1
|
Mirchandani CD, Shultz AJ, Thomas GWC, Smith SJ, Baylis M, Arnold B, Corbett-Detig R, Enbody E, Sackton TB. A Fast, Reproducible, High-throughput Variant Calling Workflow for Population Genomics. Mol Biol Evol 2024; 41:msad270. [PMID: 38069903 PMCID: PMC10764099 DOI: 10.1093/molbev/msad270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of life present exciting opportunities for comparative population genomic studies. However, substantial challenges prevent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher provides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, variant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian vertebrates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of genetic variation across species by facilitating the rapid use and reuse of large genomic data sets.
Collapse
Affiliation(s)
- Cade D Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | | | - Sara J Smith
- Informatics Group, Harvard University, Cambridge, MA, USA
- Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Mara Baylis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian Arnold
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
2
|
García Maset L, Santillán Garzón S, Ortega López P. Adolescent with Alport syndrome and congenital hemolytic anemia. Nefrologia 2023; 43:146-147. [PMID: 36997470 DOI: 10.1016/j.nefroe.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023] Open
|
3
|
Qin L, Zhang FZ, Lv JH, Tang LF. Clinical Features in Patients with Xq23 Microdeletion: A Case Report and Literature Review. J Clin Res Pediatr Endocrinol 2022; 14:339-343. [PMID: 33535730 PMCID: PMC9422909 DOI: 10.4274/jcrpe.galenos.2020.2020.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Xq22.3-q23 microdeletion is a rare genomic disorder. The purpose of this study was to emphasize the correlation between clinical phenotype and genotype of proximal deletion on chromosome Xq22.3-q23. A 5 years old boy had a 671 KB microdeletion on Xq23 by chromosomal microarray analysis, including AMMECR1 and CHRDL1 genes. He presented with microsomia, midface hypoplasia, right kidney dysplasia and mildly motor retardation, which have not previously been reported in relation to Xq23 deletion. To the best of our knowledge, this is the first case with Xq23 microdeletion. A total of nine cases with microdeletion at Xq22.3-q23 affecting AMMECR1 and two cases with CHRDL1 mutation were reviewed. This review showed that Xq23 microdeletion with microsomia, midface hypoplasia, kidney dysplasia, and mild motor retardation was rare. The previous literature showed two novel point mutations in AMMECR1 and CHRDL1 with some phenotype difference from the presented case. Xq23 microdeletion should be considered for patients with microsomia, midface hypoplasia, kidney dysplasia and growth retardation.
Collapse
Affiliation(s)
- Lu Qin
- Children’s Hospital of Zhejiang University School of Medicine, Department of Pulmonology, Zhejiang, China
| | - Fei-Zhou Zhang
- Children’s Hospital of Zhejiang University School of Medicine, Department of Pulmonology, Zhejiang, China
| | - Jian-Hai Lv
- Shangyu People’s Hospital, Clinic of Pediatrics, Zhejiang, China
| | - Lan-Fang Tang
- Shangyu People’s Hospital, Clinic of Pediatrics, Zhejiang, China,* Address for Correspondence: Shangyu People’s Hospital, Clinic of Pediatrics, Zhejiang, China Phone: +86-13868138022 E-mail:
| |
Collapse
|
4
|
Koene S, Knijnenburg J, Hoffer MJV, Zwanenburg F, Haak MC, Locher H, Beelen ESA, Santen GWE, Rotteveel LJC. Hearing loss, cleft palate, and congenital hip dysplasia in female carriers of an intragenic deletion of
AMMECR1. Am J Med Genet A 2022; 188:1578-1582. [PMID: 35084080 PMCID: PMC9305766 DOI: 10.1002/ajmg.a.62669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 01/18/2023]
Abstract
Previously, mutations in the AMMECR1 gene have been described in six males with developmental delay, sensorineural hearing loss (SNHL) and/or congenital abnormalities, including fetal nuchal edema, fetal pericardial effusion, talipes, congenital hip dysplasia, elliptocytosis and cleft palate. In this report, we present three female relatives of a male fetus with an intragenic deletion in this X‐linked gene. All three women reported hearing loss and one was born with a soft cleft palate and hip dysplasia. The audiograms showed mild to moderate SNHL with a variable pattern of the affected frequencies. Immunohistochemical analysis of fetal cochlea was performed confirming the expression of AMMECR1 in the human inner ear. Since hearing loss, cleft palate and congenital hip dysplasia were reported before in male AMMECR1 point mutation carriers and AMMECR1 is expressed in fetal inner ear, we suggest that female carriers may display a partial phenotype in this X‐linked condition.
Collapse
Affiliation(s)
- Saskia Koene
- Department of Clinical Genetics Leiden University Medical Centre Leiden Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics Leiden University Medical Centre Leiden Netherlands
| | | | - Fleur Zwanenburg
- Department of Obstetrics and Gynaecology Leiden University Medical Centre Leiden Netherlands
| | - Monique C. Haak
- Department of Obstetrics and Gynaecology Leiden University Medical Centre Leiden Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology, Head&Neck surgery Leiden University Medical Centre Leiden Netherlands
| | - Edward S. A. Beelen
- Department of Otorhinolaryngology, Head&Neck surgery Leiden University Medical Centre Leiden Netherlands
| | - Gijs W. E. Santen
- Department of Clinical Genetics Leiden University Medical Centre Leiden Netherlands
| | - Liselotte J. C. Rotteveel
- Department of Otorhinolaryngology, Head&Neck surgery Leiden University Medical Centre Leiden Netherlands
| |
Collapse
|
5
|
Smetana J, Vallova V, Wayhelova M, Hladilkova E, Filkova H, Horinova V, Broz P, Mikulasova A, Gaillyova R, Kuglík P. Case Report: Contiguous Xq22.3 Deletion Associated with ATS-ID Syndrome: From Genotype to Further Delineation of the Phenotype. Front Genet 2021; 12:750110. [PMID: 34777475 PMCID: PMC8585740 DOI: 10.3389/fgene.2021.750110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Alport syndrome with intellectual disability (ATS-ID, AMME complex; OMIM #300194) is an X-linked contiguous gene deletion syndrome associated with an Xq22.3 locus mainly characterized by hematuria, renal failure, hearing loss/deafness, neurodevelopmental disorder (NDD), midface retrusion, and elliptocytosis. It is thought that ATS-ID is caused by the loss of function of COL4A5 (ATS) and FACL4 (ACSL4) genes through the interstitial (micro)deletion of chromosomal band Xq22.3. We report detailed phenotypic description and results from genome-wide screening of a Czech family with diagnosis ATS-ID (proband, maternal uncle, and two female carriers). Female carriers showed mild clinical features of microscopic hematuria only, while affected males displayed several novel clinical features associated with ATS-ID. Utilization of whole-exome sequencing discovered the presence of approximately 3 Mb of deletion in the Xq23 area, which affected 19 genes from TSC22D3 to CHRDL1. We compared the clinical phenotype with previously reported three ATS-ID families worldwide and correlated their clinical manifestations with the incidence of genes in both telomeric and centromeric regions of the deleted chromosomal area. In addition to previously described phenotypes associated with aberrations in AMMECR1 and FACL4, we identified two genes, members of tripartite motif family MID2 and subunit of the proteasome PA700/19S complex (PSMD10), respectively, as prime candidate genes responsible for additional clinical features observed in our patients with ATS-ID. Overall, our findings further improve the knowledge about the clinical impact of Xq23 deletions and bring novel information about phenotype/genotype association of this chromosomal aberration.
Collapse
Affiliation(s)
- Jan Smetana
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech
| | - Vladimira Vallova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Marketa Wayhelova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Eva Hladilkova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Hana Filkova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | | | - Petr Broz
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and Faculty Hospital Motol, Prague, Czech
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Petr Kuglík
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| |
Collapse
|
6
|
García Maset L, Santillán Garzón S, Ortega López P. Adolescent with Alport syndrome and congenital hemolytic anemia. Nefrologia 2021; 43:S0211-6995(21)00106-5. [PMID: 34158190 DOI: 10.1016/j.nefro.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
|
7
|
Kashtan C. Multidisciplinary Management of Alport Syndrome: Current Perspectives. J Multidiscip Healthc 2021; 14:1169-1180. [PMID: 34045864 PMCID: PMC8149282 DOI: 10.2147/jmdh.s284784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alport syndrome is a multisystem disorder that universally affects the kidney and frequently involves the inner ear and the eye. Over the course of a lifetime, addressing the health care needs of a person with Alport syndrome and their family entails the services of primary providers, nephrologists, genetic counselors, audiologists, ophthalmologists, transplant physicians, kidney dieticians, and social workers as well as other healthcare professionals. This article attempts to provide context and guidance regarding the multidisciplinary care of Alport syndrome based on the natural history of the condition.
Collapse
Affiliation(s)
- Clifford Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, 55454, USA
| |
Collapse
|
8
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
9
|
Poreau B, Ramond F, Harbuz R, Satre V, Barro C, Vettier C, Adouard V, Thevenon J, Jouk PS, Coutton C, Touraine R, Dieterich K. Xq22.3q23 microdeletion harboring TMEM164 and AMMECR1 genes: Two case reports confirming a recognizable phenotype with short stature, midface hypoplasia, intellectual delay, and elliptocytosis. Am J Med Genet A 2019; 179:650-654. [PMID: 30737907 DOI: 10.1002/ajmg.a.61057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/06/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022]
Abstract
The AMME syndrome defined as the combination of Alport syndrome, intellectual disability, midface hypoplasia, and elliptocytosis (AMME) is known to be a contiguous gene syndrome associated with microdeletions in the region Xq22.3q23. Recently, using exome sequencing, missense pathogenic variants in AMMECR1 have been associated with intellectual disability, midface hypoplasia, and elliptocytosis. In these cases, AMMECR1 gene appears to be responsible for most of the clinical features of the AMME syndrome except for Alport syndrome. In this article, we present two unrelated male patients with short stature, mild intellectual disability or neurodevelopmental delay, sensorineural hearing loss, and elliptocytosis harboring small microdeletions identified by array-CGH involving TMEM164 and AMMECR1 genes and SNORD96B small nucleolar RNA for one patient, inherited from their mothers. These original cases further confirm that most specific AMME features are ascribed to AMMECR1 haploinsufficiency. These cases reporting the smallest microdeletions encompassing AMMECR1 gene provide new evidence for involvement of AMMECR1 in the AMME phenotype and permit to discuss a phenotype related to AMMECR1 haploinsufficiency: developmental delay/intellectual deficiency, midface hypoplasia, midline defect, deafness, and short stature.
Collapse
Affiliation(s)
- Brice Poreau
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France.,Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, 38000 Grenoble, France
| | - Francis Ramond
- Département de Génétique Clinique, Chromosomique et Moléculaire, CHU-Hôpital Nord, Saint Etienne, France
| | - Radu Harbuz
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France
| | - Véronique Satre
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France.,Equipe "Genetics Epigenetics and Therapies of Infertility" Institut Albert Bonniot, INSERM U823, La Tronche, France
| | - Claire Barro
- Département d'Hématologie, Oncogénétique, Immunologie, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France
| | - Claire Vettier
- Département d'Hématologie, Oncogénétique, Immunologie, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France
| | - Véronique Adouard
- Département de Génétique Clinique, Chromosomique et Moléculaire, CHU-Hôpital Nord, Saint Etienne, France
| | - Julien Thevenon
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France
| | - Charles Coutton
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France.,Equipe "Genetics Epigenetics and Therapies of Infertility" Institut Albert Bonniot, INSERM U823, La Tronche, France
| | - Renaud Touraine
- Département de Génétique Clinique, Chromosomique et Moléculaire, CHU-Hôpital Nord, Saint Etienne, France
| | - Klaus Dieterich
- Département de Génétique et Procréation, Centre Hospitalo-Universitaire Grenoble Alpes, Grenoble Cedex, France.,Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, 38000 Grenoble, France
| |
Collapse
|
10
|
David JP, Lisewski U, Crump SM, Jepps TA, Bocksteins E, Wilck N, Lossie J, Roepke TK, Schmitt N, Abbott GW. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular K V currents and predisposes to ventricular arrhythmia. FASEB J 2018; 33:2537-2552. [PMID: 30289750 DOI: 10.1096/fj.201800502r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (KV) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout ( Kcne5-/0) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5+/0 mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte KV current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current ( Ito,f). The current increases arose from an apex-specific increase in slow transient outward current-1 ( IKslow,1) (conducted by KV1.5) and Ito,f (conducted by KV4) and an increase in IKslow,2 (conducted by KV2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where KV2.1 was also detected in both Kcne5-/0 and Kcne5+/0 mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and KV2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases IK,slow2 by reducing KV2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of KV2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in KV2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of KV2.1 in mouse heart. Increased KV current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS.-David, J.-P., Lisewski, U., Crump, S. M., Jepps, T. A., Bocksteins, E., Wilck, N., Lossie, J., Roepke, T. K., Schmitt, N., Abbott, G. W. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia.
Collapse
Affiliation(s)
- Jens-Peter David
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Lisewski
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Shawn M Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA; and
| | - Thomas A Jepps
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology, and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicola Wilck
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Janine Lossie
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Torsten K Roepke
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA; and
| |
Collapse
|
11
|
Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA, Gienapp P, Gosler AG, McMahon K, Poissant J, Verhagen I, Groenen MAM, van Oers K, Sheldon BC, Visser ME, Slate J. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 2018; 358:365-368. [PMID: 29051380 DOI: 10.1126/science.aal3298] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/19/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022]
Abstract
We used extensive data from a long-term study of great tits (Parus major) in the United Kingdom and Netherlands to better understand how genetic signatures of selection translate into variation in fitness and phenotypes. We found that genomic regions under differential selection contained candidate genes for bill morphology and used genetic architecture analyses to confirm that these genes, especially the collagen gene COL4A5, explained variation in bill length. COL4A5 variation was associated with reproductive success, which, combined with spatiotemporal patterns of bill length, suggested ongoing selection for longer bills in the United Kingdom. Last, bill length and COL4A5 variation were associated with usage of feeders, suggesting that longer bills may have evolved in the United Kingdom as a response to supplementary feeding.
Collapse
Affiliation(s)
- Mirte Bosse
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Wageningen University and Research-Animal Breeding and Genomics, Netherlands
| | - Lewis G Spurgin
- Edward Grey Institute, Department of Zoology, University of Oxford, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, UK
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Ella F Cole
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| | - Josh A Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Andrew G Gosler
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| | - Keith McMahon
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| | - Jocelyn Poissant
- Department of Animal and Plant Sciences, University of Sheffield, UK.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Martien A M Groenen
- Wageningen University and Research-Animal Breeding and Genomics, Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Wageningen University and Research-Animal Breeding and Genomics, Netherlands
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, UK.
| |
Collapse
|
12
|
Moysés-Oliveira M, Giannuzzi G, Fish RJ, Rosenfeld JA, Petit F, Soares MDF, Kulikowski LD, Di-Battista A, Zamariolli M, Xia F, Liehr T, Kosyakova N, Carvalheira G, Parker M, Seaby EG, Ennis S, Gilbert RD, Hagelstrom RT, Cremona ML, Li WL, Malhotra A, Chandrasekhar A, Perry DL, Taft RJ, McCarrier J, Basel DG, Andrieux J, Stumpp T, Antunes F, Pereira GJ, Neerman-Arbez M, Meloni VA, Drummond-Borg M, Melaragno MI, Reymond A. Inactivation of AMMECR1 is associated with growth, bone, and heart alterations. Hum Mutat 2017; 39:281-291. [PMID: 29193635 DOI: 10.1002/humu.23373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 01/26/2023]
Abstract
We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.
Collapse
Affiliation(s)
- Mariana Moysés-Oliveira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Florence Petit
- Clinique de Génétique, CHU Lille - Hôpital Jeanne de Flandre, Lille, France
| | | | - Leslie Domenici Kulikowski
- Department of Pathology, Laboratório de Citogenômica, LIM 03, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Di-Battista
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Thomas Liehr
- Universitätsklinikum Jena, Institut für Humangenetik, Jena, Germany
| | | | - Gianna Carvalheira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Eleanor G Seaby
- Genomic Informatics Group, University Hospital Southampton, Southampton, United Kingdom
| | - Sarah Ennis
- Genomic Informatics Group, University Hospital Southampton, Southampton, United Kingdom
| | - Rodney D Gilbert
- Southampton Children's Hospital, University Hospital Southampton, Southampton, United Kingdom
| | | | - Maria L Cremona
- Illumina Clinical Services Laboratory, San Diego, California
| | - Wenhui L Li
- Illumina Clinical Services Laboratory, San Diego, California
| | - Alka Malhotra
- Illumina Clinical Services Laboratory, San Diego, California
| | | | - Denise L Perry
- Illumina Clinical Services Laboratory, San Diego, California
| | - Ryan J Taft
- Illumina Clinical Services Laboratory, San Diego, California
| | - Julie McCarrier
- Department of Pediatrics, Section of Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donald G Basel
- Department of Pediatrics, Section of Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joris Andrieux
- Institut de Génétique Médicale, CHU Lille - Hôpital Jeanne de Flandre, Lille, France
| | - Taiza Stumpp
- Developmental Biology Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Antunes
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gustavo José Pereira
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Basel-Vanagaite L, Pillar N, Isakov O, Smirin-Yosef P, Lagovsky I, Orenstein N, Salmon-Divon M, Tamary H, Zaft T, Bazak L, Meyerovitch J, Pelli T, Botchan S, Farberov L, Weissglas-Volkov D, Shomron N. X-linked elliptocytosis with impaired growth is related to mutated AMMECR1. Gene 2017; 606:47-52. [PMID: 28089922 DOI: 10.1016/j.gene.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/17/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
Abstract
In this study, we report a family with X-linked recessive syndrome caused by mutated AMMECR1 and characterized by elliptocytosis with or without anemia, midface hypoplasia, proportionate short stature and hearing loss. Recently, mutations in AMMECR1 were reported in two maternal half-brothers, presenting with nephrocalcinosis, midface hypoplasia and, in one of the siblings, deafness and elliptocytosis. AMMECR1 gene is localized in the critical region of contiguous deletion syndrome on Xq22.3 implicated in Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis (AMME complex). Interestingly, alternative splicing of exon 2, the same exon harboring the truncating mutation, was observed in the proband and in his unaffected mother. Alternative splicing of this exon is predicted to lead to an in-frame deletion. We provide further evidence that mutated AMMECR1 gene is responsible for this clinically recognizable X-linked condition with variable expressivity.
Collapse
Affiliation(s)
- Lina Basel-Vanagaite
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel.
| | - Nir Pillar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Isakov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pola Smirin-Yosef
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Israel
| | - Irina Lagovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Naama Orenstein
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Israel
| | - Hannah Tamary
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Hematology Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Tami Zaft
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Joseph Meyerovitch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Tal Pelli
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Botchan
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Luba Farberov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Weissglas-Volkov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Andreoletti G, Seaby EG, Dewing JM, O'Kelly I, Lachlan K, Gilbert RD, Ennis S. AMMECR1: a single point mutation causes developmental delay, midface hypoplasia and elliptocytosis. J Med Genet 2016; 54:269-277. [PMID: 27811305 PMCID: PMC5502304 DOI: 10.1136/jmedgenet-2016-104100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/03/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022]
Abstract
Background Deletions in the Xq22.3–Xq23 region, inclusive of COL4A5, have been associated with a contiguous gene deletion syndrome characterised by Alport syndrome with intellectual disability (Mental retardation), Midface hypoplasia and Elliptocytosis (AMME). The extrarenal biological and clinical significance of neighbouring genes to the Alport locus has been largely speculative. We sought to discover a genetic cause for two half-brothers presenting with nephrocalcinosis, early speech and language delay and midface hypoplasia with submucous cleft palate and bifid uvula. Methods Whole exome sequencing was undertaken on maternal half-siblings. In-house genomic analysis included extraction of all shared variants on the X chromosome in keeping with X-linked inheritance. Patient-specific mutants were transfected into three cell lines and microscopically visualised to assess the nuclear expression pattern of the mutant protein. Results In the affected half-brothers, we identified a hemizygous novel non-synonymous variant of unknown significance in AMMECR1 (c.G530A; p.G177D), a gene residing in the AMME disease locus. Transfected cell lines with the p.G177D mutation showed aberrant nuclear localisation patterns when compared with the wild type. Blood films revealed the presence of elliptocytes in the older brother. Conclusions Our study shows that a single missense mutation in AMMECR1 causes a phenotype of midface hypoplasia, mild intellectual disability and the presence of elliptocytes, previously reported as part of a contiguous gene deletion syndrome. Functional analysis confirms mutant-specific protein dysfunction. We conclude that AMMECR1 is a critical gene in the pathogenesis of AMME, causing midface hypoplasia and elliptocytosis and contributing to early speech and language delay, infantile hypotonia and hearing loss, and may play a role in dysmorphism, nephrocalcinosis and submucous cleft palate.
Collapse
Affiliation(s)
- Gaia Andreoletti
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK
| | - Eleanor G Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK
| | - Jennifer M Dewing
- Centre for Human Development, Stem Cells and Regeneration HDH, University of Southampton, IDS Building, Southampton General Hospital, Southampton, UK
| | - Ita O'Kelly
- Centre for Human Development, Stem Cells and Regeneration HDH, University of Southampton, IDS Building, Southampton General Hospital, Southampton, UK
| | - Katherine Lachlan
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Princess Anne Hospital, Southampton, UK
| | - Rodney D Gilbert
- Wessex Regional Paediatric Nephro-Urology Service, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Duthie Building (Mailpoint 808), Southampton General Hospital, Southampton, UK
| |
Collapse
|
15
|
|
16
|
Milunsky JM. Prenatal Diagnosis of Sex Chromosome Abnormalities. GENETIC DISORDERS AND THE FETUS 2015:267-312. [DOI: 10.1002/9781118981559.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Gazou A, Riess A, Grasshoff U, Schäferhoff K, Bonin M, Jauch A, Riess O, Tzschach A. Xq22.3-q23 deletion includingACSL4in a patient with intellectual disability. Am J Med Genet A 2013; 161A:860-4. [DOI: 10.1002/ajmg.a.35778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 11/11/2022]
|
18
|
Piro RM, Di Cunto F. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J 2012; 279:678-96. [PMID: 22221742 DOI: 10.1111/j.1742-4658.2012.08471.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The identification of genes involved in human hereditary diseases often requires the time-consuming and expensive examination of a great number of possible candidate genes, since genome-wide techniques such as linkage analysis and association studies frequently select many hundreds of 'positional' candidates. Even considering the positive impact of next-generation sequencing technologies, the prioritization of candidate genes may be an important step for disease-gene identification. In this paper we develop a basic classification scheme for computational approaches to disease-gene prediction and apply it to exhaustively review bioinformatics tools that have been developed for this purpose, focusing on conceptual aspects rather than technical detail and performance. Finally, we discuss some past successes obtained by computational approaches to illustrate their beneficial contribution to medical research.
Collapse
Affiliation(s)
- Rosario M Piro
- Department of Theoretical Bioinformatics, German Cancer Research Center, (DKFZ), Heidelberg, Germany.
| | | |
Collapse
|
19
|
Yonath H, Marek-Yagel D, Resnik-Wolf H, Abu-Horvitz A, Baris HN, Shohat M, Frydman M, Pras E. X inactivation testing for identifying a non-syndromic X-linked mental retardation gene. J Appl Genet 2011; 52:437-41. [PMID: 21584729 DOI: 10.1007/s13353-011-0052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to identify a gene causing non-syndromic X-linked mental retardation in an extended family, taking advantage of the X chromosome inactivation status of the females in order to determine their carrier state. X inactivation in the females was determined with the androgen receptor methylation assay; thereafter, the X chromosome was screened with evenly spaced polymorphic markers. Once initial linkage was identified, the region of interest was saturated with additional markers and the males were added to the analysis. Candidate genes were sequenced. Ten females showed skewed inactivation, while six revealed a normal inactivation pattern. A maximal lod score of 5.54 at θ = 0.00 was obtained with the marker DXS10151. Recombination events mapped the disease gene to a 17.4-Mb interval between the markers DXS10153 and DXS10157. Three candidate genes in the region were sequenced and a previously described missense mutation (P375L) was identified in the ACSL4/FACL4 gene. On the basis of the female X inactivation status, we have mapped and identified the causative mutation in a gene causing non-syndromic X-linked mental retardation.
Collapse
Affiliation(s)
- Hagith Yonath
- The Danek Gartner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rodriguez JD, Bhat SS, Meloni I, Ladd S, Leslie ND, Doyne EO, Renieri A, Dupont BR, Stevenson RE, Schwartz CE, Srivastava AK. Intellectual disability, midface hypoplasia, facial hypotonia, and Alport syndrome are associated with a deletion in Xq22.3. Am J Med Genet A 2010; 152A:713-7. [PMID: 20186809 DOI: 10.1002/ajmg.a.33208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alport syndrome with intellectual disability (ID) is a contiguous gene deletion syndrome involving several genes on Xq22.3 including COL4A5 and ACSL4. We report on a family with two males with this disorder and a Xq22.3 deletion. Fluorescent in situ hybridization and genomic analyses mapped the deletion region to between exon 1 of COL4A5 and exon 12 of ACSL4. The patients' mother has microscopic hematuria and was found to be heterozygous for the Xq22.3 deletion. Analysis using reverse transcription polymerase chain reaction of lymphoblastoid cell line RNA from an affected male in the family revealed a stable chimeric transcript with the ACSL4 exons 13-17 replaced by a cryptic exon from intron 1 of the COL4A5 gene. A truncated 54 kDa protein was predicted from this transcript but Western blot analysis and ACSL4 enzyme assay both showed functional nullisomy of ACSL4. We also compared the clinical features of the family with three previously reported families with the ACSL4 gene deletion and found that ID with absent or severely delayed speech, midface hypoplasia, and facial hypotonia are consistent features observed in the absence of ACSL4 gene.
Collapse
Affiliation(s)
- Jayson D Rodriguez
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hoischen A, Landwehr C, Kabisch S, Ding XQ, Trost D, Stropahl G, Wigger M, Radlwimmer B, Weber RG, Haffner D. Array-CGH in unclear syndromic nephropathies identifies a microdeletion in Xq22.3-q23. Pediatr Nephrol 2009; 24:1673-81. [PMID: 19444485 DOI: 10.1007/s00467-009-1184-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/08/2009] [Accepted: 03/13/2009] [Indexed: 12/14/2022]
Abstract
To investigate whether submicroscopic chromosomal deletions or duplications can be causative of unclear syndromic nephropathies, we analyzed ten patients with congenital abnormalities of the kidney and urinary tract or glomerulopathies combined with important extrarenal anomalies by whole-genome array-based comparative genomic hybridization. In a 14-year-old girl presenting with hematuria, proteinuria, mental retardation (MR), sensorineural hearing loss, dysmorphisms, and epilepsy, we detected a microdeletion in chromosome Xq22.3-q23. This deletion was verified and characterized by fluorescence in situ hybridization and multiplex ligation-dependent probe amplification analyses, found to be de novo, uniallelic and 3.3 Mb in size. Electron microscopy of a kidney biopsy showed glomerular basement membrane thinning and segmental splitting of the lamina densa compatible with Alport syndrome. Cranial magnetic resonance and diffusion tensor imaging detected a severe neuronal migration disorder with double cortex formation and pronounced reduction of the fronto-occipital tract system. Thus, in one of ten patients with unclear syndromic nephropathies we identified a previously undescribed contiguous gene syndrome at Xq22.3-q23. The microdeletion contains the X-linked Alport syndrome gene COL4A5, the MR genes FACL4 and PAK3, and parts of the X-chromosomal lissencephaly gene DCX associated with double cortex formation in girls, MR, and epilepsy. The phenotype in our patient combines features of the Alport-MR contiguous gene syndrome with lissencephaly.
Collapse
Affiliation(s)
- Alexander Hoischen
- Institute of Human Genetics, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Di Cunto F. Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput Biol 2008; 4:e1000043. [PMID: 18369433 PMCID: PMC2268251 DOI: 10.1371/journal.pcbi.1000043] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/20/2008] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. METHODOLOGY/PRINCIPAL FINDINGS We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. CONCLUSION Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes.
Collapse
Affiliation(s)
- Ugo Ala
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Rosario Michael Piro
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Elena Grassi
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Christian Damasco
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Martin Oti
- Department of Human Genetics and Centre for Molecular and Biomolecular Informatics, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Paolo Provero
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- * E-mail: (PP); (FDC)
| | - Ferdinando Di Cunto
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- * E-mail: (PP); (FDC)
| |
Collapse
|
23
|
Abstract
Many human syndromes associated with hearing loss are caused by disease genes located on the X chromosome, but few X-linked loci for non-syndromic hearing loss have been reported. Surprisingly, a Y-linked locus has been identified, representing one of the only disease loci on the Y chromosome. This study reviews the different sex-linked genes and loci on the X- and Y chromosome leading to syndromic and especially non-syndromic hearing loss.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Athens, Greece
| | | | | |
Collapse
|
24
|
Renoult E, Bachelet C, Krier-Coudert MJ, Diarrassouba A, André JL, Kessler M. Recurrent Anemia in Kidney Transplant Recipients With Parvovirus B19 Infection. Transplant Proc 2006; 38:2321-3. [PMID: 16980079 DOI: 10.1016/j.transproceed.2006.06.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parvovirus B19 (PV B19) infection is known to cause acute anemia in solid organ transplant recipients. Intravenous immunoglobulin combined with reduction of immunosuppression may be of benefit to clear the infection. However, PV B19-associated anemia can be recurrent. We describe three renal transplant recipients with a PV B19 infection. These patients showed recurrent anemia with episodes separated by as much as several months.
Collapse
Affiliation(s)
- E Renoult
- Department of Nephrology, Unit of Pediatric Nephrology, University Hospital de Brabois, 54500 Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | |
Collapse
|
25
|
Vissers LELM, Veltman JA, van Kessel AG, Brunner HG. Identification of disease genes by whole genome CGH arrays. Hum Mol Genet 2006; 14 Spec No. 2:R215-23. [PMID: 16244320 DOI: 10.1093/hmg/ddi268] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Small, submicroscopic, genomic deletions and duplications (1 kb to 10 Mb) constitute up to 15% of all mutations underlying human monogenic diseases. Novel genomic technologies such as microarray-based comparative genomic hybridization (array CGH) allow the mapping of genomic copy number alterations at this submicroscopic level, thereby directly linking disease phenotypes to gene dosage alterations. At present, the entire human genome can be scanned for deletions and duplications at over 30,000 loci simultaneously by array CGH ( approximately 100 kb resolution), thus entailing an attractive gene discovery approach for monogenic conditions, in particular those that are associated with reproductive lethality. Here, we review the present and future potential of microarray-based mapping of genes underlying monogenic diseases and discuss our own experience with the identification of the gene for CHARGE syndrome. We expect that, ultimately, genomic copy number scanning of all 250,000 exons in the human genome will enable immediate disease gene discovery in cases exhibiting single exon duplications and/or deletions.
Collapse
Affiliation(s)
- Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Bhat SS, Schmidt KR, Ladd S, Kim KC, Schwartz CE, Simensen RJ, DuPont BR, Stevenson RE, Srivastava AK. Disruption of DMD and deletion of ACSL4 causing developmental delay, hypotonia, and multiple congenital anomalies. Cytogenet Genome Res 2006; 112:170-5. [PMID: 16276108 DOI: 10.1159/000087531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 03/07/2005] [Indexed: 01/06/2023] Open
Abstract
We have studied a male patient with significant developmental delay, growth failure, hypotonia, girdle weakness, microcephaly, and multiple congenital anomalies including atrial (ASD) and ventricular (VSD) septal defects. Detailed cytogenetic and molecular analyses revealed three de novo X chromosome aberrations and a karyotype 46,Y,der(X)inv(X) (p11.4q11.2)inv(X)(q11.2q21.32 approximately q22.2)del(X)(q22.3q22.3) was determined. The three X chromosome aberrations in the patient include: a pericentric inversion (inv 1) that disrupted the Duchenne muscular dystrophy (DMD) gene, dystrophin, at Xp11.4; an Xq11.2q21.32 approximately q22.2 paracentric inversion (inv 2) putatively affecting no genes; and an interstitial deletion at Xq22.3 that results in functional nullisomy of several known genes, including a gene previously associated with X-linked nonsyndromic mental retardation, acyl-CoA synthetase long chain family member 4 (ACSL4). These findings suggest that the disruption of DMD and the absence of ACSL4 in the patient are responsible for neuromuscular disease and cognitive impairment.
Collapse
Affiliation(s)
- S S Bhat
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Mental retardation is more common in males than females in the population, assumed to be due to mutations on the X chromosome. The prevalence of the 24 genes identified to date is low and less common than expansions in FMR1, which cause Fragile X syndrome. Systematic screening of all other X linked genes in X linked families with mental retardation is currently not feasible in a clinical setting. The phenotypes of genes causing syndromic and non-syndromic mental retardation (NLGN3, NLGN4, RPS6KA3(RSK2), OPHN1, ATRX, SLC6A8, ARX, SYN1, AGTR2, MECP2, PQBP1, SMCX, and SLC16A2) are first discussed, as these may be the focus of more targeted mutation analysis. Secondly, the relative prevalence of genes causing only non-syndromic mental retardation (IL1RAPL1, TM4SF2, ZNF41, FTSJ1, DLG3, FACL4, PAK3, ARHGEF6, FMR2, and GDI) is summarised. Thirdly, the problem of recurrence risk where a molecular genetics diagnosis has not been made and what proportion of the male excess of mental retardation is due to monogenic disorders of the X chromosome are discussed.
Collapse
Affiliation(s)
- F L Raymond
- Cambridge Institute of Medical Research, Department of Medical Genetics, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2XY, UK.
| |
Collapse
|
28
|
Abstract
Hereditary elliptocytosis (HE) is a common disorder of erythrocyte shape, occurring especially in individuals of African and Mediterranean ancestry, presumably because elliptocytes confer some resistance to malaria. The principle lesion in HE is mechanical weakness or fragility of the erythrocyte membrane skeleton due to defects in alpha-spectrin, beta-spectrin, or protein 4.1. Numerous mutations have been described in the genes encoding these proteins, including point mutations, gene deletions and insertions, and mRNA processing defects. Several mutations have been identified in a number of individuals on the same genetic background, suggesting a "founder effect." The majority of HE patients are asymptomatic, but some may experience hemolytic anemia, splenomegaly, and intermittent jaundice.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
29
|
Longo I, Frints SGM, Fryns JP, Meloni I, Pescucci C, Ariani F, Borghgraef M, Raynaud M, Marynen P, Schwartz C, Renieri A, Froyen G. A third MRX family (MRX68) is the result of mutation in the long chain fatty acid-CoA ligase 4 (FACL4) gene: proposal of a rapid enzymatic assay for screening mentally retarded patients. J Med Genet 2003; 40:11-7. [PMID: 12525535 PMCID: PMC1735250 DOI: 10.1136/jmg.40.1.11] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The gene encoding fatty acid CoA ligase 4 (FACL4) is mutated in families with non-specific X linked mental retardation (MRX) and is responsible for cognitive impairment in the contiguous gene syndrome ATS-MR (Alport syndrome and mental retardation), mapped to Xq22.3. This finding makes this gene a good candidate for other mental retardation disorders mapping in this region. METHODS We have screened the FACL4 gene in eight families, two MRX and six syndromic X linked mental retardation (MRXS), mapping in a large interval encompassing Xq22.3. RESULTS We have found a missense mutation in MRX68. The mutation (c.1001C>T in the brain isoform) cosegregates with the disease and changes a highly conserved proline into a leucine (p.P375L) in the first luciferase domain, which markedly reduces the enzymatic activity. Furthermore, all heterozygous females showed completely skewed X inactivation in blood leucocytes, as happens in all reported females with other FACL4 point mutations or deletions. CONCLUSIONS Since the FACL4 gene is highly expressed in brain, where it encodes a brain specific isoform, and is located in hippocampal and cerebellar neurones, a role for this gene in cognitive processes can be expected. Here we report the third MRX family with a FACL4 mutation and describe the development of a rapid enzymatic assay on peripheral blood that we propose as a sensitive, robust, and efficient diagnostic tool in mentally retarded males.
Collapse
Affiliation(s)
- I Longo
- Medical Genetics, Department of Molecular Biology, University of Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J 2002; 83:1997-2006. [PMID: 12324418 PMCID: PMC1302289 DOI: 10.1016/s0006-3495(02)73961-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as compared to the KCNQ1+KCNE1 at 22 degrees C; however, at physiological temperature, the activation time constant of the KCNQ1+KCNE5 current decreased fivefold, thus exceeding the activation rate of the KCNQ1+KCNE1 current. The KCNE5 subunit is specific for the KCNQ1 channel, as none of other members of the KCNQ-family or the human ether a-go-go related channel (hERG1) was affected by KCNE5. Four residues in the transmembrane domain of the KCNE5 protein were found to be important for the control of the voltage-dependent activation of the KCNQ1 current. We speculate that since KCNE5 is expressed in cardiac tissue it may here along with the KCNE1 beta-subunit regulate KCNQ1 channels. It is possible that KCNE5 shapes the I(Ks) current in certain parts of the mammalian heart.
Collapse
Affiliation(s)
- Kamilla Angelo
- Department of Medical Physiology, University of Copenhagen, The Panum Institute, Denmark.
| | | | | | | | | | | |
Collapse
|
31
|
Meloni I, Muscettola M, Raynaud M, Longo I, Bruttini M, Moizard MP, Gomot M, Chelly J, des Portes V, Fryns JP, Ropers HH, Magi B, Bellan C, Volpi N, Yntema HG, Lewis SE, Schaffer JE, Renieri A. FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nat Genet 2002; 30:436-40. [PMID: 11889465 DOI: 10.1038/ng857] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked mental retardation (XLMR) is an inherited condition that causes failure to develop cognitive abilities, owing to mutations in a gene on the X chromosome. The latest XLMR update lists up to 136 conditions leading to 'syndromic', or 'specific', mental retardation (MRXS) and 66 entries leading to 'nonspecific' mental retardation (MRX). For 9 of the 66 MRX entries, the causative gene has been identified. Our recent discovery of the contiguous gene deletion syndrome ATS-MR (previously known as Alport syndrome, mental retardation, midface hypoplasia, elliptocytosis, OMIM #300194), characterized by Alport syndrome (ATS) and mental retardation (MR), indicated Xq22.3 as a region containing one mental retardation gene. Comparing the extent of deletion between individuals with ATS-MR and individuals with ATS alone allowed us to define a critical region for mental retardation of approximately 380 kb, containing four genes. Here we report the identification of two point mutations, one missense and one splice-site change, in the gene FACL4 in two families with nonspecific mental retardation. Analysis of enzymatic activity in lymphoblastoid cell lines from affected individuals of both families revealed low levels compared with normal cells, indicating that both mutations are null mutations. All carrier females with either point mutations or genomic deletions in FACL4 showed a completely skewed X-inactivation, suggesting that the gene influences survival advantage. FACL4 is the first gene shown to be involved in nonspecific mental retardation and fatty-acid metabolism.
Collapse
Affiliation(s)
- Ilaria Meloni
- Medical Genetics, Department of Molecular Biology, University of Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ferrante MI, Ghiani M, Bulfone A, Franco B. IL1RAPL2 maps to Xq22 and is specifically expressed in the central nervous system. Gene 2001; 275:217-21. [PMID: 11587848 DOI: 10.1016/s0378-1119(01)00659-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the identification and characterization of a homologue of the IL1RAPL transcript which is responsible for a form of X-linked mental retardation (MRX34). This new transcript was cloned by analysis of genomic sequences from the Xq22 region and was named IL1RAPL2 (Interleukin 1 Receptor Accessory Protein-Like-2). The two X-linked genes share the same domains, the same exon-intron organization and a high degree of similarity at the protein level (70.4% similarity). RNA in situ expression studies on mouse embryo tissue section at different developmental stages show that Il1rapl2 is specifically expressed in the nervous system from embryonic day 12.5. The homologies together with the pattern of expression render ILRAPL2 a candidate gene for disorders displaying involvement of the CNS, including the MRX loci for which the gene has not been identified yet.
Collapse
Affiliation(s)
- M I Ferrante
- Telethon Institute of Genetics and Medicine (TIGEM), Milan, Italy
| | | | | | | |
Collapse
|
33
|
Martin DM, Probst FJ, Camper SA, Petty EM. Characterisation and genetic mapping of a new X linked deafness syndrome. J Med Genet 2000; 37:836-41. [PMID: 11073537 PMCID: PMC1734461 DOI: 10.1136/jmg.37.11.836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hereditary forms of hearing loss are classified as syndromic, when deafness is associated with other clinical features, or non-syndromic, when deafness occurs without other clinical features. Many types of syndromic deafness have been described, some of which have been mapped to specific chromosomal regions. METHODS Here we describe a family with progressive sensorineural hearing loss, cognitive impairment, facial dysmorphism, and variable other features, transmitted by apparent X linked recessive inheritance. Haplotype analysis of PCR products spanning the X chromosome and direct sequencing of candidate genes were used to begin characterising the molecular basis of features transmitted in this family. Comparison to known syndromes involving deafness, mental retardation, facial dysmorphism, and other clinical features was performed by review of published reports and personal discussions. RESULTS Genetic mapping places the candidate locus for this syndrome within a 48 cM region on Xq1-21. Candidate genes including COL4A5, DIAPH, and POU3F4 were excluded by clinical and molecular analyses. CONCLUSIONS The constellation of clinical findings in this family (deafness, cognitive impairment, facial dysmorphism, variable renal and genitourinary abnormalities, and late onset pancytopenia), along with a shared haplotype on Xq1-21, suggests that this represents a new form of syndromic deafness. We discuss our findings in comparison to several other syndromic and non-syndromic deafness loci that have been mapped to the X chromosome.
Collapse
Affiliation(s)
- D M Martin
- Departments of Pediatrics and Communicable Diseases, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
34
|
Farooqui AA, Horrocks LA, Farooqui T. Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 2000; 14:123-35. [PMID: 10984188 DOI: 10.1385/jmn:14:3:123] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The deacylation-reacylation cycle is an important mechanism responsible for the introduction of polyunsaturated fatty acids into neural membrane glycerophospholipids. It involves four enzymes, namely acyl-CoA synthetase, acyl-CoA hydrolase, acyl-CoA: lysophospholipid acyltransferase, and phospholipase A2. All of these enzymes have been purified and characterized from brain tissue. Under normal conditions, the stimulation of neural membrane receptors by neurotransmitters and growth factors results in the release of arachidonic acid from neural membrane glycerophospholipids. The released arachidonic acid acts as a second messenger itself. It can be further metabolized to eicosanoids, a group of second messengers involved in a variety of neurochemical functions. A lysophospholipid, the second product of reactions catalyzed by phospholipase A2, is rapidly acylated with acyl-CoA, resulting in the maintenance of the normal and essential neural membrane glycerophospholipid composition. However, under pathological situations (ischemia), the overstimulation of phospholipase A2 results in a rapid generation and accumulation of free fatty acids including arachidonic acid, eicosanoids, and lipid peroxides. This results in neural inflammation, oxidative stress, and neurodegeneration. In neural membranes, the deacylation-reacylation cycle maintains a balance between free and esterified fatty acids, resulting in low levels of arachidonic acid and lysophospholipids. This is necessary for not only normal membrane integrity and function, but also for the optimal activity of the membrane-bound enzymes, receptors, and ion channels involved in normal signal-transduction processes.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus 43210-1218, USA
| | | | | |
Collapse
|
35
|
Piccini M, Vitelli F, Seri M, Galietta LJ, Moran O, Bulfone A, Banfi S, Pober B, Renieri A. KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs. Genomics 1999; 60:251-7. [PMID: 10493825 DOI: 10.1006/geno.1999.5904] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the identification and characterization of a new gene deleted in the AMME contiguous gene syndrome. This gene is predominantly expressed in heart, skeletal muscle, spinal cord, and brain. Screening of placenta and NT2 cDNA libraries enabled us to obtain the 1.5-kb full-length transcript, which shows a 426-bp open reading frame. Since the resulting 142-amino-acid peptide has a single putative transmembrane domain and a weak but suggestive homology with KCNE1 (minK), a protein associated with the KCNQ1 potassium channel (KVLQT1), we named this new gene KCNE1-like (KCNE1L). To obtain greater insight into this new member of an apparently distinct protein family, we have identified and characterized the homologous mouse gene (Kcne1l), which encodes a peptide of 143 amino acids with 91% homology and 80% identity. The expression pattern of mouse Kcne1l in the developing embryo revealed strong signal in ganglia, in the migrating neural crest cells of cranial nerves, in the somites, and in the myoepicardial layer of the heart. The specific distribution in adult tissues, the putative channel function, and the expression pp6tern in the developing mouse embryo suggest that KCNE1L could be involved in the development of the cardiac abnormalities as well as of some neurological signs observed in patients with AMME contiguous gene syndrome.
Collapse
Affiliation(s)
- M Piccini
- Genetica Medica, Policlinico Le Scotte, Siena, 53100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Alport syndrome (AS) is a genetically heterogeneous disease arising from mutations in genes coding for basement membrane type IV collagen. About 80% of AS is X-linked, due to mutations in COL4A5, the gene encoding the alpha 5 chain of type IV collagen (alpha 5[IV]). A subtype of X-linked Alport syndrome (XLAS) in which diffuse leiomyomatosis is an associated feature reflects deletion mutations involving the adjacent COL4A5 and COL4A6 genes. Most other patients have autosomal recessive Alport syndrome (ARAS) due to mutations in COL4A3 or COL4A4, which encode the alpha 3(IV) and alpha 4(IV) chains, respectively. Autosomal dominant AS has been mapped to chromosome 2 in the region of COL4A3 and COL4A4. The features of AS reflect derangements of basement membrane structure and function resulting from changes in type IV collagen expression. The primary pathologic event appears to be the loss from basement membranes of a type IV collagen network composed of alpha 3, alpha 4, and alpha 5(IV) chains. While this network is not critical for normal glomerulogenesis, its absence appears to provoke the overexpression of other extracellular matrix proteins, such as the alpha 1 and alpha 2(IV) chains, in glomerular basement membranes, leading to glomerulosclerosis. The diagnosis of AS still relies heavily on histologic studies, although routine application of molecular genetic diagnosis will probably be available in the future. Absence of epidermal basement membrane expression of alpha 5(IV) is diagnostic of XLAS, so in some cases kidney biopsy may not be necessary for diagnosis. Analysis of renal expression of alpha 3(IV)-alpha 5(IV) chains may be a useful adjunct to routine renal biopsy studies, especially when ultrastructural changes in the GBM are ambiguous. There are no specific therapies for AS. Spontaneous and engineered animal models are being used to study genetic and pharmacologic therapies. Renal transplantation for AS is usually very successful. Occasional patients develop anti-GBM nephritis of the allograft, almost always resulting in graft loss.
Collapse
Affiliation(s)
- C E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455, USA.
| |
Collapse
|
37
|
Horrobin DF, Bennett CN. New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 1999; 60:141-67. [PMID: 10359017 DOI: 10.1054/plef.1999.0027] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipids make up about 60% of the brain's dry weight. In spite of this, phospholipid metabolism has received relatively little attention from those seeking genetic factors involved in psychiatric and neurological disorders. However, there is now increasing evidence from many quarters that abnormal phospholipid and related fatty acid metabolism may contribute to illnesses such as schizophrenia, bipolar disorder, depression and attention deficit hyperactivity disorder. To date the possible specific proteins and genes involved have been relatively ill-defined. This paper reviews the main pathways of phospholipid metabolism, emphasizing the roles of phospholipases of the A2 and C series in signal transduction processes. It identifies some likely protein candidates for involvement in psychiatric and neurological disorders. It also reviews the chromosomal locations of regions likely to be involved in these disorders, and relates these to the known locations of genes directly or indirectly involved in phospholipid and fatty acid metabolism.
Collapse
Affiliation(s)
- D F Horrobin
- Laxdale Research, Kings Park House, Laurelhill Business Park, Stirling, UK
| | | |
Collapse
|
38
|
Abstract
The recent discovery of the specific molecular defects in many patients with hereditary spherocytosis and hereditary elliptocytosis/pyropoikilocytosis partially clarifies the molecular pathology of these diseases. HE and HPP are caused by defects in the horizontal interactions that hold the membrane skeleton together, particularly the critical spectrin self-association reaction. Single gene defects cause red cells to elongate as they circulate, by a unknown mechanism, and are clinically harmless. The combination of two defective genes or one severe alpha spectrin defect and a thalassaemia-like defect in the opposite allele (alphaLELY) results in fragile cells that fragment into bizarre shapes in the circulation, with haemolysis and sometimes life-threatening anaemia. A few of the alpha spectrin defects are common, suggesting they provide an advantage against malaria or some other threat. HS, in contrast, is nearly always caused by family-specific private mutations. These involve the five proteins that link the membrane skeleton to the overlying lipid bilayer: alpha and beta spectrin, ankyrin, band 3 and protein 4.2. Somehow, perhaps through loss of the anchorage band 3 provides its lipid neighbours (Peters et al, 1996), microvesiculation of the membrane surface ensues, leading to spherocytosis, splenic sequestration and haemolysis. Future research will need to focus on how each type of defect causes its associated disease, how the spleen aggravates membrane skeleton defects (a process termed 'conditioning'), how defective red, cells are recognized and removed in the spleen, and why patients with similar or even identical defects can have different clinical severity. Emphasis also needs to be given to improving diagnostic tests, particularly for HS, and exploring new options for therapy, like partial splenectomy, which can ameliorate symptoms while better protecting patients from bacterial sepsis and red cell parasites, and perhaps from atherosclerosis (Robinette & Franmeni, 1977) and venous thrombosis (Stewart et al, 1996).
Collapse
Affiliation(s)
- W T Tse
- Division of Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|