1
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
2
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
3
|
Costa-Barbosa FA, Giorgi RB, Kater CE. Focus on adrenal and related causes of hypertension in childhood and adolescence: Rare or rarely recognized? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:895-907. [PMID: 35929903 PMCID: PMC10118774 DOI: 10.20945/2359-3997000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High blood pressure (BP) is not restricted to adults; children and adolescents may also be affected, albeit less frequently. Aside from unfavorable environmental factors, such as obesity and sedentary life leading to early-onset essential hypertension (HT), several secondary causes must be investigated in the occasional hypertensive child/adolescent. Endocrine causes are relevant and multiple, related to the pituitary, thyroid, parathyroid, gonads, insulin, and others, but generally are associated with adrenal disease. This common scenario has several vital components, such as aldosterone, deoxycorticosterone (DOC), cortisol, or catecholamines, but there are also monogenic disorders involving the kidney tubule that cause inappropriate salt retention and HT that simulate adrenal disease. Finally, a blood vessel disease was recently described that may also participate in this vast spectrum of pediatric hypertensive disease. This review will shed some light on the diagnosis and management of conditions, focusing on the most prevalent adrenal (or adrenal-like) disturbances causing HT.
Collapse
|
4
|
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022; 112:15-33. [PMID: 33524974 DOI: 10.1159/000514862] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.
Collapse
Affiliation(s)
- Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
5
|
Cho J, Quach S, Reed J, Osian O. Case report: left atrial Myxoma causing elevated C-reactive protein, fatigue and fever, with literature review. BMC Cardiovasc Disord 2020; 20:119. [PMID: 32138674 PMCID: PMC7059297 DOI: 10.1186/s12872-020-01397-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background A cardiac myxoma in a young person may pose a diagnostic challenge as symptoms may be variable and the differential diagnosis is wide. The differential diagnosis can include rheumatic mitral valve disease, pulmonary hypertension, endocarditis, myocarditis and vasculitis. Case presentation This case report involves a 49 years old female with a 2.8 cm × 3.4 cm myxoma in the left atrium causing mitral valve obstruction. She presented with fatigue, fever of unknown origin, transient ischemic attack and shortness of breath. Prompt surgery is often recommended due to the risk of embolic complications or complete obstruction. Due to her symptoms, patient underwent successful cardiothoracic surgery to excise the myxoma within 2 weeks of confirmation by cardiac echocardiography. Conclusion This case also emphasizes the diagnostic challenge as symptoms may be variable, ranging from fatigue, fever and shortness of breath to transient ischemic attack and at worst, sudden cardiac death. In conclusion, if a cardiac mass is suspected, echocardiography should be performed early. Surgical resection is curative and recurrence rate is very rare in sporadic isolated myxomas, however, recurrence can be higher in genetic diseases associated with increased frequency of myxomas such as Carney complex. This subpopulation of patients may present further research opportunity to learn more about the perioperative management of patients with myxomas such as determining the optimal time to surgical intervention and decision to anticoagulate.
Collapse
Affiliation(s)
- Jake Cho
- University of Central Florida College of Medicine, Graduate Medical Education, Orlando, FL, 32827, USA. .,HCA Ocala Regional Medical Center, Internal Medicine Residency Program, 1431 SW 1st Ave, Ocala, FL, 34471, USA.
| | - Steven Quach
- University of Central Florida College of Medicine, Graduate Medical Education, Orlando, FL, 32827, USA.,HCA Ocala Regional Medical Center, Internal Medicine Residency Program, 1431 SW 1st Ave, Ocala, FL, 34471, USA
| | - Justin Reed
- University of Central Florida College of Medicine, Graduate Medical Education, Orlando, FL, 32827, USA.,HCA Ocala Regional Medical Center, Internal Medicine Faculty, Ocala, FL, 34471, USA
| | - Omeni Osian
- University of Central Florida College of Medicine, Graduate Medical Education, Orlando, FL, 32827, USA.,HCA Ocala Regional Medical Center, General Surgery Residency Program Faculty, Ocala, FL, 34471, USA.,HCA Ocala Regional Medical Center, Thoracic and Cardiac Surgery, Ocala, FL, 34471, USA
| |
Collapse
|
6
|
Lucia K, Wu Y, Garcia JM, Barlier A, Buchfelder M, Saeger W, Renner U, Stalla GK, Theodoropoulou M. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene 2020; 39:3367-3380. [PMID: 32111982 PMCID: PMC7160059 DOI: 10.1038/s41388-020-1223-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted.
Collapse
Affiliation(s)
- Kristin Lucia
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin, Berlin, Germany.,Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yonghe Wu
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Anne Barlier
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Michael Buchfelder
- Department of Neurosurgery, Klinikum der Universität Erlangen, Erlangen, Germany
| | - Wolfgang Saeger
- Department of Neuropathology, Universität Hamburg, Hamburg, Germany
| | - Ulrich Renner
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Günter K Stalla
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany. .,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
7
|
Abstract
The increasing recognition of pituitary disorders and their impact on quality of life and longevity has made understanding of this small gland a subject of paramount importance. Pituitary pathology has seen many significant studies that indicate progress in identification and classification of pituitary lesions, as well as improved management strategies for patients. In this review, we outline six major areas of advances: (i) changes in terminology from 'adenoma' to 'pituitary neuroendocrine tumour'; (ii) reclassification of hormone-negative tumours based on transcription factor expression that defines lineage; (iii) updates in new pathogenetic mechanisms, including those that underlie rare lesions such as X-LAG and pituitary blastoma; (iv) clarification of hypophysitis due to immunotherapy, xanthomatous hypophysitis due to rupture of a Rathke's cleft cyst and IgG4 disease as the cause of inflammatory pseudotumour; (v) the consolidation of pituicytoma variants, including spindle cell oncocytoma and granular cell tumour based on thyroid transcription factor-1 (TTF-1) reactivity; and (vi) the pathogenetic mechanisms that distinguish papillary from adamantinomatous craniopharyngioma. The remaining challenge is clarification of the pathogenetic mechanisms underlying the development of many of these disorders.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Abstract
The knowledge on the molecular and genetic causes of Cushing's syndrome (CS) has greatly increased in the recent years. Somatic mutations leading to overactive 3',5'-cyclic adenosine monophosphate/protein kinase A and wingless-type MMTV integration site family/beta-catenin pathways are the main molecular mechanisms underlying adrenocortical tumorigenesis. Corticotropinomas are characterized by resistance to glucocorticoid negative feedback, impaired cell cycle control and overexpression of pathways sustaining ACTH secretion. Recognizing the genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for tailoring the clinical management of CS patients and for designing strategies for genetic counseling and clinical screening to be applied in routine medical practice.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
9
|
Hernández-Ramírez LC, Trivellin G, Stratakis CA. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease. Mol Cell Endocrinol 2018; 463:72-86. [PMID: 28822849 DOI: 10.1016/j.mce.2017.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
10
|
Hernández-Ramírez LC, Tatsi C, Lodish MB, Faucz FR, Pankratz N, Chittiboina P, Lane J, Kay DM, Valdés N, Dimopoulos A, Mills JL, Stratakis CA. Corticotropinoma as a Component of Carney Complex. J Endocr Soc 2017; 1:918-925. [PMID: 29264542 PMCID: PMC5686778 DOI: 10.1210/js.2017-00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 01/22/2023] Open
Abstract
Known germline gene abnormalities cause one-fifth of the pituitary adenomas in children and adolescents, but, in contrast with other pituitary tumor types, the genetic causes of corticotropinomas are largely unknown. In this study, we report a case of Cushing disease (CD) due to a loss-of-function mutation in PRKAR1A, providing evidence for association of this gene with a corticotropinoma. A 15-year-old male presenting with hypercortisolemia was diagnosed with CD. Remission was achieved after surgical resection of a corticotropin (ACTH)-producing pituitary microadenoma, but recurrence 3 years later prompted reoperation and radiotherapy. Five years after the original diagnosis, the patient developed ACTH-independent Cushing syndrome, and a diagnosis of primary pigmented nodular adrenocortical disease was confirmed. A PRKAR1A mutation (c.671delG, p.G225Afs*16) was detected in a germline DNA sample from the patient, which displayed loss of heterozygosity in the corticotropinoma. No other germline or somatic mutations of interest were found. As corticotropinomas are not a known component of Carney complex (CNC), we performed loss of heterozygosity and messenger RNA stability studies in the patient's tissues, and analyzed the effect of Prkar1a silencing on AtT-20/D16v-F2 mouse corticotropinoma cells. No PRKAR1A defects were found among 97 other pediatric CD patients studied. Our clinical case and experimental data support a role for PRKAR1A in the pathogenesis of a corticotroph cell tumor. This is a molecularly confirmed report of a corticotropinoma presenting in association with CNC. We conclude that germline PRKAR1A mutations are a novel, albeit apparently infrequent, cause of CD.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Christina Tatsi
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Maya B Lodish
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Nuria Valdés
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.,Service of Endocrinology and Nutrition, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33011, Spain
| | - Aggeliki Dimopoulos
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James L Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Hannah-Shmouni F, Trivellin G, Stratakis CA. Genetics of gigantism and acromegaly. Growth Horm IGF Res 2016; 30-31:37-41. [PMID: 27657986 PMCID: PMC5154831 DOI: 10.1016/j.ghir.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Gigantism and acromegaly are rare disorders that are caused by excessive GH secretion and/or high levels of its mediator, IGF-1. Gigantism occurs when excess GH or IGF-1 lead to increased linear growth, before the end of puberty and epiphyseal closure. The majority of cases arise from a benign GH-secreting pituitary adenoma, with an incidence of pituitary gigantism and acromegaly of approximately 8 and 11 per million person-years, respectively. Over the past two decades, our increasing understanding of the molecular and genetic etiologies of pituitary gigantism and acromegaly yielded several genetic causes, including multiple endocrine neoplasia type 1 and 4, McCune-Albright syndrome, Carney complex, familial isolated pituitary adenoma, pituitary adenoma association due to defects in familial succinate dehydrogenase genes, and the recently identified X-linked acrogigantism. The early diagnosis of these conditions helps guide early intervention, screening, and genetic counseling of patients and their family members. In this review, we provide a concise and up-to-date discussion on the genetics of gigantism and acromegaly.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Giampaolo Trivellin
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Asa SL, Ezzat S. Gonadotrope Tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:187-210. [PMID: 27697203 DOI: 10.1016/bs.pmbts.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gonadotrope tumors arise from the gonadotropes of the adenohypophysis. These cells rarely give rise to hyperplasia, usually only in the setting of long-standing premature gonadal failure. In contrast, gonadotrope tumors represent one of the most frequent types of pituitary tumors. Despite their relatively common occurrence, the pathogenesis of gonadotrope tumors remains unknown. Effective nonsurgical therapies remain out of reach. We review the pituitary gonadotrope from the morphologic and functional perspectives to better understand its involvement as the cell of origin of a frequent type of pituitary tumor.
Collapse
Affiliation(s)
- S L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - S Ezzat
- Department of Medicine, University of Toronto, Endocrine Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Del Gobbo A, Peverelli E, Treppiedi D, Lania A, Mantovani G, Ferrero S. Expression of protein kinase A regulatory subunits in benign and malignant human thyroid tissues: A systematic review. Exp Cell Res 2016; 346:85-90. [PMID: 27321957 DOI: 10.1016/j.yexcr.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
In this review, we discuss the molecular mechanisms and prognostic implications of the protein kinase A (PKA) signaling pathway in human tumors, with special emphasis on the malignant thyroid. The PKA signaling pathway is differentially activated by the expression of regulatory subunits 1 (R1) and 2 (R2), whose levels change during development, differentiation, and neoplastic transformation. Following the identification of gene mutations within the PKA regulatory subunit R1A (PRKAR1A) that cause Carney complex-associated neoplasms, several investigators have studied PRKAR1A expression in sporadic thyroid tumors. The PKA regulatory subunit R2B (PRKAR2B) is highly expressed in benign, as well as in malignant differentiated and undifferentiated lesions. PRKAR1A is highly expressed in follicular adenomas and malignant lesions with a statistically significant gradient between benign and malignant tumors; however, it is not expressed in hyperplastic nodules. Although the importance of PKA in human malignancy outcomes is not completely understood, PRKAR1A expression correlates with tumor dimension in malignant lesions. Additional studies are needed to determine whether a relationship exists between PKA subunit expression and clinical outcomes, particularly in undifferentiated tumors. In conclusion, the R1A subunit might be a good molecular candidate for the targeted treatment of malignant thyroid tumors.
Collapse
Affiliation(s)
- Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Erika Peverelli
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Andrea Lania
- Endocrine Unit, IRCCS Humanitas Research Hospital, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan Medical School, Milan, Italy.
| |
Collapse
|
14
|
Ronchi CL, Peverelli E, Herterich S, Weigand I, Mantovani G, Schwarzmayr T, Sbiera S, Allolio B, Honegger J, Appenzeller S, Lania AG, Reincke M, Calebiro D, Spada A, Buchfelder M, Flitsch J, Strom TM, Fassnacht M. Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas. Eur J Endocrinol 2016; 174:363-72. [PMID: 26701869 DOI: 10.1530/eje-15-1064] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
CONTEXT Alterations in the cAMP signaling pathway are common in hormonally active endocrine tumors. Somatic mutations at GNAS are causative in 30-40% of GH-secreting adenomas. Recently, mutations affecting the USP8 and PRKACA gene have been reported in ACTH-secreting pituitary adenomas and cortisol-secreting adrenocortical adenomas respectively. However, the pathogenesis of many GH-secreting adenomas remains unclear. AIM Comprehensive genetic characterization of sporadic GH-secreting adenomas and identification of new driver mutations. DESIGN Screening for somatic mutations was performed in 67 GH-secreting adenomas by targeted sequencing for GNAS, PRKACA, and USP8 mutations (n=31) and next-generation exome sequencing (n=36). RESULTS By targeted sequencing, known activating mutations in GNAS were detected in five cases (16.1%), while no somatic mutations were observed in both PRKACA and USP8. Whole-exome sequencing identified 132 protein-altering somatic mutations in 31/36 tumors with a median of three mutations per sample (range: 1-13). The only recurrent mutations have been observed in GNAS (31.4% of cases). However, seven genes involved in cAMP signaling pathway were affected in 14 of 36 samples and eight samples harbored variants in genes involved in the calcium signaling or metabolism. At the enrichment analysis, several altered genes resulted to be associated with developmental processes. No significant correlation between genetic alterations and the clinical data was observed. CONCLUSION This study provides a comprehensive analysis of somatic mutations in a large series of GH-secreting adenomas. No novel recurrent genetic alterations have been observed, but the data suggest that beside cAMP pathway, calcium signaling might be involved in the pathogenesis of these tumors.
Collapse
Affiliation(s)
- Cristina L Ronchi
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Erika Peverelli
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Sabine Herterich
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Isabel Weigand
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Giovanna Mantovani
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Thomas Schwarzmayr
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Silviu Sbiera
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Bruno Allolio
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Jürgen Honegger
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Silke Appenzeller
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, W
| | - Andrea G Lania
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Martin Reincke
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Davide Calebiro
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Anna Spada
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Michael Buchfelder
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Joerg Flitsch
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany
| | - Tim M Strom
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, W
| | - Martin Fassnacht
- Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, Wuerzburg, GermanyDepartment of NeurosurgeryUniversity Hospital of Erlangen, Erlangen, GermanyNeurosurgeryUniversity Hospital of Hamburg-Eppendorf, Hamburg, GermanyInstitute of Human GeneticsTechnische Universitaet Muenchen, Munich, Germany Department of Internal Medicine IEndocrine and Diabetes Unit, University Hospital, University of Wuerzburg, Oberduerrbacherstrasse 6, 97080 Wuerzburg, GermanyEndocrinology and Diabetology UnitDepartment of Clinical Sciences and Community Health, University of Milan, Milan, ItalyCentral LaboratoryUniversity Hospital, University of Wuerzburg, Wuerzburg, GermanyInstitute of Human GeneticsHelmholtz Zentrum Munich, Neuherberg, GermanyComprehensive Cancer Center MainfrankenUniversity of Wuerzburg, Wuerzburg, GermanyMedizinische Klinik and Poliklinik IVLudwig-Maximilians University, Munich, GermanyCore Unit Systems MedicineUniversity of Wuerzburg, Wuerzburg, GermanyEndocrinology UnitDepartment of Biomedical Sciences, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, ItalyInstitute of Pharmacology and Toxicology and Bioimaging CenterUniversity of Wuerzburg, W
| |
Collapse
|
15
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 2016; 103:18-31. [PMID: 25592387 PMCID: PMC4497946 DOI: 10.1159/000371819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022]
Abstract
Pituitary adenomas are a common feature of a subset of endocrine neoplasia syndromes, which have otherwise highly variable disease manifestations. We provide here a review of the clinical features and human molecular genetics of multiple endocrine neoplasia (MEN) type 1 and 4 (MEN1 and MEN4, respectively) and Carney complex (CNC). MEN1, MEN4, and CNC are hereditary autosomal dominant syndromes that can present with pituitary adenomas. MEN1 is caused by inactivating mutations in the MEN1 gene, whose product menin is involved in multiple intracellular pathways contributing to transcriptional control and cell proliferation. MEN1 clinical features include primary hyperparathyroidism, pancreatic neuroendocrine tumours and prolactinomas as well as other pituitary adenomas. A subset of patients with pituitary adenomas and other MEN1 features have mutations in the CDKN1B gene; their disease has been called MEN4. Inactivating mutations in the type 1α regulatory subunit of protein kinase A (PKA; the PRKAR1A gene), that lead to dysregulation and activation of the PKA pathway, are the main genetic cause of CNC, which is clinically characterised by primary pigmented nodular adrenocortical disease, spotty skin pigmentation (lentigines), cardiac and other myxomas and acromegaly due to somatotropinomas or somatotrope hyperplasia.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
16
|
Abstract
Carney complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22-24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment and molecular etiology, including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing's syndrome.
Collapse
Affiliation(s)
- Ricardo Correa
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, NIH-Clinical Research Center, Room 1-3330, MSC1103, Bethesda, Maryland 20892, USA
| | - Paraskevi Salpea
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, NIH-Clinical Research Center, Room 1-3330, MSC1103, Bethesda, Maryland 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, NIH-Clinical Research Center, Room 1-3330, MSC1103, Bethesda, Maryland 20892, USA
| |
Collapse
|
17
|
Abstract
Chronic exposure to excess glucorticoids results in diverse manifestations of Cushing's syndrome, including debilitating morbidities and increased mortality. Genetic and molecular mechanisms responsible for excess cortisol secretion by primary adrenal lesions and adrenocorticotropic hormone (ACTH) secretion from corticotroph or ectopic tumours have been identified. New biochemical and imaging diagnostic approaches and progress in surgical and radiotherapy techniques have improved the management of patients. The therapeutic goal is to normalise tissue exposure to cortisol to reverse increased morbidity and mortality. Optimum treatment consisting of selective and complete resection of the causative tumour is necessay to allow eventual normalisation of the hypothalamic-pituitary-adrenal axis, maintenance of pituitary function, and avoidance of tumour recurrence. The development of new drugs offers clinicians several choices to treat patients with residual cortisol excess. However, for patients affected by this challenging syndrome, the long-term effects and comorbidities associated with hypercortisolism need ongoing care.
Collapse
Affiliation(s)
- André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Constantine A Stratakis
- Section on Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lynnette K Nieman
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
18
|
Lecoq AL, Kamenický P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol 2015; 11:43-54. [PMID: 25350067 DOI: 10.1038/nrendo.2014.181] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pituitary adenomas are benign intracranial neoplasms that can result in morbidity owing to local invasion and/or excessive or deficient hormone production. The prevalence of symptomatic pituitary adenomas is approximately 1:1,000 in the general population. The vast majority of these tumours occur sporadically and are not part of syndromic disorders. However, germline mutations in genes known to predispose individuals to familial pituitary adenomas are found in a few patients with sporadic pituitary adenomas. Mutations in AIP (encoding aryl-hydrocarbon receptor-interacting protein) are the most frequently observed germline mutations. The prevalence of these mutations in patients with sporadic pituitary adenomas is ∼4%, but can increase to 8-20% in young adults with macroadenomas or gigantism, and also in children. Germline mutations in MEN1 (encoding menin) result in multiple endocrine neoplasia type 1 and are found in very young patients with isolated sporadic pituitary adenomas, which highlights the importance of the chromosome 11q13 locus in pituitary tumorigenesis. In this Review, we describe the clinical features of patients with sporadic pituitary adenomas that are associated with AIP or MEN1 mutations, and discuss the molecular mechanisms that might be involved in pituitary adenoma tumorigenesis. We also discuss genetic screening of patients with sporadic pituitary adenomas and investigations of relatives of these patients who also have the same genetic mutations.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Larkin SJ, Ferraù F, Karavitaki N, Hernández-Ramírez LC, Ansorge O, Grossman AB, Korbonits M. Sequence analysis of the catalytic subunit of PKA in somatotroph adenomas. Eur J Endocrinol 2014; 171:705-10. [PMID: 25225481 DOI: 10.1530/eje-14-0545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The pathogenetic mechanisms of sporadic somatotroph adenomas are not well understood, but derangements of the cAMP pathway have been implicated. Recent studies have identified L206R mutations in the alpha catalytic subunit of protein kinase A (PRKACA) in cortisol-producing adrenocortical adenomas and amplification of the beta catalytic subunit of protein kinase A PRKACB in acromegaly associated with Carney complex. Given that both adrenocortical adenomas and somatotroph adenomas are known to be reliant on the cAMP signalling pathway, we sought to determine the relevance of the L206R mutation in both PRKACA and PRKACB for the pathogenesis of sporadic somatotroph adenomas. DESIGN Somatotroph adenoma specimens, both frozen and formalin-fixed, from patients who underwent surgery for their acromegaly between 1995 and 2012, were used in the study. METHODS The DNA sequence at codon 206 of PRKACA and PRKACB was determined by PCR amplification and sequencing. The results were compared with patient characteristics, the mutational status of the GNAS complex locus and the tumour granulation pattern. RESULTS No mutations at codon 206 of PRKACA or PRKACB were found in a total of 92 specimens, comprising both WT and mutant GNAS cases, and densely, sparsely and mixed granulation patterns. CONCLUSIONS It is unlikely that mutation at this locus is involved in the pathogenesis of sporadic somatotroph adenoma; however, gene amplification or mutations at other loci or in other components of the cAMP signalling pathway, while unlikely, cannot be ruled out.
Collapse
Affiliation(s)
- Sarah J Larkin
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Francesco Ferraù
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Niki Karavitaki
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Laura C Hernández-Ramírez
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Ashley B Grossman
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Márta Korbonits
- Nuffield Department of Clinical NeurosciencesDepartment of Neuropathology, Level 1 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UKDepartment of EndocrinologyBarts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, UKDepartment of EndocrinologyOxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| |
Collapse
|
20
|
Abstract
The history of pituitary pathology is a long one that dates back to biblical times, but the last 25 years have represented an era of "coming of age." The role of the pituitary in health and disease was the subject of many studies over the last century. With the development of electron microscopy, immunoassays, and immunohistochemistry, the functional alterations associated with pituitary disease have been clarified. The additional information provided by molecular genetic studies has allowed progress in understanding the pathogenesis of pituitary disorders. Nevertheless, many questions remain to be answered. For example, pathologists cannot morphologically distinguish locally aggressive adenomas from carcinomas when tumor is confined to the sella. Sadly, basal cell carcinoma, the most common carcinoma of skin, usually causes less morbidity than pituitary adenomas, which occur in almost 20 % of the general population, can cause significant illness and even death, and yet are still classified as benign. The opportunity to increase awareness of the impact of these common lesions on quality of life is the current challenge for physicians and patients. We anticipate that ongoing multidisciplinary approaches to pituitary disease research will offer new insights into diseases arising from this fascinating organ.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, Ontario, Canada, M5G 2C4,
| | | |
Collapse
|
21
|
Abstract
Pituitary adenomas are benign intracranial neoplasms that present a major clinical concern due to hormone overproduction and/or tumor mass effects. The majority of pituitary adenomas occur sporadically; however, familial cases are increasingly being recognized, such as multiple endocrine neoplasia type 1 (MEN1), Carney complex (CNC), and familial isolated pituitary adenoma (FIPA). Familial pituitary tumors appear to differ from their sporadic counterparts both in their genetic basis and in clinical characteristics. Evidence suggests that, especially in MEN1 and FIPA, tumors are more aggressive and affect patients at a younger age, therefore justifying the importance of early diagnosis, while in Carney complex pituitary hyperplasia is common. The genetic alterations responsible for the formation of familial pituitary syndromes include the MEN1 gene, responsible for about 80% of MEN1 cases, the regulatory subunit of the protein kinase A, PRKAR1A, responsible for about 70% of Carney complex cases, and AIP, the gene coding the aryl hydrocarbon receptor interacting protein, responsible for about 20% of FIPA cases. Rarely other genes have also been found responsible for familial pituitary adenoma cases. McCune-Albright syndrome (MAS) also has a genetic origin due to mosaic mutations in the G protein-coupled α subunit coded by the GNAS1 gene. In this chapter, we summarize the genetic and clinical characteristics of these familial pituitary syndromes and MAS.
Collapse
Affiliation(s)
- Neda Alband
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
22
|
Gangoda L, Doerflinger M, Lee YY, Rahimi A, Etemadi N, Chau D, Milla L, O'Connor L, Puthalakath H. Cre transgene results in global attenuation of the cAMP/PKA pathway. Cell Death Dis 2012; 3:e365. [PMID: 22875002 PMCID: PMC3434654 DOI: 10.1038/cddis.2012.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Use of the cre transgene in in vivo mouse models to delete a specific 'floxed' allele is a well-accepted method for studying the effects of spatially or temporarily regulated genes. During the course of our investigation into the effect of cyclic adenosine 3',5'-monophosphate-dependent protein kinase A (PKA) expression on cell death, we found that cre expression either in cultured cell lines or in transgenic mice results in global changes in PKA target phosphorylation. This consequently alters gene expression profile and changes in cytokine secretion such as IL-6. These effects are dependent on its recombinase activity and can be attributed to the upregulation of specific inhibitors of PKA (PKI). These results may explain the cytotoxicity often associated with cre expression in many transgenic animals and may also explain many of the phenotypes observed in the context of Cre-mediated gene deletion. Our results may therefore influence the interpretation of data generated using the conventional cre transgenic system.
Collapse
Affiliation(s)
- L Gangoda
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria, Australia 3086
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stratakis CA, Tichomirowa MA, Boikos S, Azevedo MF, Lodish M, Martari M, Verma S, Daly AF, Raygada M, Keil MF, Papademetriou J, Drori-Herishanu L, Horvath A, Tsang KM, Nesterova M, Franklin S, Vanbellinghen JF, Bours V, Salvatori R, Beckers A. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet 2011; 78:457-63. [PMID: 20507346 DOI: 10.1111/j.1399-0004.2010.01406.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The prevalence of germline mutations in MEN1, AIP, PRKAR1A, CDKN1B and CDKN2CI is unknown among pediatric patients with pituitary adenomas (PA). In this study, we screened children with PA for mutations in these genes; somatic GNAS mutations were also studied in a limited number of growth hormone (GH) or prolactin (PRL)-secreting PA. We studied 74 and 6 patients with either isolated Cushing disease (CD) or GH- or PRL-secreting PA, respectively. We also screened four pediatric patients with CD, and four with GH/PRL-secreting tumors who had some syndromic features. There was one AIP mutation (p.Lys103Arg) among 74 CD patients. Two MEN1 mutations that occurred in patients with recurrent or difficult-to-treat disease were found among patients with CD. There was one MEN1 and three AIP mutations (p.Gln307ProfsX104, p.Pro114fsX, p.Lys241X) among pediatric patients with isolated GH- or PRL-secreting PA and one additional MEN1 mutation in a patient with positive family history. There were no mutations in the PRKAR1A, CDKN1B, CDKN2C or GNAS genes. Thus, germline AIP or MEN1 gene mutations are frequent among pediatric patients with GH- or PRL-secreting PA but are significantly rarer in pediatric CD; PRKAR1A mutations are not present in PA outside of Carney complex.
Collapse
Affiliation(s)
- C A Stratakis
- Section on Endocrinology Genetics, Program on Developmental Endocrinology Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institute of Health (NIH), Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kirschner LS. PRKAR1A and the evolution of pituitary tumors. Mol Cell Endocrinol 2010; 326:3-7. [PMID: 20451576 PMCID: PMC2922961 DOI: 10.1016/j.mce.2010.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 01/26/2023]
Abstract
Carney complex (CNC) is an inherited tumor predisposition associated with pituitary tumors, including GH-producing pituitary adenomas and rare reports of prolactinomas. This disease is caused by mutations in PRKAR1A, which encodes the type 1A regulatory subunit of the cAMP-dependent protein kinase, PKA. Loss of PRKAR1A causes enhanced PKA signaling, which leads to pituitary tumorigenesis. Mutations in the gene have not been detected in sporadic pituitary tumors, but there is some data to suggest that non-genomic mechanisms may cause loss of protein expression. Unlike CNC patients, mice heterozygous for Prkar1a mutations do not develop pituitary tumors, although complete knockout of the gene in the Pit1 lineage of the pituitary produces GH-secreting pituitary adenomas. These data indicate that complete loss of Prkar1a/PRKAR1A is able to cause pituitary tumors in mice and men. The pattern of tumors is likely related to the signaling pathways employed in specific pituitary cell types.
Collapse
Affiliation(s)
- Lawrence S Kirschner
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Xekouki P, Azevedo M, Stratakis CA. Anterior pituitary adenomas: inherited syndromes, novel genes and molecular pathways. Expert Rev Endocrinol Metab 2010; 5:697-709. [PMID: 21264206 PMCID: PMC3024595 DOI: 10.1586/eem.10.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pituitary adenomas are common tumors. Although rarely malignant, pituitary adenomas cause significant morbidity due to mass effects and/or hormonal hypo- and/or hyper-secretion. Molecular understanding of pituitary adenoma formation is essential for the development of medical therapies and the treatment of post-operative recurrences. In general, mutations in genes involved in genetic syndromes associated with pituitary tumors are not a common finding in sporadic lesions. By contrast, multiple endocrine neoplasia type 1 (MEN-1) and aryl hydrocarbon receptor-interacting protein (AIP) mutations may be more frequent among specific subgroups of patients, such as children and young adults, with growth hormone-producing adenomas. In this article, we present the most recent data on the molecular pathogenesis of pituitary adenomas and discuss some of the most recent findings from our laboratory. Guidelines for genetic screening and clinical counseling of patients with pituitary tumors are provided.
Collapse
Affiliation(s)
- Paraskevi Xekouki
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| | - Monalisa Azevedo
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| | - Constantine A Stratakis
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Abstract
The pathogenesis of tumour formation in the anterior pituitary has been intensively studied, but the causative mechanisms involved in pituitary cell transformation and tumourigenesis remain elusive. Most pituitary tumours are sporadic, but some arise as a component of genetic syndromes such as the McCune-Albright syndrome, multiple endocrine neoplasia type 1, Carney complex and, the most recently described, a MEN1-like phenotype (MEN4) and pituitary adenoma predisposition syndromes. Some specific genes have been identified that predispose to pituitary neoplasia (GNAS, MEN1, PRKAR1A, CDKN1B and AIP), but these are rarely involved in the pathogenesis of sporadic tumours. Mutations of tumour suppressor genes or oncogenes, as seen in more common cancers, do not seem to play an important role in the great majority of pituitary adenomas. The pituitary tumour transforming gene (PTTG; securin) was the first transforming gene found to be highly expressed in pituitary tumour cells, and seems to play an important role in the process of oncogenesis. Many tumour suppressor genes, especially those involved in the regulation of the cell cycle, are under-expressed, most often by epigenetic modulation - usually promoter hypermethylation - but the regulator of these co-ordinated series of methylations is also unclear. Cell signalling abnormalities have been identified in pituitary tumours, but their genetic basis is unknown. Both Raf/MEK/ERK and PI3K/Akt/mTOR pathways are over-expressed and/or over-activated in pituitary tumours: these pathways share a common root, including initial activation related to the tyrosine kinase receptor, and we speculate that a change to these receptors or their relationship to membrane matrix-related proteins may be an early event in pituitary tumourigenesis.
Collapse
Affiliation(s)
- Dorota Dworakowska
- Centre for Endocrinology, Barts and the London School of Medicine, EC1M 6BQ, UK
| | | |
Collapse
|
27
|
Abstract
According to data derived from autopsy and radiological imaging series, pituitary tumours occur very commonly in the general population; however, most of these tumours are incidental findings with no obvious clinical impact. The historical data on the prevalence of pituitary adenomas in the clinical setting are scant and point to such tumours being relatively rare. Recent studies have shown that the prevalence of clinically relevant pituitary adenomas is 3-5 times higher than previously reported, which adds impetus to research into the aetiology of these tumours. Although the majority of pituitary adenomas are sporadic, approximately 5% of all cases occur in a familial setting and over half of these are due to Multiple Endocrine Neoplasia Type 1 (MEN-1) and Carney's Complex (CNC) disorders. Since the late 1990 s, we have described non-MEN1/CNC familial pituitary tumours that include all tumour phenotypes as a condition termed Familial Isolated Pituitary Adenomas (FIPAs). The clinical characteristics of the FIPAs vary from those sporadic pituitary adenomas, as patients with FIPAs have a younger age at diagnosis and larger tumours. About 15% of the FIPA patients have mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP), which indicates that the FIPA may have a diverse genetic pathophysiology.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | | | | |
Collapse
|
28
|
Kirschner LS. Use of mouse models to understand the molecular basis of tissue-specific tumorigenesis in the Carney complex. J Intern Med 2009; 266:60-8. [PMID: 19522826 DOI: 10.1111/j.1365-2796.2009.02114.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carney complex (CNC) is an autosomal dominant, multiple endocrine neoplasia syndrome comprised of spotty skin pigmentation, myxomatosis, endocrine tumours and schwannomas. The majority of cases are due to inactivating mutations in PRKAR1A, the gene encoding the type 1A regulatory subunit of the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase, PKA (protein kinase A). In order to understand the molecular basis for tumorigenesis associated with PRKAR1A mutations, we have developed conventional and conditional Prkar1a knockout (KO) mice as well as primary cell culture models corresponding to these genetic manipulations. At the biochemical level, removal of Prkar1a from cells causes enhanced PKA activity, the same effect which has been observed in tumours isolated from CNC patients. Mice heterozygous for Prkar1a mutations (the exact genetic model for CNC patients) are born at expected frequencies and are tumour prone, developing neoplasms in cAMP-responsive cell types such as Schwann cells, osteoblasts and thyrocytes. In order to understand the basis of tissue-specific tumour formation, we have created tissue-specific KOs of the gene from three different tissues: the neural crest (Schwann cells), the pituitary gland and the heart. In the neural crest and the pituitary, ablation of Prkar1a leads to excess proliferation and tumorigenesis, whereas the same manipulation in developing cardiomyocytes leads to reduced proliferation and embryonic demise. The KO hearts also exhibit myxomatous changes suggesting a connection between PKA activation and myxomagenesis, although the nature of this relationship has not yet been determined. This work confirms the role of Prkar1a as a tissue-specific tumour suppressor, and ongoing work is focused on identifying the key downstream signalling targets affected by dysregulation of PKA.
Collapse
Affiliation(s)
- L S Kirschner
- Division of Endocrinology, Diabetes and Metabolism and Human Cancer Genetics Program, The Ohio State University, 544 TMRF, 420 W 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Abstract
The majority of pituitary adenomas occur sporadically, however, about 5% of all cases occur in a familial setting, of which over half are due to multiple endocrine neoplasia type 1 (MEN-1) and Carney's complex (CNC). Since the late 1990s we have described non-MEN1/CNC familial pituitary tumours that include all tumour phenotypes, a condition named familial isolated pituitary adenomas (FIPA). The clinical characteristics of FIPA vary from those of sporadic pituitary adenomas, as patients with FIPA have a younger age at diagnosis and larger tumours. About 15% of FIPA patients have mutations in the aryl hydrocarbon receptor interacting protein gene (AIP), which indicates that FIPA may have a diverse genetic pathophysiology. This review describes the clinical features of familial pituitary adenomas like MEN1, the MEN 1-like syndrome MEN-4, CNC, FIPA, the tumour pathologies found in this setting and the genetic/molecular data that have been recently reported.
Collapse
Affiliation(s)
- M A Tichomirowa
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège 4000, Belgium
| | | | | |
Collapse
|
30
|
Abstract
Oncogenes and tumor suppressor genes involved in most common cancers are not involved in the great majority of pituitary adenomas. Similarly, there is little evidence to suggest that the mutations involved in genetic syndromes associated with pituitary tumors (such as the gsp, MEN1, PKAR1A or AIP mutations) are common in sporadic tumors. A novel pituitary tumor transforming gene (PTTG, securin) has been identified which is over-expressed in most tumors--but it is unclear as to its causal role in oncogenesis. Cell signaling abnormalities have been identified in pituitary tumors but their genetic basis is unknown. However, both the Akt pathway and the MAPK pathway are over-expressed in many pituitary tumors, which results in the inhibition of cell cycle inhibitors. These pathways share a common root in the tyrosine kinase receptor, and a change to these receptors or their relationship to membrane matrix-related proteins may be an early event in tumorigenesis.
Collapse
Affiliation(s)
- Ashley B Grossman
- Department of Endocrinology, Centre for Endocrinology, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK.
| |
Collapse
|
31
|
Horvath A, Stratakis CA. Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune-Albright syndrome, familial acromegaly and genetic defects in sporadic tumors. Rev Endocr Metab Disord 2008; 9:1-11. [PMID: 18200440 DOI: 10.1007/s11154-007-9066-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pituitary tumors are among the most common neoplasms in man; they account for approximately 15% of all primary intracranial lesions (Jagannathan et al., Neurosurg Focus, 19:E4, 2005). Although almost never malignant and rarely clinically expressed, pituitary tumors may cause significant morbidity in affected patients. First, given the critical location of the gland, large tumors may lead to mass effects, and, second, proliferation of hormone-secreting pituitary cells leads to endocrine syndromes. Acromegaly results from oversecretion of growth hormone (GH) by the proliferating somatotrophs. Despite the significant efforts made over the last decade, still little is known about the genetic causes of common pituitary tumors and even less is applied from this knowledge therapeutically. In this review, we present an update on the genetic syndromes associated with pituitary adenomas and discuss the related genetic defects. We next review findings on sporadic, non-genetic, pituitary tumors with an emphasis on pathways and animal models of pituitary disease. In conclusion, we attempt to present an overall, integrative approach to the human molecular genetics of both familiar and sporadic pituitary tumors.
Collapse
Affiliation(s)
- Anelia Horvath
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1103, USA
| | | |
Collapse
|
32
|
Morita K, Takano K, Yasufuku-Takano J, Yamada S, Teramoto A, Takei M, Osamura RY, Sano T, Fujita T. Expression of pituitary tumour-derived, N-terminally truncated isoform of fibroblast growth factor receptor 4 (ptd-FGFR4) correlates with tumour invasiveness but not with G-protein alpha subunit (gsp) mutation in human GH-secreting pituitary adenomas. Clin Endocrinol (Oxf) 2008; 68:435-41. [PMID: 18070145 DOI: 10.1111/j.1365-2265.2007.03062.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Apart from the constitutively activating mutation of the G-protein alpha subunit (Gsalpha) (gsp mutation), factors involved in tumorigenesis or those in tumour behaviour remain elusive in sporadic GH-secreting pituitary adenomas. Recently, the N-terminally truncated form of fibroblast growth factor receptor-4 (ptd-FGFR4) was identified in pituitary adenomas. This aberrant receptor has transforming activity, and causes pituitary adenomas in transgenic mice. The clinical relevance of this receptor warrants investigation. Our objective was twofold: first, to examine how the expression of ptd-FGFR4 relates to gsp mutations; and second, to see whether patients with this receptor have unique clinical characteristics. MATERIALS AND METHODS mRNA was extracted from excised adenomas of 45 Japanese acromegalic patients. ptd-FGFR4 expression and gsp mutations were determined by reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing. Preoperative clinical data were collected by reviewing medical charts and pituitary magnetic resonance imaging (MRI) scans. RESULTS ptd-FGFR4 mRNA expression was detected in 19 out of 45 tumours (42.2%) while gsp mutations were detected in 25 out of 45 tumours (55.6%). The prevalence of ptd-FGFR4 expression did not differ between gsp-positive (44.0%) and gsp-negative (40.0%) tumours (P = 1.00). ptd-FGFR4-positive tumours invaded the cavernous sinus more frequently (P = 0.0098) than did the ptd-FGFR4-negative tumours. Tumour size was not statistically different between ptd-FGFR4-positive and -negative tumours (P = 0.198). The presence of ptd-FGFR4 did not correlate with age at operation, sex, preoperative serum GH or IGF-1 levels. CONCLUSIONS We found that ptd-FGFR4 expression and gsp mutations occur independently of each other, and that ptd-FGFR4 expression is associated with more invasive tumours in patients with GH-secreting pituitary adenomas.
Collapse
Affiliation(s)
- Koji Morita
- Department of Nephrology and Endocrinology, University of Tokyo Faculty of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boikos SA, Stratakis CA. Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Hum Mol Genet 2007; 16 Spec No 1:R80-7. [PMID: 17613552 DOI: 10.1093/hmg/ddm019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pituitary tumors are among the most common human neoplasms. Although these common lesions rarely become clinically manifest and they are almost never malignant, they are the cause of significant morbidity in affected patients. The genetic causes of common pituitary tumors remain for the most part unknown; progress has been limited to the elucidation of the molecular etiology of four genetic syndromes predisposing to pituitary neoplasias: McCune-Albright syndrome, multiple endocrine neoplasia type 1, Carney complex and, most recently, familial acromegaly and prolactinomas and other tumors caused by mutations in the GNAS, menin, PRKAR1A, AIP, and p27 (CDKN1B) genes, respectively. Intense molecular studies of sporadic pituitary tumors from patients with negative family histories and no other neoplasms have yielded interesting findings with abnormalities in growth factor expression and cell cycle control dysregulation. To add to the difficulties in understanding pituitary tumorigenesis in man, good murine models of these neoplasms simply do not exist: pituitary tumors are common in rodents, but their histologic origin (mostly from the intermediate lobe), age of presentation (late in murine life) and clinical course make them hardly models of their human counterparts. The present report reviews the clinical and molecular genetics of the cAMP-dependent protein kinase pathway in human pituitary tumors; it also reviews briefly other pathways that have been involved in sporadic pituitary neoplasms. At the end, we attempt a unifying hypothesis for pituitary tumorigenesis, taking into account data that are also discussed elsewhere in this issue.
Collapse
Affiliation(s)
- Sosipatros A Boikos
- Section on Endocrinology and Genetics (SEGEN), Developmental Endocrinology Branch (DEB), National Institute of Child Health and Human Development (NICHD), National Institues of Health, Bethesda, MD 20892-1103, USA
| | | |
Collapse
|
34
|
Yin Z, Williams-Simons L, Parlow AF, Asa S, Kirschner LS. Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 2007; 22:380-7. [PMID: 17975024 DOI: 10.1210/me.2006-0428] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carney complex (CNC) is an inherited neoplasia syndrome characterized by spotty skin pigmentation, myxomas, endocrine tumors, and schwannomas. Among the endocrine tumors that comprise the syndrome, GH-producing pituitary tumors are seen in approximately 10% of patients, although biochemical abnormalities of the GH axis are much more common. To explore the role of loss of the CNC gene PRKAR1A on pituitary tumorigenesis, we produced a tissue-specific knockout (KO) of this gene in the mouse. For these studies, we generated a mouse line expressing the cre recombinase in pituitary cells using the rat GHRH receptor promoter. These mice were then crossed with Prkar1a conditional null animals to produce tissue-specific KOs. Although prolactinomas were observed in KO and control mice, the KO mice exhibited a significantly increased frequency of pituitary tumors compared with wild-type or conventional Prkar1a(+/-) mice. Characterization of the tumors demonstrated they were composed of cells of the Pit1 lineage that stained for GH, prolactin, and TSH. At the biochemical level, levels of GH in the serum of KO animals were markedly elevated compared with controls, regardless of the presence of a frank tumor. These data indicate that complete loss of Prkar1a is sufficient to allow the formation of pituitary tumors and abnormalities of the GH axis, in close analogy to human patients with CNC.
Collapse
Affiliation(s)
- Zhirong Yin
- Department of Molecular Virology, Immunology, and Molecular Genetics, The Ohio State University, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
35
|
Toledo RA, Lourenço DM, Liberman B, Cunha-Neto MBC, Cavalcanti MG, Moyses CB, Toledo SPA, Dahia PLM. Germline mutation in the aryl hydrocarbon receptor interacting protein gene in familial somatotropinoma. J Clin Endocrinol Metab 2007; 92:1934-7. [PMID: 17341560 DOI: 10.1210/jc.2006-2394] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Acromegaly is usually sporadic, but familial cases occur in association with several familial pituitary tumor syndromes. Recently mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were associated with familial pituitary adenoma predisposition. OBJECTIVE The objective of the study was to investigate the status of AIP in a pituitary tumor predisposition family. SETTINGS The study was conducted at a nonprofit academic center and medical centers. PATIENTS Eighteen members of a Brazilian family with acromegaly were studied. RESULTS A novel germline mutation in the AIP gene, Y268X, predicted to generate a protein lacking two conserved domains, was identified in four members of this family: two siblings with early-onset acromegaly; a third, 41-yr-old sibling with a microadenoma but no clinical features of disease, and his 3-yr-old son. No changes were found in 14 unaffected at-risk relatives or 92 healthy controls. CONCLUSIONS We confirm the role of the AIP gene in familial acromegaly. This finding increases the spectrum of molecular defects that can give rise to pituitary adenoma susceptibility. Establishment of genotype-phenotype correlations in AIP mutant tumors will determine whether AIP screening can be used as a tool for clinical surveillance and genetic counseling of families with pituitary tumor predisposition. The underlying basis for the phenotypic variation within AIP-mutant families and the mechanism of AIP-mediated tumorigenesis remain to be defined.
Collapse
Affiliation(s)
- Rodrigo A Toledo
- Unidade de Endocrinologia Genética, Faculdade de Medicina, Universidade de São Paulo, Av Dr Arnaldo 455-5 andar, São Paulo-SP, Brazil 01246-903.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sonabend AM, Musleh W, Lesniak MS. Oncogenesis and mutagenesis of pituitary tumors. Expert Rev Anticancer Ther 2006; 6 Suppl 9:S3-14. [PMID: 17004855 DOI: 10.1586/14737140.6.9s.s3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although pituitary tumors may be present in up to 10% of the population, the pathophysiology of these lesions is not well characterized. Pituitary tumors are composed of monoclonal cell populations with disrupted control of replication pathways. The oncogenes and tumor suppressor genes that are common in other malignancies (i.e. jun, fos, myc, and p53) are rarely involved in the development of these tumors. However, oncogenes, such as gsp, can be present in up to 40% of hormonally active adenomas. The process of pituitary oncogenesis further appears to involve oncogenes such as cyclin E, cyclin D1, and the pituitary tumor transforming gene (PTTG). Finally, the cAMP signaling cascade plays a significant role in generation of both benign and malignant pituitary tumors. In this review, the biology of pituitary adenomas is explored with a special emphasis on potential targets for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Adam M Sonabend
- The University of Chicago, Division of Neurosurgery, 5841 S. Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | |
Collapse
|
37
|
Nadella KS, Kirschner LS. Disruption of protein kinase a regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res 2006; 65:10307-15. [PMID: 16288019 DOI: 10.1158/0008-5472.can-05-3183] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorylation is a key event in cell cycle control, and dysregulation of this process is observed in many tumors, including those associated with specific inherited neoplasia syndromes. We have shown previously that patients with the autosomal dominant tumor predisposition Carney complex carry inactivating mutations in the PRKAR1A gene, which encodes the type 1A regulatory subunit of protein kinase A (PKA), the cyclic AMP-dependent protein kinase. This defect was associated with dysregulation of PKA signaling, and genetic analysis has suggested that complete loss of the gene may be required for tumorigenesis. To determine the mechanism by which dysregulation of PKA causes tumor formation, we generated in vitro primary mouse cells lacking the Prkar1a protein. We report that this genetic disruption of PKA regulation causes constitutive PKA activation and immortalization of primary mouse embryonic fibroblasts (MEFs). At the molecular level, knockout of Prkar1a leads to up-regulation of D-type cyclins, and this increase occurs independently of other pathways known to increase cyclin D levels. Despite the immortalized phenotype, known mediators of cellular senescence (e.g., p53 and p19ARF) seem to remain intact in Prkar1a-/- MEFs. Mechanistically, cyclin D1 mRNA levels are not altered in the knockout cells, but protein half-life is markedly increased. Using this model, we provide the first direct genetic evidence that dysregulation of PKA promotes important steps in tumorigenesis, and that cyclin D1 is an essential target of PKA.
Collapse
Affiliation(s)
- Kiran S Nadella
- Human Cancer Genetics Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
38
|
Boikos SA, Stratakis CA. Pituitary pathology in patients with Carney Complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary 2006; 9:203-9. [PMID: 17001464 DOI: 10.1007/s11102-006-0265-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
First described in the mid 80's, Carney Complex (CNC) is a rare, dominantly heritable disorder with features overlapping those of McCune-Albright syndrome (MAS) and other multiple endocrine neoplasia (MEN) syndromes like MEN type 1 (MEN 1). Pituitary tumors have been described in a number of patients with CNC; they present with elevated growth hormone (GH) levels and mild hyperprolactinemia. However, most patients with CNC have mild hypersomatomammotropinemia starting in adolescence; this is similar to the situation in MAS patients: in both disorders, pituitary hyperplasia appears to precede tumor development. Familial pituitary tumor syndromes such as CNC provide an important insight into the genetics and molecular pathology of pituitary and other endocrine tumors. Our understanding of these conditions is expanding rapidly due to the identification of the causative genes and the availability of murine disease models. The present report reviews the clinical findings related to pituitary tumor development among patients with CNC and provides an update on murine models of the complex.
Collapse
Affiliation(s)
- Sosipatros A Boikos
- Section on Endocrinology & Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1103, USA
| | | |
Collapse
|
39
|
Perdigão PF, Stergiopoulos SG, De Marco L, Matyakhina L, Boikos SA, Gomez RS, Pimenta FJGS, Stratakis CA. Molecular and immunohistochemical investigation of protein kinase a regulatory subunit type 1A (PRKAR1A) in odontogenic myxomas. Genes Chromosomes Cancer 2005; 44:204-11. [PMID: 16001434 DOI: 10.1002/gcc.20232] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Odontogenic myxomas are rare benign neoplasms affecting the jaw. Myxomas of bones and other sites occur as part of Carney complex (CNC), a multiple neoplasia syndrome caused by mutations in the PRKAR1A gene, which codes for the regulatory subunit of protein kinase A (PKA). In the present study, 17 odontogenic myxomas from patients without CNC were screened for PRKAR1A mutations and PRKAR1A protein expression by immunohistochemistry (IHC). Mutations of the coding region of the PRKAR1A gene were identified in 2 tumors; both these lesions showed no or significantly decreased immunostaining of PRKAR1A in the tumor compared to that in the surrounding normal tissue. One mutation (c.725C>A) led to a nonconservative amino acid substitution in a highly conserved area of the gene (A213D); the other was a single base-pair deletion that led to a frameshift (del774C) and a stop codon 11 amino acids downstream of the mutation site; both tumors were heterozygous for the respective mutations. Of the remaining tumors, 7 of the 15 without mutations showed almost no PRKAR1A in the tumor cells, whereas IHC showed that the protein was abundant in nontumorous cells. We concluded that PRKAR1A may be involved by its down-regulation in the pathogenesis of odontogenic myxomas caused by mutations and/or other genetic mechanisms. Of the sporadic, nonfamilial tumors associated with PRKAR1A mutations, the odontogenic type was the first myxomatous lesion found to harbor somatic PRKAR1A sequence changes.
Collapse
Affiliation(s)
- Paola F Perdigão
- Department of Pharmacology, Universidade Federal de Minas, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Hereditary origin of a tumor helps toward early discovery of its mutated gene; for example, it supports the compilation of a DNA panel from index cases to identify that gene by finding mutations in it. The gene for a hereditary tumor may contribute also to common tumors. For some syndromes, such as hereditary paraganglioma, several genes can cause a similar syndrome. For other syndromes, such as multiple endocrine neoplasia 2, one gene supports variants of a syndrome. Onset usually begins earlier and in more locations with hereditary than sporadic tumors. Mono- or oligoclonal ("clonal") tumor usually implies a postnatal delay, albeit less delay than for sporadic tumor, to onset and potential for cancer. Hormone excess from a polyclonal tissue shows onset at birth and no benefit from subtotal ablation of the secreting organ. Genes can cause neoplasms through stepwise loss of function, gain of function, or combinations of these. Polyclonal hormonal excess reflects abnormal gene dosage or effect, such as activation or haploinsufficiency. Polyclonal hyperplasia can cause the main endpoint of clinical expression in some syndromes or can be a precursor to clonal progression in others. Gene discovery is usually the first step toward clarifying the molecule and pathway mutated in a syndrome. Most mutated pathways in hormone excess states are only partly understood. The bases for tissue specificity of hormone excess syndromes are usually uncertain. In a few syndromes, tissue selectivity arises from mutation in the open reading frame of a regulatory gene (CASR, TSHR) with selective expression driven by its promoter. Polyclonal excess of a hormone is usually from a defect in the sensor system for an extracellular ligand (e.g., calcium, glucose, TSH). The final connections of any of these polyclonal or clonal pathways to hormone secretion have not been identified. In many cases, monoclonal proliferation causes hormone excess, probably as a secondary consequence of accumulation of cells with coincidental hormone-secretory ability.
Collapse
Affiliation(s)
- Stephen J Marx
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 10, Room 9C-101, 10 Center Drive, MSC 1802, Bethesda, MD 20892-1802, USA.
| | | |
Collapse
|
41
|
Pack SD, Qin LX, Pak E, Wang Y, Ault DO, Mannan P, Jaikumar S, Stratakis CA, Oldfield EH, Zhuang Z, Weil RJ. Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer 2005; 43:72-82. [PMID: 15704128 DOI: 10.1002/gcc.20162] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Twenty-four pituitary adenomas, both the sporadic type (n = 18) and the type arising in association with either multiple endocrine neoplasia, type 1 (MEN1; n = 2), or Carney complex (CNC, n = 4) were analyzed by comparative genomic hybridization. Twenty-one (88%) tumors displayed chromosomal alterations. The number of chromosomal aberrations in each tumor varied from 2 to greater than 10. Several recurrent chromosomal abnormalities were identified in this study. The most frequently detected losses of chromosomal material involved 1p (14 of 24, 58%), 11p (11 of 24, 46%), 17 (10 of 24, 42%), 16p (9 of 24, 38%), 4 (8 of 24, 33%), 10p (6 of 24, 25%), 12 (6 of 24, 25%), 20 (6 of 24, 25%), 22q (6 of 24, 25%), 13q (5 of 24, 21%), and 9p (4 of 24, 17%). Copy number increases were detected on 4q (7 of 24, 29%), 17 (8 of 24, 33%), 19 (7 of 24, 29%), 1p (6 of 24, 25%), 5 (6 of 24, 25%), 20 (6 of 24, 25%), 6q (5 of 24, 21%), 13q21-qter (5 of 24, 21%), and 16p (5 of 24, 21%). Chromosome 11 loss, which involved 11p in all cases, was the most significant finding and was common to tumors arising sporadically and in association with MEN1 and CNC. In addition, the majority of the tumors (18 of 24, 75% overall and 86% of all tumors with chromosomal abnormalities) showed involvement of chromosome 1. Tumors had either loss (14 of 24, 58%) or gain (6 of 24, 25%) in the 1p32-1pter region. Finally, changes on chromosome 17, either loss or gain, occurred in 71% (17) of all 24 patients. In summary, all the tumors with chromosomal rearrangements (21 of 24, 88%), whether sporadic pituitary adenomas or those associated with MEN1 or CNC, had alteration(s) of 1p32, 11p, or 17.
Collapse
Affiliation(s)
- Svetlana D Pack
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsilou ET, Chan CC, Sandrini F, Rubin BI, Shen DF, Carney JA, Kaiser-Kupfer M, Stratakis CA. Eyelid myxoma in Carney complex without PRKAR1A allelic loss. Am J Med Genet A 2005; 130A:395-7. [PMID: 15368482 DOI: 10.1002/ajmg.a.30279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Eyelid nodules were investigated in a patient with Carney complex who was heterozygous for the most commonly known PRKAR1A-inactivating mutation, c.578delTG. Immunohistochemical studies confirmed the diagnosis of myxoma. Loss of heterozygosity was not present, suggesting that haploinsufficiency alone was responsible for tumorigenesis of this eyelid lesion.
Collapse
Affiliation(s)
- Ekaterini T Tsilou
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC-1860, Bldg. 10 Room 10N226, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lania AG, Mantovani G, Ferrero S, Pellegrini C, Bondioni S, Peverelli E, Braidotti P, Locatelli M, Zavanone ML, Ferrante E, Bosari S, Beck-Peccoz P, Spada A. Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase a regulatory subunit 1A protein. Cancer Res 2005; 64:9193-8. [PMID: 15604292 DOI: 10.1158/0008-5472.can-04-1847] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two regulatory subunits (R1 and R2) of protein kinase A (PKA) are differentially expressed in cancer cell lines and exert diverse roles in growth control. Recently, mutations of the PKA regulatory subunit 1A gene (PRKAR1A) have been identified in patients with Carney complex. The aim of this study was to evaluate the expression of the PKA regulatory subunits R1A, R2A, and R2B in a series of 30 pituitary adenomas and the effects of subunit activation on cell proliferation. In these tumors, neither mutation of PRKAR1A nor loss of heterozygosity was identified. By real-time PCR, mRNA of the three subunits was detected in all of the tumors, R1A being the most represented in the majority of samples. By contrast, immunohistochemistry documented low or absent R1A levels in all tumors, whereas R2A and R2B were highly expressed, thus resulting in an unbalanced R1/R2 ratio. The low levels of R1A were, at least in part, due to proteasome-mediated degradation. The effect of the R1/R2 ratio on proliferation was assessed in GH3 cells, which showed a similar unbalanced pattern of R subunits expression, and in growth hormone-secreting adenomas. The R2-selective cAMP analog 8-Cl cAMP and R1A RNA silencing, stimulated cell proliferation and increased Cyclin D1 expression, respectively, in human and rat adenomatous somatotrophs. These data show that a low R1/R2 ratio promoted proliferation of transformed somatotrophs and are consistent with the Carney complex model in which R1A inactivating mutations further unbalance this ratio in favor of R2 subunits. These results suggest that low expression of R1A protein may favor cAMP-dependent proliferation of transformed somatotrophs.
Collapse
Affiliation(s)
- Andrea G Lania
- Institute of Endocrine Sciences, Ospedale Maggiore, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Donangelo I, Gadelha M. Bases moleculares dos adenomas hipofisários com ênfase nos somatotropinomas. ACTA ACUST UNITED AC 2004; 48:464-79. [PMID: 15761509 DOI: 10.1590/s0004-27302004000400006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Esta revisão descreve as bases moleculares dos adenomas hipofisários com ênfase nos tumores secretores de GH (somatotropinomas). São discutidos os papéis de genes de supressão tumoral (como RB1, MEN-1) e de oncogenes (como gsp, PTTG) na iniciação e progressão destes tumores. A caracterização destes marcadores moleculares pode ajudar na compreensão do comportamento tumoral, auxiliando a conduta terapêutica. Entretanto, apesar dos recentes avanços, ainda não é totalmente conhecida a seqüência de alterações genéticas envolvidas na patogênese destes adenomas.
Collapse
Affiliation(s)
- Ines Donangelo
- Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
| | | |
Collapse
|
45
|
Abstract
Carney complex (CNC) is a familial multiple neoplasia syndrome with features overlapping those of McCune-Albright syndrome (MAS) and multiple endocrine neoplasia (MEN) type 1 (MEN 1). Like MAS and MEN 1 patients, patients with CNC develop growth hormone (GH)-producing pituitary tumors. Occasionally, these tumors are also prolactin-producing, but there are no isolated prolactinomas or other types of pituitary tumors. In at least some patients with CNC, the pituitary gland is characterized by hyperplastic areas; hyperplasia appears to involve somatomammotrophs only. Hyperplasia most likely precedes the formation of GH-producing adenomas in CNC, as has been suggested in MAS-related somatotropinomas, but has never been seen in MEN 1 patients. In at least one case of a patient with CNC and advanced acromegaly, a GH-producing macroadenoma showed extensive genetic changes at the chromosomal level. So far, half of the patients with CNC have germline inactivating mutations in the PRKAR1A gene; in their pituitary tumors, the normal allele of the PRKAR1A gene is lost. Loss-of-hererozygosity suggests that PRKAR1A, which codes for the regulatory subunit type 1alpha of the cAMP-dependent protein kinase A (PKA) may act as a tumor-suppressor gene in CNC somatomammotrophs. These data provide evidence for a PRKAR1A-induced somatomammotroph hyperpasia in the pituitary tissue of CNC patients; hyperplasia, in turn may lead to additional genetic changes at the somatic level, which then cause the formation of adenomas in some, but not all, patients.
Collapse
Affiliation(s)
- Sotirios G. Stergiopoulos
- Section on Endocrinology & Genetics (SEGEN), Developmental Endocrinology Branch (DEB), National Institute of Child Health and Human Development (NICHD)
| | - Mones S. Abu-Asab
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Maria Tsokos
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics (SEGEN), Developmental Endocrinology Branch (DEB), National Institute of Child Health and Human Development (NICHD)
| |
Collapse
|
46
|
Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: Focus on G-protein mutations. Exp Biol Med (Maywood) 2003; 228:1004-17. [PMID: 14530508 DOI: 10.1177/153537020322800904] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years the demonstration that human pituitary adenomas are monoclonal in origin has provided further evidence that pituitary neoplasia arise from the replication of a single mutated cell in which growth advantage results from either activation of proto-oncogenes or inactivation of tumor suppressor genes. While common oncogenes, such as Ras, are only exceptionally involved, the only mutations identified in a significant proportion of pituitary tumors, and particular in GH-secreting adenomas, occur in the Gsalpha gene (GNAS1) and cause constitutive activation of the cAMP pathway (gsp oncogene). Moreover, pituitary tumors overexpress hypothalamic releasing hormones, growth factors, and their receptors as well as cyclins involved in cell cycle progression. As far as the role of tumor suppressor genes in pituitary tumorigenesis is concerned, reduced expression of these genes seems to frequently occur in pituitary tumors as a consequence of abnormal methylation processes. Although the only mutational change so far identified in pituitary tumors is the gsp oncogene, this oncogene is not associated with a clear phenotype in patients bearing positive tumors. Mechanisms able to counteract the cAMP pathway, such as high sensitivity to somatostatin, and induction of genes with opposite actions, such as phosphodiesterases, CREB end ICER, or instability of mutant Gsalpha, have been proposed to account for the lack of genotype/phenotype relationships.
Collapse
Affiliation(s)
- Andrea Lania
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore IRCCS, 20122, Milano, Italy
| | | | | |
Collapse
|
47
|
Abstract
This article reviews published evidence on the diagnosis and classification of pituitary gland tumours and the relevance of histological and genetic features to prognosis. Much of the literature is devoted to the histological, ultrastructural, and immunocytochemical classification of pituitary adenomas (extensively supported by multicentre studies), with little consensus on the identification of prognostic features in adenomas, particularly in relation to invasion. There is a lack of correspondence between clinical and pathological criteria to identify and classify invasion, and a need to reassess the nomenclature and diagnostic criteria for invasive adenomas and carcinomas. Recent cytogenetic, genetic, and molecular biological studies have identified no consistent abnormalities in relation to pituitary tumour progression, although many genes are likely to be involved. In light of these uncertainties, an approach to the diagnosis and classification of pituitary adenomas is suggested, based on robust criteria from earlier studies and incorporating provisional data that require reassessment in large prospective studies with an adequate clinicopathological database.
Collapse
Affiliation(s)
- J W Ironside
- Division of Pathology, School of Clinical and Molecular Medicine, University of Edinburgh, Western General Hospital, Edingurgh EH4 2XU, UK.
| |
Collapse
|