
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| |
Collapse
|
22
|
Vo Quang S, Galliani E, Eche S, Tomat C, Fauroux B, Picard A, Kadlub N. Contribution of a better maxillofacial phenotype in Silver–Russell syndrome to define a better orthodontics and surgical management. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2019; 120:110-115. [DOI: 10.1016/j.jormas.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/28/2018] [Indexed: 10/27/2022]
|
23
|
H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis. Cell Death Dis 2019; 10:168. [PMID: 30778047 PMCID: PMC6379488 DOI: 10.1038/s41419-019-1423-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/27/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
Cholestasis induces the hepatic long non-coding RNA H19, which promotes the progression of cholestatic liver fibrosis. However, microRNAs that are dysregulated by H19 during cholestasis remain elusive. Using miRNA-sequencing analysis followed by qPCR validation, we identified marked upregulation of eight members of the let-7 family in cholestatic livers by bile duct ligation (BDL) and H19 overexpression. In particular, the expression of let-7a-1/7d/7f-1 was highly induced in H19-BDL livers but decreased in H19KO-BDL livers. Interestingly, H19 decreased the nuclear let-7 precursors as well as the primary transcripts of let-7a-1/7d/7f-1 levels in BDL mouse livers. Bioinformatics, RNA pull-down, and RNA immunoprecipitation (RIP) assays revealed that the crucial RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1), an H19 interaction partner, interacted with the precursors of let-7a-1 and let-7d and suppressed their maturation. Both PTBP1 and let-7 expression was differentially regulated by different bile acid species in hepatocyte and cholangiocyte cells. Further, H19 negatively regulated PTBP1's mRNA and protein levels but did not affect its subcellular distribution in BDL mouse livers. Moreover, we found that H19 restrained but PTBP1 facilitated the bioavailability of let-7 miRNAs to their targets. Taken together, this study revealed for the first time that H19 promoted let-7 expression by decreasing PTBP1's expression level and its binding to the let-7 precursors in cholestasis.
Collapse
|
24
|
Vanaja KG, Timp W, Feinberg AP, Levchenko A. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Mol Cell 2018; 72:60-70.e3. [PMID: 30244832 DOI: 10.1016/j.molcel.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/04/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Epigenetic control of regulatory networks is only partially understood. Expression of Insulin-like growth factor-II (IGF2) is controlled by genomic imprinting, mediated by silencing of the maternal allele. Loss of imprinting of IGF2 (LOI) is linked to intestinal and colorectal cancers, causally in murine models and epidemiologically in humans. However, the molecular underpinnings of the LOI phenotype are not clear. Surprisingly, in LOI cells, we find a reversal of the relative activities of two canonical signaling pathways triggered by IGF2, causing further rebalancing between pro- and anti-apoptotic signaling. A predictive mathematical model shows that this network rebalancing quantitatively accounts for the effect of receptor tyrosine kinase inhibition in both WT and LOI cells. This mechanism also quantitatively explains both the stable LOI phenotype and the therapeutic window for selective killing of LOI cells, and thus prevention of epigenetically controlled cancers. These findings suggest a framework for understanding epigenetically modified cell signaling.
Collapse
Affiliation(s)
- Kiran G Vanaja
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Peng H, Zhao P, Liu J, Zhang J, Zhang J, Wang Y, Wu L, Song M, Wang W. Novel Epigenomic Biomarkers of Male Infertility Identified by Methylation Patterns of CpG Sites Within Imprinting Control Regions of H19 and SNRPN Genes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:354-364. [PMID: 29708855 DOI: 10.1089/omi.2018.0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Male infertility is an important global health burden that can benefit from novel biomarkers and diagnostics innovation. Aberrant methylation of the imprinted genes H19 and SNRPN (small nuclear ribonucleoprotein polypeptide N) in sperm DNA has been implicated in abnormal sperm parameters and male infertility. However, whether certain methylation patterns of one or multiple CpG sites within an imprinted gene are pathological for multiple sperm defects remains poorly understood. To examine the diagnostic potential of certain methylation patterns of CpG sites for multiphenotype defects in human sperm, the sperm DNA methylation patterns of individual CpG sites within imprinting control regions (ICRs) of imprinted genes H19 and SNRPN were measured by bisulfite pyrosequencing in a Han Chinese population sample: 39 oligoasthenozoospermia (OA) patients, 36 asthenoteratozoospermia (AT) patients, and 50 normozoospermia (N) controls. A partial least squares discriminant analysis model was built with the CpG sites as independent variables. Among the 16 CpG sites screened, the methylation patterns of eight CpG sites within H19-ICR (CpG sites 1, 6-9, 12 and 15-16), and eight CpG sites within SNRPN-ICR (CpG sites 2, 5-6, 8-10, 13, and 16) correctly classified 74.4% and 72.0% of the samples in terms of male fertile status, respectively. Furthermore, by combination of these 16 selected CpG sites within ICRs of H19 and SNRPN, 88.0% of the samples could be successfully classified. Our study demonstrates that methylation profiles of CpG sites within ICRs of imprinted genes H19 and SNRPN may potentially serve as epigenomic biomarkers for assessment of infertility in men with multiple sperm defects. Further studies in independent population samples are called for diagnostic significance of methylation patterns of CpG sites within imprinted genes.
Collapse
Affiliation(s)
- Hongli Peng
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China
| | - Panlin Zhao
- 3 Air Force General Hospital , PLA, Beijing, China
| | - Jiaonan Liu
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China
| | - Jinxia Zhang
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China
| | - Jie Zhang
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China
| | - Youxin Wang
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China
| | - Lijuan Wu
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China
| | - Manshu Song
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China .,4 School of Medical and Health Sciences, Edith Cowan University , Perth, Australia
| | - Wei Wang
- 1 School of Public Health, Capital Medical University , Beijing, China .,2 Municipal Key Laboratory of Clinical Epidemiology , Beijing, China .,4 School of Medical and Health Sciences, Edith Cowan University , Perth, Australia .,5 School of Public Health, Taishan Medical University , Taian, China
| |
Collapse
|
26
|
Tümer Z, López-Hernández JA, Netchine I, Elbracht M, Grønskov K, Gede LB, Sachwitz J, den Dunnen JT, Eggermann T. Structural and sequence variants in patients with Silver-Russell syndrome or similar features-Curation of a disease database. Hum Mutat 2018; 39:345-364. [PMID: 29250858 DOI: 10.1002/humu.23382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
Silver-Russell syndrome (SRS) is a clinically and molecularly heterogeneous disorder involving prenatal and postnatal growth retardation, and the term SRS-like is broadly used to describe individuals with clinical features resembling SRS. The main molecular subgroups are loss of methylation of the distal imprinting control region (H19/IGF2:IG-DMR) on 11p15.5 (50%) and maternal uniparental disomy of chromosome 7 (5%-10%). Through a comprehensive literature search, we identified 91 patients/families with various structural and small sequence variants, which were suggested as additional molecular defects leading to SRS/SRS-like phenotypes. However, the molecular and phenotypic data of these patients were not standardized and therefore not comparable, rendering difficulties in phenotype-genotype comparisons. To overcome this challenge, we curated a disease database including (epi)genetic phenotypic data of these patients. The clinical features are scored according to the Netchine-Harbison clinical scoring system (NH-CSS), which has recently been accepted as standard by consensus. The structural and sequence variations are reviewed and where necessary redescribed according to recent recommendations. Our study provides a framework for both research and diagnostic purposes through facilitating a standardized comparison of (epi)genotypes with phenotypes of patients with structural/sequence variants.
Collapse
Affiliation(s)
- Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Irène Netchine
- Sorbonne Universite, INSERM UMR_S 938, CDR Saint-Antoine, Paris, France.,APHP, Armand Trousseau Hospital, Pediatric Endocrinology, Paris, France
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lene Bjerring Gede
- Applied Human Molecular Genetics, Kennedy Centre, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Jana Sachwitz
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johan T den Dunnen
- Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Role of Non-Coding RNAs in the Etiology of Bladder Cancer. Genes (Basel) 2017; 8:genes8110339. [PMID: 29165379 PMCID: PMC5704252 DOI: 10.3390/genes8110339] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
According to data of the International Agency for Research on Cancer and the World Health Organization (Cancer Incidence in Five Continents, GLOBOCAN, and the World Health Organization Mortality), bladder is among the top ten body locations of cancer globally, with the highest incidence rates reported in Southern and Western Europe, North America, Northern Africa and Western Asia. Males (M) are more vulnerable to this disease than females (F), despite ample frequency variations in different countries, with a M:F ratio of 4.1:1 for incidence and 3.6:1 for mortality, worldwide. For a long time, bladder cancer was genetically classified through mutations of two genes, fibroblast growth factor receptor 3 (FGFR3, for low-grade, non-invasive papillary tumors) and tumor protein P53 (TP53, for high-grade, muscle-invasive tumors). However, more recently scientists have shown that this disease is far more complex, since genes directly involved are more than 150; so far, it has been described that altered gene expression (up- or down-regulation) may be present for up to 500 coding sequences in low-grade and up to 2300 in high-grade tumors. Non-coding RNAs are essential to explain, at least partially, this ample dysregulation. In this review, we summarize the present knowledge about long and short non-coding RNAs that have been linked to bladder cancer etiology.
Collapse
|
28
|
Uchimura T, Hollander JM, Nakamura DS, Liu Z, Rosen CJ, Georgakoudi I, Zeng L. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth. Development 2017; 144:3533-3546. [PMID: 28974642 DOI: 10.1242/dev.155598] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
Abstract
Postnatal bone growth involves a dramatic increase in length and girth. Intriguingly, this period of growth is independent of growth hormone and the underlying mechanism is poorly understood. Recently, an IGF2 mutation was identified in humans with early postnatal growth restriction. Here, we show that IGF2 is essential for longitudinal and appositional murine postnatal bone development, which involves proper timing of chondrocyte maturation and perichondrial cell differentiation and survival. Importantly, the Igf2 null mouse model does not represent a simple delay of growth but instead uncoordinated growth plate development. Furthermore, biochemical and two-photon imaging analyses identified elevated and imbalanced glucose metabolism in the Igf2 null mouse. Attenuation of glycolysis rescued the mutant phenotype of premature cartilage maturation, thereby indicating that IGF2 controls bone growth by regulating glucose metabolism in chondrocytes. This work links glucose metabolism with cartilage development and provides insight into the fundamental understanding of human growth abnormalities.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Judith M Hollander
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Daisy S Nakamura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Clifford J Rosen
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA .,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Orthopedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
29
|
Su J, Wang J, Fan X, Fu C, Zhang S, Zhang Y, Qin Z, Li H, Luo J, Li C, Jiang T, Shen Y. Mosaic UPD(7q)mat in a patient with silver Russell syndrome. Mol Cytogenet 2017; 10:36. [PMID: 29075327 PMCID: PMC5645907 DOI: 10.1186/s13039-017-0337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/12/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is one of the imprinting disorders characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. ~ 10% of SRS cases are known to be associated with maternal uniparental disomy of chromosome 7 (UPD(7)mat). Mosaic maternal segmental UPD of 7q (UPD(7q)mat) is very rare, had only been described in one case before. CASE PRESENTATION We reported a second case of mosaic segmental UPD involving 7q. The patient presented with dysmorphic features including thin and short stature, triangular face, moderate protruding forehead, relative macrocephaly, fifth toe clinodactyly and irregular teeth, meeting the clinical diagnosed criteria of SRS. This case indicated that ~ 80% of mosaic UPD(7q)mat lead to the manifestation of main phenotypes of Silver-Russell syndrome. CONCLUSIONS Our case support the notion that there are genes control postnatal growth on long arm of chromosome 7 and indicate that ~ 80% of UPD(7q)mat mosaicism level was contributed to the SRS phenotype.
Collapse
Affiliation(s)
- Jiasun Su
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Jin Wang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Xin Fan
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Chunyun Fu
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - ShuJie Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Yue Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Zailong Qin
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Hongdou Li
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Jingsi Luo
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Chuan Li
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Tingting Jiang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Yiping Shen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
30
|
Marjonen H, Kahila H, Kaminen-Ahola N. rs10732516 polymorphism at the IGF2/H19 locus associates with a genotype-specific trend in placental DNA methylation and head circumference of prenatally alcohol-exposed newborns. Hum Reprod Open 2017; 2017:hox014. [PMID: 30895230 PMCID: PMC6276671 DOI: 10.1093/hropen/hox014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Does prenatal alcohol exposure (PAE) affect regulation of the insulin-like growth factor 2 (IGF2)/H19 locus in placenta and the growth-restricted phenotype of newborns? SUMMARY ANSWER PAE results in genotype-specific trends in both placental DNA methylation at the IGF2/H19 locus and head circumference (HC) of newborns. WHAT IS KNOWN ALREADY PAE can disturb development of the nervous system and lead to restricted growth of the head, even microcephaly. To clarify the etiology of alcohol-induced growth restriction, we focused on the imprinted IGF2/H19 locus known to be important for normal placental and embryonic growth. The expression of IGF2 and a negative growth controller H19 are regulated by the H19 imprinting control region (H19 ICR) with seven-binding sites for the methylation-sensitive zinc-finger regulatory protein CTCF. A single nucleotide polymorphism rs10732516 G/A in the sixth-binding site has shown to associate with genotype-specific DNA methylation profiles at the H19 ICR. STUDY DESIGN SIZE DURATION By grouping 39 alcohol-exposed and 100 control samples according to rs10732516 polymorphism we explored alcohol-induced, genotype-specific changes in DNA methylation at the H19 ICR and the promoter region of H19 (H19 differentially methylated region). Also, IGF2 and H19 mRNA expression level in placenta as well as the phenotypes of newborns were examined. PARTICIPANTS/MATERIALS SETTING METHODS We explored alcohol-induced, genotype-specific changes in placental DNA methylation by MassARRAY EpiTYPER and allele-specific changes by bisulphite sequencing. IGF2 and H19 expression in placenta were analyzed by quantitative PCR and the HC, birthweight and birth length of newborns were examined using national growth charts. MAIN RESULTS AND THE ROLE OF CHANCE We observed a consistent trend in genotype-specific changes in DNA methylation at H19 ICR in alcohol-exposed placentas. DNA methylation level in the normally highly methylated paternal allele of rs10732516 paternal A/maternal G genotype was decreased in alcohol-exposed placentas. In addition to decreased IGF2 mRNA expression in alcohol-exposed placentas of this specific genotype (P = 0.03), we observed significantly increased expression of H19 in relation to IGF2 when comparing all alcohol-exposed placentas to unexposed controls (P = 0.006). Furthermore, phenotypic examination showed a significant genotype-specific association between the alcohol exposure and HC of newborns (P = 0.001). LIMITATIONS REASONS FOR CAUTION Owing to the exceptional character of the alcohol-exposed human samples collected in this study, the sample size is restricted. An increased sample size and functional studies are needed to confirm these data and clarify the biological significance or causality of the observed associations. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that the rs10732516 polymorphism associates with the alcohol-induced alterations in DNA methylation profiles and head growth in a parent-of-origin manner. We also introduce a novel genotype-specific approach for exploring environmental effects on the IGF2/H19 locus and ultimately on embryonic growth. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Academy of Finland (258304), The Finnish Foundation for Alcohol Studies, Finnish Cultural Foundation, Juho Vainio Foundation, Yrjö Jahnsson Foundation and Arvo and Lea Ylppö Foundation. No competing interests are declared.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Hanna Kahila
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, Salem J, Yuen T, Azzi S, Le Bouc Y, Harbison MD, Netchine I. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med 2017; 20:250-258. [PMID: 28796236 PMCID: PMC5846811 DOI: 10.1038/gim.2017.105] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022] Open
Abstract
Purpose Fetal growth is a complex process involving maternal, placental and fetal factors. The etiology of fetal growth retardation remains unknown in many cases. The aim of this study is to identify novel human mutations and genes related to Silver–Russell syndrome (SRS), a syndromic form of fetal growth retardation, usually caused by epigenetic downregulation of the potent fetal growth factor IGF2. Methods Whole-exome sequencing was carried out on members of an SRS familial case. The candidate gene from the familial case and two other genes were screened by targeted high-throughput sequencing in a large cohort of suspected SRS patients. Functional experiments were then used to link these genes into a regulatory pathway. Results We report the first mutations of the PLAG1 gene in humans, as well as new mutations in HMGA2 and IGF2 in six sporadic and/or familial cases of SRS. We demonstrate that HMGA2 regulates IGF2 expression through PLAG1 and in a PLAG1-independent manner. Conclusion Genetic defects of the HMGA2–PLAG1–IGF2 pathway can lead to fetal and postnatal growth restriction, highlighting the role of this oncogenic pathway in the fine regulation of physiological fetal/postnatal growth. This work defines new genetic causes of SRS, important for genetic counseling.
Collapse
Affiliation(s)
- Walid Abi Habib
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France.,Current affiliation: Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Frédéric Brioude
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center, Toulouse, France.,INSERM Unit 1043, Physiopathology Center of Toulouse Purpan (CTPT), Paul-Sabatier University, Toulouse, France
| | - James T Bennett
- Department of Pediatrics (Genetics), University of Washington, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne Lienhardt-Roussie
- Département de Pédiatrie Médicale, Centre Hospitalo-Universitaire de Limoges, Limoges Cedex, France
| | - Frédérique Tixier
- Département d'Endocrinologie Pédiatrique, Hôpital Debrousse, Lyon, France
| | - Jennifer Salem
- RSS/SGA Research & Education Fund, MAGIC Foundation, Oak Park, Illinois, USA
| | - Tony Yuen
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Salah Azzi
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| | - Yves Le Bouc
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irène Netchine
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| |
Collapse
|
32
|
Wu D, Gong C, Su C. Genome-wide analysis of differential DNA methylation in Silver-Russell syndrome. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28624953 DOI: 10.1007/s11427-017-9079-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver-Russell Syndrome (SRS) is clinically heterogeneous disorder characterized by low birth weight, postnatal growth restriction, and variable dysmorphic features. Current evidence strongly implicates imprinted genes as an important etiology of SRS. Although almost half of the patients showed DNA hypomethylation at the H19/IGF2 imprinted domain, and approximately 7%-10% of SRS patients have maternal uniparental disomy of chromosome 7 (UPD (7) mat); the rest of the SRS patients shows unknown etiology. In this study, we investigate whether there are further DNA methylation defects in SRS patients. We measured DNA methylation in seven SRS patients and five controls at more than 485,000 CpG sites using DNA methylation microarrays. We analyzed methylation changes genome-wide and identified the differentially methylated regions (DMRs) using bisulfite sequencing and digital PCR. Our analysis identifies epimutations at the previously characterized domains of H19/IGF2, providing proof of principle that our methodology can detect the changes in DNA methylation at imprinted loci. In addition, our results showed a novel SRS associated imprinted gene OSBPL5 located on chromosome 11p14 with the probe cg25963939, which is hypomethylated in 4/7 patients (P=0.023, β=-0.243). We also report DMRs in other genes including TGFβ3, HSF1, GAP43, NOTCH4 and MYH14. These DMRs were found to be associated with SRS using GO pathway analysis. In this study, we identified the probe cg25963939, located at the 5'UTR of imprinted gene OSBPL5, as a novel DMR that is associated with SRS. This finding provides new insights into the mechanism of SRS etiology and aid the further stratification of SRS patients by molecular phenotypes.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China.
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| |
Collapse
|
33
|
Inoue T, Nakamura A, Fuke T, Yamazawa K, Sano S, Matsubara K, Mizuno S, Matsukura Y, Harashima C, Hasegawa T, Nakajima H, Tsumura K, Kizaki Z, Oka A, Ogata T, Fukami M, Kagami M. Genetic heterogeneity of patients with suspected Silver-Russell syndrome: genome-wide copy number analysis in 82 patients without imprinting defects. Clin Epigenetics 2017; 9:52. [PMID: 28515796 PMCID: PMC5433143 DOI: 10.1186/s13148-017-0350-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is a rare congenital disorder characterized by pre- and postnatal growth failure and dysmorphic features. Recently, pathogenic copy number variations (PCNVs) and imprinting defects other than hypomethylation of the H19-differentially methylated region (DMR) and maternal uniparental disomy chromosome 7 have been reported in patients with the SRS phenotype. This study aimed to clarify the frequency and clinical features of patients with SRS phenotype caused by PCNVs. Methods We performed array comparative genomic hybridization analysis using a catalog array for 54 patients satisfying the Netchine-Harbison clinical scoring system (NH-CSS) (SRS-compatible) and for 28 patients presenting with three NH-CSS items together with triangular face and/or fifth finger clinodactyly and/or brachydactyly (SRS-like) without abnormal methylation levels of 9 DMRs related to known imprinting disorders. We then investigated the clinical features of patients with PCNVs. Results Three of the 54 SRS-compatible patients (5.6%) and 2 of the 28 SRS-like patients (7.1%) had PCNVs. We detected 3.5 Mb deletion in 4p16.3, mosaic trisomy 18, and 3.77–4.00 Mb deletion in 19q13.11-12 in SRS-compatible patients, and 1.41–1.97 Mb deletion in 7q11.23 in both SRS-like patients. Congenital heart diseases (CHDs) were identified in two patients and moderate to severe global developmental delay was observed in four patients. Conclusions Of the patients in our study, 5.6% of SRS-compatible and 7.1% of SRS-like patients had PCNVs. All PCNVs have been previously reported for genetic causes of contiguous deletion syndromes or mosaic trisomy 18. Our study suggests patients with PCNVs, who have a phenotype resembling SRS, show a high tendency towards CHDs and/or apparent developmental delay.
Collapse
Affiliation(s)
- Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan.,Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| | - Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, 713-8 Kagiya-cho, Kasugai, Aichi 480-0392 Japan
| | - Yoshika Matsukura
- Department of Pediatrics, The Japan Baptist Hospital, 47 Yamanomoto-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8273 Japan
| | - Chie Harashima
- Department of Pediatrics, The Japan Baptist Hospital, 47 Yamanomoto-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8273 Japan
| | - Tatsuji Hasegawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Kumi Tsumura
- Tsumura Family Clinic, Kumi Shounika, 858-1 Watarihashi-cho, Izumo, Shimane 693-0004 Japan
| | - Zenro Kizaki
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, 15-749 Honmachi Higashiyama-ku, Kyoto, 605-0981 Japan
| | - Akira Oka
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1, Okura Setagaya-ku, Tokyo, 157-8535 Japan
| |
Collapse
|
34
|
Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, Canton APM, Chrzanowska KH, Davies JH, Dias RP, Dubern B, Elbracht M, Giabicani E, Grimberg A, Grønskov K, Hokken-Koelega ACS, Jorge AA, Kagami M, Linglart A, Maghnie M, Mohnike K, Monk D, Moore GE, Murray PG, Ogata T, Petit IO, Russo S, Said E, Toumba M, Tümer Z, Binder G, Eggermann T, Harbison MD, Temple IK, Mackay DJG, Netchine I. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017; 13:105-124. [PMID: 27585961 DOI: 10.1038/nrendo.2016.138] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.
Collapse
Affiliation(s)
- Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Oluwakemi Lokulo-Sodipe
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Susan M O'Connell
- Department of Paediatrics and Child Health, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Jennifer Salem
- MAGIC Foundation, 6645 W. North Avenue, Oak Park, Illinois 60302, USA
| | - Jet Bliek
- Academic Medical Centre, Department of Clinical Genetics, Laboratory for Genome Diagnostics, Meibergdreef 15, 1105AZ Amsterdam, Netherlands
| | - Ana P M Canton
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Justin H Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Renuka P Dias
- Institutes of Metabolism and Systems Research, Vincent Drive, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Vincent Drive, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Paediatric Endocrinology and Diabetes, Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Béatrice Dubern
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Nutrition and Gastroenterology Department, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Trousseau Hospital, HUEP, APHP, UPMC, 75012 Paris, France
| | - Miriam Elbracht
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Suite 11NW30, Philadelphia, Pennsylvania 19104, USA
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Anita C S Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Alexander A Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagayaku, Tokyo 157-8535, Japan
| | - Agnes Linglart
- APHP, Department of Pediatric Endocrinology, Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'Expertise Paris Sud Maladies Rares, Hospital Bicêtre Paris Sud, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mohamad Maghnie
- IRCCS Istituto Giannina Gaslini, University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Klaus Mohnike
- Otto-von-Guericke University, Department of Pediatrics, Leipziger Street 44, 39120 Magdeburg, Germany
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Gran via 199-203, Hospital Duran i Reynals, 08908, Barcelona, Spain
| | - Gudrun E Moore
- Fetal Growth and Development Group, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip G Murray
- Centre for Paediatrics and Child Health, Institute of Human Development, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isabelle Oliver Petit
- Pediatric Endocrinology, Genetic, Bone Disease &Gynecology Unit, Children's Hospital, TSA 70034, 31059 Toulouse, France
| | - Silvia Russo
- Instituto Auxologico Italiano, Cytogenetic and Molecular Genetic Laboratory, via Ariosto 13 20145 Milano, Italy
| | - Edith Said
- Department of Anatomy &Cell Biology, Centre for Molecular Medicine &Biobanking, Faculty of Medicine &Surgery, University of Malta, Msida MSD2090, Malta
- Section of Medical Genetics, Department of Pathology, Mater dei Hospital, Msida MSD2090, Malta
| | - Meropi Toumba
- IASIS Hospital, 8 Voriou Ipirou, 8036, Paphos, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Gerhard Binder
- University Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Strasse 1, 72070 Tuebingen, Germany
| | - Thomas Eggermann
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Madeleine D Harbison
- Mount Sinai School of Medicine, 5 E 98th Street #1192, New York, New York 10029, USA
| | - I Karen Temple
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
35
|
Dong H, Wang Y, Zou Z, Chen L, Shen C, Xu S, Zhang J, Zhao F, Ge S, Gao Q, Hu H, Song M, Wang W. Abnormal Methylation of Imprinted Genes and Cigarette Smoking. Reprod Sci 2016; 24:114-123. [DOI: 10.1177/1933719116650755] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hao Dong
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Youxin Wang
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zhikang Zou
- Department of Reproductive Medical Center, Air Force General Hospital, PLA, Beijing, China
| | - Limin Chen
- Department of Reproductive Medical Center, Air Force General Hospital, PLA, Beijing, China
| | - Chuanyun Shen
- Department of Reproductive Medical Center, Air Force General Hospital, PLA, Beijing, China
| | - Shaoqiang Xu
- Department of Reproductive Medical Center, Air Force General Hospital, PLA, Beijing, China
| | - Jie Zhang
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Feifei Zhao
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Siqi Ge
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Qing Gao
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Haixiang Hu
- Department of Reproductive Medical Center, Air Force General Hospital, PLA, Beijing, China
| | - Manshu Song
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wei Wang
- School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- School of Medical Sciences, Edith Cowan University, Joondalup WA, Australia
| |
Collapse
|
36
|
Sato C, Ogawa T, Tsuge R, Shiga M, Tsuji M, Baba Y, Kosaki K, Moriyama K. Systemic and maxillofacial characteristics of 11 Japanese children with Russell-Silver syndrome. Congenit Anom (Kyoto) 2016; 56:217-25. [PMID: 26915482 DOI: 10.1111/cga.12162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/27/2022]
Abstract
Russell-Silver syndrome (RSS) is a congenital anomaly characterized by intrauterine and postnatal growth retardation, typical facial features, fifth-finger clinodactyly, and skeletal asymmetry. Although data on intrauterine and postnatal growth retardation have been reported, there are few reports concerning the typical maxillofacial morphology in individuals with RSS. The aim of this study was to describe the details of this systemic condition and to characterize maxillofacial morphology based on cephalograms in 11 Japanese patients (age range, 3.9-12.0 years) with RSS. All 11 individuals had intrauterine and postnatal growth retardation. In addition, most showed mandibular retrognathia and relative macrocephaly. Lateral cephalogram measurements showed that mandibular retrognathia resulted from short mandibular body length, whereas the depth of the cranial base was close to normal. Although asymmetry of hand, foot, and limb length were present in most individuals, obvious facial asymmetry was not common. Differences between left and right skeletal and dental age were not observed, indicating that children with RSS might show asymmetry because of quantitative differences in skeletal growth rather than delayed growth rate. Our findings not only provide important information about the maxillofacial characteristics of RSS, but also help to clarify the association between these characteristics and genetics, which will add to the body of information on clinical symptoms.
Collapse
Affiliation(s)
- Chiemi Sato
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Ogawa
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Tsuge
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Momotoshi Shiga
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Orthodontics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Michiko Tsuji
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiyuki Baba
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Division of Pedodontics and Orthodontics, Department of Surgical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Sachwitz J, Meyer R, Fekete G, Spranger S, Matulevičienė A, Kučinskas V, Bach A, Luczay A, Brüchle NO, Eggermann K, Zerres K, Elbracht M, Eggermann T. NSD1 duplication in Silver-Russell syndrome (SRS): molecular karyotyping in patients with SRS features. Clin Genet 2016; 91:73-78. [PMID: 27172843 DOI: 10.1111/cge.12803] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 01/03/2023]
Abstract
Silver-Russell syndrome (SRS) is a growth retardation syndrome characterized by intrauterine and postnatal growth retardation, relative macrocephaly and protruding forehead, body asymmetry and feeding difficulties. Nearly 50% of cases show a hypomethylation in 11p15.5, in 10% maternal uniparental disomy of chromosome 7 is present. A significant number of patients with SRS features also exhibit chromosomal aberrations. We analyzed 43 individuals referred for SRS genetic testing by molecular karyotyping. Pathogenic variants could be detected in five of them, including a NSD1 duplication in 5q35 and a 14q32 microdeletion. NSD1 deletions are detectable in overgrowth disorders (Sotos syndrome and Beckwith-Wiedemann syndrome), whereas NSD1 duplications are associated with growth retardation. The 14q32 deletion is typically associated with Temple syndrome (TS14), but the identification of a patient in our cohort reflects the clinical overlap between TS14 and SRS. As determination of molecular subtypes is the basis for a directed counseling and therapy, the identification of pathogenic variants in >10% of the total cohort of patients referred for SRS testing and in >16% of characteristic individuals with the characteristic SRS phenotype confirms the need to apply molecular karyotyping in this cohort.
Collapse
Affiliation(s)
- J Sachwitz
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | - R Meyer
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | - G Fekete
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - S Spranger
- Praxis für Humangenetik, Bremen, Germany
| | - A Matulevičienė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - A Bach
- HSK Dr. Horst Schmidt Kliniken, Klinik für Kinder und Jugendliche, Wiesbaden, Germany
| | - A Luczay
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - N O Brüchle
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | - K Eggermann
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | - K Zerres
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | - M Elbracht
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | - T Eggermann
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| |
Collapse
|
39
|
Ishida M. New developments in Silver-Russell syndrome and implications for clinical practice. Epigenomics 2016; 8:563-80. [PMID: 27066913 DOI: 10.2217/epi-2015-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silver-Russell syndrome is a clinically and genetically heterogeneous disorder, characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. It is one of the imprinting disorders, which results as a consequence of aberrant imprinted gene expressions. Currently, maternal uniparental disomy of chromosome 7 accounts for approximately 10% of Silver-Russell syndrome cases, while ~50% of patients have hypomethylation at imprinting control region 1 at chromosome 11p15.5 locus, leaving ~40% of cases with unknown etiologies. This review aims to provide a comprehensive list of molecular defects in Silver-Russell syndrome reported to date and to highlight the importance of multiple-loci/tissue testing and trio (both parents and proband) screening. The epigenetic and phenotypic overlaps with other imprinting disorders will also be discussed.
Collapse
Affiliation(s)
- Miho Ishida
- University College London, Institute of Child Health, Genetics & Genomic Medicine programme, Genetics & Epigenetics in Health & Diseases Section, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
40
|
Sachwitz J, Strobl-Wildemann G, Fekete G, Ambrozaitytė L, Kučinskas V, Soellner L, Begemann M, Eggermann T. Examinations of maternal uniparental disomy and epimutations for chromosomes 6, 14, 16 and 20 in Silver-Russell syndrome-like phenotypes. BMC MEDICAL GENETICS 2016; 17:20. [PMID: 26969265 PMCID: PMC4787016 DOI: 10.1186/s12881-016-0280-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
Abstract
Background Silver-Russell syndrome (SRS) is a growth retardation disorder with a very broad molecular and clinical spectrum. Whereas the association of SRS with imprinting disturbances of chromosomes 11p15.5 and 7 is generally accepted, there are controversial discussions on the involvement of other molecular changes. The recent reports on the occurrence of maternal uniparental disomies of chromosomes 6, 16 and 20 (upd(6, 16, 20)mat), as well as 14q32 imprint alterations in patients with SRS phenotypes raise the question on the involvement of these mutations in the etiology of SRS. Methods A cohort of 54 growth retarded patients with SRS features was screened for aberrant methylation patterns of chromsomes 6, 14, 16 and 20. Results One carrier of a 14q32 epimutation was identified whereas epimutations and maternal UPD for chromosomes 6, 16 and 20 were excluded. Conclusions Our data and those from the literature confirm that 14q32 disturbances significantly contribute to the mutation spectrum in this cohort. Furthermore, maternal uniparental disomy of chromosomes 6, 16 and 20 can be observed, but are rare. In case they occur they can be regarded as causative for clinical features.
Collapse
Affiliation(s)
- Jana Sachwitz
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany
| | | | - György Fekete
- II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lukas Soellner
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany.
| |
Collapse
|
41
|
Seminoma in a Man with Russell-Silver Syndrome Presenting with Testicular Torsion. Case Rep Urol 2016; 2016:6017636. [PMID: 27034882 PMCID: PMC4789416 DOI: 10.1155/2016/6017636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Russell-Silver syndrome (RSS) is a type of primordial dwarfism. Only one case of testicular cancer in RSS has been reported, the pathology of which was nonseminoma. Here, we report a case of seminoma in a 36-year-old man who was diagnosed with RSS at birth. The seminoma was diagnosed when the patient presented with testicular torsion. This is the first report of testicular seminoma in an RSS patient in the literature. We also discussed the correlation between seminoma and RSS.
Collapse
|
42
|
Gede LB, Hahnemann JMD, Tümer Z, Brøndum-Nielsen K, Grønskov K. Feasibility study on the use of methylation-specific MLPA for the 11p15 region on prenatal samples. Prenat Diagn 2015; 36:100-3. [PMID: 26590364 DOI: 10.1002/pd.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Lene Bjerring Gede
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Johanne M D Hahnemann
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Karen Brøndum-Nielsen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
43
|
Vals MA, Yakoreva M, Kahre T, Mee P, Muru K, Joost K, Teek R, Soellner L, Eggermann T, Õunap K. The Frequency of Methylation Abnormalities Among Estonian Patients Selected by Clinical Diagnostic Scoring Systems for Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome. Genet Test Mol Biomarkers 2015; 19:684-91. [PMID: 26505556 DOI: 10.1089/gtmb.2015.0163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS To study the frequency of methylation abnormalities among Estonian patients selected according to published clinical diagnostic scoring systems for Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS). MATERIALS AND METHODS Forty-eight patients with clinical suspicion of SRS (n = 20) or BWS (n = 28) were included in the study group, to whom methylation-specific multiplex ligation-dependant probe amplification analysis of 11p15 region was made. In addition, to patients with minimal diagnostic score for either SRS or BWS, multilocus methylation-specific single nucleotide primer extension assay was performed. RESULTS Five (38%) SRS patients with positive clinical scoring had abnormal methylation pattern at chromosome 11p15, whereas in the BWS group, only one patient was diagnosed with imprinting control region 2 (ICR2) hypomethylation (8%). An unexpected hypomethylation of the PLAGL1 (6q24) and IGF2R (6q25) genes in the patient with the highest BWS scoring was found. CONCLUSIONS Compared to BWS, diagnostic criteria used for selecting SRS patients gave us a similar detection rate of 11p15 imprinting disorders as seen in other studies. A more careful selection of patients with possible BWS should be considered to improve the detection of molecularly confirmed cases. Genome-wide multilocus methylation tests could be used in routine clinical practice as it increases the detection rates of imprinting disorders.
Collapse
Affiliation(s)
- Mari-Anne Vals
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia .,3 Children's Clinic, Tartu University Hospital , Tartu, Estonia
| | - Maria Yakoreva
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Tiina Kahre
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Pille Mee
- 4 United Laboratories, Tartu University Hospital , Tartu, Estonia
| | - Kai Muru
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Kairit Joost
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia
| | - Rita Teek
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Lukas Soellner
- 5 Institute of Human Genetics , RWTH Aachen, Aachen, Germany
| | | | - Katrin Õunap
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| |
Collapse
|
44
|
Iourov IY, Vorsanova SG, Korostelev SA, Zelenova MA, Yurov YB. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol Cytogenet 2015; 8:77. [PMID: 26478745 PMCID: PMC4608298 DOI: 10.1186/s13039-015-0182-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/27/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long contiguous stretches of homozygosity (LCSH) (regions/runs of homozygosity) are repeatedly detected by single-nucleotide polymorphism (SNP) chromosomal microarrays. Providing important clues regarding parental relatedness (consanguinity), uniparental disomy, chromosomal recombination or rearrangements, LCSH are rarely considered as a possible epigenetic cause of neurodevelopmental disorders. Additionally, despite being relevant to imprinting, LCSH at imprinted loci have not been truly addressed in terms of pathogenicity. In this study, we examined LCSH in children with unexplained intellectual disability, autism, congenital malformations and/or epilepsy focusing on chromosomal regions which harbor imprinted disease genes. RESULTS Out of 267 cases, 14 (5.2 %) were found to have LCSH at imprinted loci associated with a clinical outcome. There were 5 cases of LCSH at 15p11.2, 4 cases of LCSH at 7q31.2, 3 cases of LCSH at 11p15.5, and 2 cases of LCSH at 7q21.3. Apart from a case of LCSH at 7q31.33q32.3 (~4 Mb in size), all causative LCSH were 1-1.5 Mb in size. Clinically, these cases were characterized by a weak resemblance to corresponding imprinting diseases (i.e., Silver-Russell, Beckwith-Wiedemann, and Prader-Willi/Angelman syndromes), exhibiting distinctive intellectual disability, autistic behavior, developmental delay, seizures and/or facial dysmorphisms. Parental consanguinity was detected in 8 cases (3 %), and these cases did not exhibit LCSH at imprinted loci. CONCLUSIONS This study demonstrates that shorter LCSH at chromosomes 7q21.3, 7q31.2, 11p15.5, and 15p11.2 occur with a frequency of about 5 % in the children with intellectual disability, autism, congenital malformations and/or epilepsy. Consequently, this type of epigenetic mutations appears to be the most common one among children with neurodevelopmental diseases. Finally, since LCSH less than 2.5-10 Mb in size are generally ignored in diagnostic SNP microarray studies, one can conclude that an important epigenetic cause of intellectual disability, autism or epilepsy is actually overlooked.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia ; Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, 123995 Moscow, Russia
| | - Svetlana G Vorsanova
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | | | - Maria A Zelenova
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| | - Yuri B Yurov
- Mental Health Research Center, 117152 Moscow, Russia ; Separated Structural Unit "Clinical Research Institute of Pediatrics", Russian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian Federation, 125412 Moscow, Russia
| |
Collapse
|
45
|
Müller A, Soellner L, Binder G, Begemann M, Eggermann T. No major contribution of IGF2 variants to the etiology of sporadic 11p15-associated imprinting disorders. Am J Med Genet A 2015; 170A:283-4. [PMID: 26447000 DOI: 10.1002/ajmg.a.37416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Anne Müller
- Institute of Human Genetics, University Hospital, RWTH, Aachen, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital, RWTH, Aachen, Germany
| | - Gerhard Binder
- Childreńs Hospital, University of Tübingen, Tübingen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, RWTH, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, RWTH, Aachen, Germany
| |
Collapse
|
46
|
Vals MA, Kahre T, Mee P, Muru K, Kallas E, Žilina O, Tillmann V, Õunap K. Familial 1.3-Mb 11p15.5p15.4 Duplication in Three Generations Causing Silver-Russell and Beckwith-Wiedemann Syndromes. Mol Syndromol 2015; 6:147-51. [PMID: 26732610 DOI: 10.1159/000437061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/07/2023] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 opposite growth-affecting disorders. The common molecular cause for both syndromes is an abnormal regulation of genes in chromosomal region 11p15, where 2 imprinting control regions (ICR) control fetal and postnatal growth. Also, many submicroscopic chromosomal disturbances like duplications in 11p15 have been described among SRS and BWS patients. Duplications involving both ICRs cause SRS or BWS, depending on which parent the aberration is inherited from. We describe to our knowledge the smallest familial pure 1.3-Mb duplication in chromosomal region 11p15.5p15.4 that involves both ICRs and is present in 3 generations causing an SRS or BWS phenotype.
Collapse
Affiliation(s)
- Mari-Anne Vals
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Pille Mee
- United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Eha Kallas
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
47
|
Azzi S, Salem J, Thibaud N, Chantot-Bastaraud S, Lieber E, Netchine I, Harbison MD. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015; 52:446-53. [PMID: 25951829 PMCID: PMC4501172 DOI: 10.1136/jmedgenet-2014-102979] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/10/2015] [Indexed: 12/28/2022]
Abstract
Background Multiple clinical scoring systems have been proposed for Silver-Russell syndrome (SRS). Here we aimed to test a clinical scoring system for SRS and to analyse the correlation between (epi)genotype and phenotype. Subjects and methods Sixty-nine patients were examined by two physicians. Clinical scores were generated for all patients, with a new, six-item scoring system: (1) small for gestational age, birth length and/or weight ≤−2SDS, (2) postnatal growth retardation (height ≤−2SDS), (3) relative macrocephaly at birth, (4) body asymmetry, (5) feeding difficulties and/or body mass index (BMI) ≤−2SDS in toddlers; (6) protruding forehead at the age of 1–3 years. Subjects were considered to have likely SRS if they met at least four of these six criteria. Molecular investigations were performed blind to the clinical data. Results The 69 patients were classified into two groups (Likely-SRS (n=60), Unlikely-SRS (n=9)). Forty-six Likely-SRS patients (76.7%) displayed either 11p15 ICR1 hypomethylation (n=35; 58.3%) or maternal UPD of chromosome 7 (mUPD7) (n=11; 18.3%). Eight Unlikely-SRS patients had neither ICR1 hypomethylation nor mUPD7, whereas one patient had mUPD7. The clinical score and molecular results yielded four groups that differed significantly overall and for individual scoring system factors. Further molecular screening led identifying chromosomal abnormalities in Likely-SRS-double-negative and Unlikely-SRS groups. Four Likely-SRS-double negative patients carried a DLK1/GTL2 IG-DMR hypomethylation, a mUPD16; a mUPD20 and a de novo 1q21 microdeletion. Conclusions This new scoring system is very sensitive (98%) for the detection of patients with SRS with demonstrated molecular abnormalities. Given its clinical and molecular heterogeneity, SRS could be considered as a spectrum.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Jennifer Salem
- MAGIC Foundation, RSS/SGA Research & Education Fund, Oak Park, Illinois, USA
| | - Nathalie Thibaud
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | | | - Eli Lieber
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California, USA
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
48
|
De Crescenzo A, Citro V, Freschi A, Sparago A, Palumbo O, Cubellis MV, Carella M, Castelluccio P, Cavaliere ML, Cerrato F, Riccio A. A splicing mutation of the HMGA2 gene is associated with Silver–Russell syndrome phenotype. J Hum Genet 2015; 60:287-93. [DOI: 10.1038/jhg.2015.29] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 01/08/2023]
|
49
|
Smith LC, Therrien J, Filion F, Bressan F, Meirelles FV. Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R. Front Genet 2015; 6:58. [PMID: 25763013 PMCID: PMC4340261 DOI: 10.3389/fgene.2015.00058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/07/2015] [Indexed: 12/28/2022] Open
Abstract
Animal breeders have made widespread use of assisted reproductive technologies to accelerate genetic improvement programs aimed at obtaining more, better and cheaper food products. Selection approaches have traditionally focused on Mendel’s laws of inheritance using parental phenotypic characteristics and quantitative genetics approaches to choose the best parents for the next generation, regardless of their gender. However, apart from contributing DNA sequence variants, male and female gametes carry parental-specific epigenetic marks that play key roles during pre- and post-natal development and growth of the offspring. We herein review the epigenetic anomalies that are associated with artificial reproductive technologies in current use in animal breeding programs. For instance, we demonstrate that bovine embryos and fetuses derived by in vitro culture and somatic cell nuclear transfer show epigenetic anomalies in the differentially methylated regions controlling the expression of some imprinted genes. Although these genomic imprinting errors are undetected in the somatic tissues after birth, further research is warranted to examine potential germ cell transmission of epimutations and the potential risks of reproducing cattle using artificial reproductive technologies.
Collapse
Affiliation(s)
- Lawrence C Smith
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal , Saint-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal , Saint-Hyacinthe, QC, Canada
| | - France Filion
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal , Saint-Hyacinthe, QC, Canada
| | - Fabiana Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga , Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga , Brazil
| |
Collapse
|
50
|
Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, Begemann M, Soellner L. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl) 2015; 92:769-77. [PMID: 24658748 DOI: 10.1007/s00109-014-1141-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs. KEY MESSAGE Molecular disturbances in patients with imprinting disorders are often not restricted to the disease-specific locus but also affect other chromosomal regions. These additional disturbances include methylation defects, uniparental disomies as well as chromosomal imbalances. The identification of these additional alterations is mandatory for a well-directed genetic counseling. Furthermore, these findings help to decipher the complex regulation of imprinting.
Collapse
|