1
|
Jiménez de la Peña MDM, Gil-Robles S, Aracil C, Casado EA, Rubio Alonso M, Martínez de Vega V. Postoperative reorganization of the supplementary motor area complex: A possible latent bihemispheric network. Clin Neurol Neurosurg 2024; 246:108586. [PMID: 39378707 DOI: 10.1016/j.clineuro.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Brain plasticity after multistep surgery in low-grade glioma is highly variable; the neurosurgical approach must be individualised and functional imaging can be used for this purpose. In supplementary motor area complex (SMAC) tumors, the early and adequate functional recovery of patients raises the possibility of a latent bihemispheric or "mirror" cortico-subcortical network, which would develop depending on the needs of each patient. METHODS Functional and DTI-MR data from 4 right-handed patients with left frontal low grade gliomas near the SMAC, who were operated at least in two occasions were collected. The time of the reintervention was variable (18 months- 8 years), related to the tumor growth. All patients were evaluated by a neuropsychologist and imaged before each surgery, in a 3 T MR, with a 24 multichanel head coil Motor and expressive language task-fMRI and DTI sequences were obtained to evidence the main cortico-subcortical components of the SMAC. Data were processed with Brainwave (GE Medical Systems) and with an Iplan Fiber Tracking tool (MEDTRONIC), respectively RESULTS: None of our patients presented permanent neurological deficits after the first or second functional surgery. Three patients with partial or complete resection of the left middle and / or inferior frontal gyrus, and the left frontal aslant tract evidenced new right hemispherical cortical activity. This right shift were not observed in the patient without left middle gyrus resection, indeed with partial absent of the left frontal aslant tract. CONCLUSION SMAC is a latent cortico-subcortical bihemispheric network that allows it to reorganize itself in response to specific neurological deficits. We highlight the importance in the cortical reorganization of the left middle frontal gyrus in the SMAC, closely connected with the essential language areas of this region, but also we focused in the potential cortioco-subcortical changes to compensate the functionality of the FAT.
Collapse
Affiliation(s)
- María Del Mar Jiménez de la Peña
- Department of Diagnostic Imaging, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain.
| | - Santiago Gil-Robles
- Department of Neurosurgery, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain
| | - Cristina Aracil
- Department of Neurosurgery, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain
| | | | | | - Vicente Martínez de Vega
- Department of Diagnostic Imaging, Hospital Universitario Quirónsalud, Madrid, Spain; Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Spain
| |
Collapse
|
2
|
Beyh A, Howells H, Giampiccolo D, Cancemi D, De Santiago Requejo F, Citro S, Keeble H, Lavrador JP, Bhangoo R, Ashkan K, Dell'Acqua F, Catani M, Vergani F. Connectivity defines the distinctive anatomy and function of the hand-knob area. Brain Commun 2024; 6:fcae261. [PMID: 39239149 PMCID: PMC11375856 DOI: 10.1093/braincomms/fcae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/19/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Control of the hand muscles during fine digit movements requires a high level of sensorimotor integration, which relies on a complex network of cortical and subcortical hubs. The components of this network have been extensively studied in human and non-human primates, but discrepancies in the findings obtained from different mapping approaches are difficult to interpret. In this study, we defined the cortical and connectional components of the hand motor network in the same cohort of 20 healthy adults and 3 neurosurgical patients. We used multimodal structural magnetic resonance imaging (including T1-weighted imaging and diffusion tractography), as well as functional magnetic resonance imaging and navigated transcranial magnetic stimulation (nTMS). The motor map obtained from nTMS compared favourably with the one obtained from functional magnetic resonance imaging, both of which overlapped well within the 'hand-knob' region of the precentral gyrus and in an adjacent region of the postcentral gyrus. nTMS stimulation of the precentral and postcentral gyri led to motor-evoked potentials in the hand muscles in all participants, with more responses recorded from precentral stimulations. We also observed that precentral stimulations tended to produce motor-evoked potentials with shorter latencies and higher amplitudes than postcentral stimulations. Tractography showed that the region of maximum overlap between terminations of precentral-postcentral U-shaped association fibres and somatosensory projection tracts colocalizes with the functional motor maps. The relationships between the functional maps, and between them and the tract terminations, were replicated in the patient cohort. Three main conclusions can be drawn from our study. First, the hand-knob region is a reliable anatomical landmark for the functional localization of fine digit movements. Second, its distinctive shape is determined by the convergence of highly myelinated long projection fibres and short U-fibres. Third, the unique role of the hand-knob area is explained by its direct action on the spinal motoneurons and the access to high-order somatosensory information for the online control of fine movements. This network is more developed in the hand region compared to other body parts of the homunculus motor strip, and it may represent an important target for enhancing motor learning during early development.
Collapse
Affiliation(s)
- Ahmad Beyh
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Henrietta Howells
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, London SW1X 7HY, UK
| | - Daniele Cancemi
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | | | - Hannah Keeble
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Ranjeev Bhangoo
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Francesco Vergani
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| |
Collapse
|
3
|
Shah A, Vutha R, Prasad A, Goel A. Anatomical analysis of white fiber tracts in SMA and its implications related to en-masse tumor resection technique. J Clin Neurosci 2024; 124:130-136. [PMID: 38703473 DOI: 10.1016/j.jocn.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Anatomy and connections of the supplementary motor area (SMA) are studied essentially to analyze the SMA syndrome. Experience with surgical treatment of 19 tumors located in SMA is analyzed. MATERIAL AND METHODS The cortical anatomy and subcortical connectivity of the SMA was studied on ten previously frozen and formalin fixed human cadaveric brain specimens. The white fiber dissection was performed using Klingler's method. Nineteen patients with low grade gliomas in the region of the SMA treated surgically were clinically analyzed. RESULTS The white fiber connections of the SMA include short arcuate connections with the pre-central, middle and inferior frontal gyri, the medial part of the SLF, the cingulum, the frontal aslant tract (FAT), the claustro-cortical fibers, the fronto-striatal tract and the crossed frontal aslant tract. All tumors were operated using en-masse surgical technique described by us and its subsequent modifications that focused on attempts towards preservation of related critical fiber tracts namely FAT, cingulum and corpus callosum presumed to be responsible for postoperative SMA syndrome. Eight patients developed an SMA syndrome in the immediate post-operative period. Eleven patients did not develop any post-operative neurological deficits. In all these 11 patients it was apparent that the cingulum, FAT and the corpus callosal fibers were preserved during surgery by modifying the tumor resection technique. CONCLUSIONS SMA syndrome is a frequent occurrence following surgery in patients with tumors in the region of the SMA complex. Surgical strategy that preserves the cingulum and the FAT can prevent the occurrence of the SMA syndrome.
Collapse
Affiliation(s)
- Abhidha Shah
- Department of Neurosurgery, K.E.M. Hospital and Seth G.S. Medical College, Parel, Mumbai, India; Center for Advanced Neurosurgery, K.J. Somaiya Hospital and Research Center, Mumbai, India
| | - Ravikiran Vutha
- Center for Advanced Neurosurgery, K.J. Somaiya Hospital and Research Center, Mumbai, India
| | - Apurva Prasad
- Department of Neurosurgery, Lilavati Hospital and Research Center, Mumbai, India
| | - Atul Goel
- Center for Advanced Neurosurgery, K.J. Somaiya Hospital and Research Center, Mumbai, India; Department of Neurosurgery, Lilavati Hospital and Research Center, Mumbai, India.
| |
Collapse
|
4
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
5
|
Han Y, Jing Y, Shi Y, Mo H, Wan Y, Zhou H, Deng F. The role of language-related functional brain regions and white matter tracts in network plasticity of post-stroke aphasia. J Neurol 2024; 271:3095-3115. [PMID: 38607432 DOI: 10.1007/s00415-024-12358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The neural mechanisms underlying language recovery after a stroke remain controversial. This review aimed to summarize the plasticity and reorganization mechanisms of the language network through neuroimaging studies. Initially, we discussed the involvement of right language homologues, perilesional tissue, and domain-general networks. Subsequently, we summarized the white matter functional mapping and remodeling mechanisms associated with language subskills. Finally, we explored how non-invasive brain stimulation (NIBS) promoted language recovery by inducing neural network plasticity. It was observed that the recruitment of right hemisphere language area homologues played a pivotal role in the early stages of frontal post-stroke aphasia (PSA), particularly in patients with larger lesions. Perilesional plasticity correlated with improved speech performance and prognosis. The domain-general networks could respond to increased "effort" in a task-dependent manner from the top-down when the downstream language network was impaired. Fluency, repetition, comprehension, naming, and reading skills exhibited overlapping and unique dual-pathway functional mapping models. In the acute phase, the structural remodeling of white matter tracts became challenging, with recovery predominantly dependent on cortical activation. Similar to the pattern of cortical activation, during the subacute and chronic phases, improvements in language functions depended, respectively, on the remodeling of right white matter tracts and the restoration of left-lateralized language structural network patterns. Moreover, the midline superior frontal gyrus/dorsal anterior cingulate cortex emerged as a promising target for NIBS. These findings offered theoretical insights for the early personalized treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Health Management (Physical Examination) Center, The Second Norman Bethune Hospital of Jilin University, Changchun, China
| | - Hongbin Mo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafei Wan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Potvin-Desrochers A, Atri A, Clouette J, Hepple RT, Taivassalo T, Paquette C. Resting-state Functional Connectivity of the Motor and Cognitive Areas is Preserved in Masters Athletes. Neuroscience 2024; 546:53-62. [PMID: 38522662 DOI: 10.1016/j.neuroscience.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Aging is characterized by a decline in physical and cognitive functions, often resulting in decreased quality of life. Physical activity has been suggested to potentially slow down various aspects of the aging process, a theory that has been supported by studies of Masters Athletes (MA). For example, MA usually have better cognitive and physical functions than age-matched sedentary and healthy older adults (OA), making them a valuable model to gain insights into mechanisms that promote physical and cognitive function with aging. The purpose of this study was to identify differences in resting-state functional connectivity (rs-FC) of motor and cognitive regions between MA and OA and determine if these differences in the resting brain are associated with differences in cognitive and physical performance between groups. Fifteen MA (9 males) and 12 age-matched OA (six males) were included. rs-FC images were compared to identify significant between-groups differences in brain connectivity. There was higher connectivity between the cognitive and motor networks for the OA group, whereas the MA group had stronger connectivity between different regions within the same network, both for the cognitive and the motor networks. These results are in line with the literature suggesting that aging reduces the segregation between functional networks and causes regions within the same network to be less strongly connected. High-level physical activity practiced by the MA most likely contributes to attenuating aging-related changes in brain functional connectivity, preserving clearer boundaries between different functional networks, which may ultimately favor maintenance of efficient cognitive and sensorimotor processing.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada; Integrated Program in Neuroscience (IPN), McGill University, 1033 Pine Ave, Montreal, Quebec, Canada
| | - Alisha Atri
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada
| | - Julien Clouette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, 101 Newell Dr, Gainesville, FL, USA; Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer Rd, Gainesville, FL, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer Rd, Gainesville, FL, USA
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada; Integrated Program in Neuroscience (IPN), McGill University, 1033 Pine Ave, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Clairis N, Lopez-Persem A. Debates on the dorsomedial prefrontal/dorsal anterior cingulate cortex: insights for future research. Brain 2023; 146:4826-4844. [PMID: 37530487 PMCID: PMC10690029 DOI: 10.1093/brain/awad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) is a brain area subject to many theories and debates over its function(s). Even its precise anatomical borders are subject to much controversy. In the past decades, the dmPFC/dACC has been associated with more than 15 different cognitive processes, which sometimes appear quite unrelated (e.g. body perception, cognitive conflict). As a result, understanding what the dmPFC/dACC does has become a real challenge for many neuroscientists. Several theories of this brain area's function(s) have been developed, leading to successive and competitive publications bearing different models, which sometimes contradict each other. During the last two decades, the lively scientific exchanges around the dmPFC/dACC have promoted fruitful research in cognitive neuroscience. In this review, we provide an overview of the anatomy of the dmPFC/dACC, summarize the state of the art of functions that have been associated with this brain area and present the main theories aiming at explaining the dmPFC/dACC function(s). We explore the commonalities and the arguments between the different theories. Finally, we explain what can be learned from these debates for future investigations of the dmPFC/dACC and other brain regions' functions.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics (LGC)- Brain Mind Institute (BMI)- Sciences de la Vie (SV), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alizée Lopez-Persem
- FrontLab, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne University, AP HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
8
|
Lakhani DA, Sabsevitz DS, Chaichana KL, Quiñones-Hinojosa A, Middlebrooks EH. Current State of Functional MRI in the Presurgical Planning of Brain Tumors. Radiol Imaging Cancer 2023; 5:e230078. [PMID: 37861422 DOI: 10.1148/rycan.230078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Surgical resection of brain tumors is challenging because of the delicate balance between maximizing tumor removal and preserving vital brain functions. Functional MRI (fMRI) offers noninvasive preoperative mapping of widely distributed brain areas and is increasingly used in presurgical functional mapping. However, its impact on survival and functional outcomes is still not well-supported by evidence. Task-based fMRI (tb-fMRI) maps blood oxygen level-dependent (BOLD) signal changes during specific tasks, while resting-state fMRI (rs-fMRI) examines spontaneous brain activity. rs-fMRI may be useful for patients who cannot perform tasks, but its reliability is affected by tumor-induced changes, challenges in data processing, and noise. Validation studies comparing fMRI with direct cortical stimulation (DCS) show variable concordance, particularly for cognitive functions such as language; however, concordance for tb-fMRI is generally greater than that for rs-fMRI. Preoperative fMRI, in combination with MRI tractography and intraoperative DCS, may result in improved survival and extent of resection and reduced functional deficits. fMRI has the potential to guide surgical planning and help identify targets for intraoperative mapping, but there is currently limited prospective evidence of its impact on patient outcomes. This review describes the current state of fMRI for preoperative assessment in patients undergoing brain tumor resection. Keywords: MR-Functional Imaging, CNS, Brain/Brain Stem, Anatomy, Oncology, Functional MRI, Functional Anatomy, Task-based, Resting State, Surgical Planning, Brain Tumor © RSNA, 2023.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - David S Sabsevitz
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Kaisorn L Chaichana
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Alfredo Quiñones-Hinojosa
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Erik H Middlebrooks
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| |
Collapse
|
9
|
Chen X, Wang L, Zheng W, Yang Y, Yang B, Hu Y, Du J, Li X, Lu J, Chen N. The gray matter atrophy and related network changes occur in the higher cognitive region rather than the primary sensorimotor cortex after spinal cord injury. PeerJ 2023; 11:e16172. [PMID: 37842067 PMCID: PMC10569206 DOI: 10.7717/peerj.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023] Open
Abstract
Objective This study used functional magnetic resonance imaging (fMRI) to explore brain structural and related network changes in patients with spinal cord injury (SCI). Methods Thirty-one right-handed SCI patients and 31 gender- and age-matched healthy controls (HC) were included. The gray matter volume (GMV) changes in SCI patients were observed using voxel-based morphometry (VBM). Then, these altered gray matter clusters were used as the regions of interest (ROIs) for whole-brain functional connectivity (FC) analysis to detect related functional changes. The potential association between GMV and FC values with the visual analog scale (VAS), the American Spinal Injury Association (ASIA) score, and the course of injuries was investigated through partial correlation analysis. Results GMV of the frontal, temporal, and insular cortices was lower in the SCI group than in the HC group. No GMV changes were found in the primary sensorimotor area in the SCI group. Besides, the altered FC regions were not in the primary sensorimotor area but in the cingulate gyrus, supplementary motor area, precuneus, frontal lobe, and insular. Additionally, some of these altered GMV and FC regions were correlated with ASIA motor scores, indicating that higher cognitive regions can affect motor function in SCI patients. Conclusions This study demonstrated that gray matter and related network reorganization in patients with SCI occurred in higher cognitive regions. Future rehabilitation strategies should focus more on cognitive functions.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
10
|
Li Y, Nie X, Fu Y, Shi Y. FASSt : Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. COMPUTATIONAL DIFFUSION MRI : MICCAI WORKSHOP 2023; 14328:129-139. [PMID: 38500570 PMCID: PMC10948089 DOI: 10.1007/978-3-031-47292-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Superficial white matter (SWM) plays an important role in functioning of the human brain, and it contains a large amount of cortico-cortical connections. However, the difficulties of generating complete and reliable U-fibers make SWM-related analysis lag behind relatively matured Deep white matter (DWM) analysis. With the aid of some newly proposed surface-based SWM tractography algorithms, we have developed a specialized SWM filtering method based on a symmetric variational autoencoder (VAE). In this work, we first demonstrate the advantage of the spherical representation and generate these spherical tracts using the triangular mesh and the registered spherical surface. We then introduce the Filtering via symmetric Autoencoder for Spherical Superficial White Matter tractography (FASSt) framework with a novel symmetric weights module to perform the filtering task in a latent space. We evaluate and compare our method with the state-of-the-art clustering-based method on diffusion MRI data from Human Connectome Project (HCP). The results show that our proposed method outperform these clustering methods and achieves excellent performance in groupwise consistency and topographic regularity.
Collapse
Affiliation(s)
- Yuan Li
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Xinyu Nie
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Yao Fu
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University (CWRU), Cleveland, OH 44106, USA
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California (USC), Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Landers MJF, Rutten GJM, De Baene W, Gehring K, Sitskoorn MM, Butterbrod E. Executive functioning following surgery near the frontal aslant tract in low-grade glioma patients: A patient-specific tractography study. Cortex 2023; 167:66-81. [PMID: 37540952 DOI: 10.1016/j.cortex.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The Frontal Aslant Tract (FAT) has been associated with executive functions (EF), but it remains unclear what role the FAT plays in EF, and whether preoperative dysfunction of the FAT is associated to long-lasting postsurgical executive impairments. METHODS In this study, we examined the course of EF from pre-surgery (n = 75) to 3 (n = 61) and 12 (n = 25) months after surgery in patients with frontal and parietal low-grade gliomas (LGGs), to establish the degree to which long-term EF deficits exist. Secondly, we used patient-specific tractography to investigate the extent to which overlap of the tumor with the FAT, as well as integrity of the FAT, presurgery were related to EF on the short and longer term after surgery. RESULTS LGG patients performed worse than healthy controls on all EF tests before and 3 months postsurgery. Whereas performances on three out of the four tests had normalized 1 year postsurgery (n = 26), performance on the cognitive flexibility test remained significantly worse than in healthy controls. Patients in whom the tumor overlapped with the core of the right FAT performed worse presurgery on three of the EF tests compared to those in whom the tumor did not overlap with the right FAT. Presurgical right FAT integrity was not related to presurgical EF, but only to postsurgical EF (from pre-to 3 months postsurgery). Longitudinal analyses demonstrated that patients with right (but not left) FAT core overlap performed on average worse over the pre- and postsurgical timepoints on the cognitive flexibility test. CONCLUSIONS We emphasized that LGG patients perform worse than healthy controls on the EF tests, which normalizes 1-year postsurgery except for cognitive flexibility. Importantly, in patients with right hemispheric tumors, tumor involvement of the FAT was associated with worse pre- and 3- months postsurgical performance, specifically concerning cognitive flexibility.
Collapse
Affiliation(s)
- Maud J F Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands.
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Elke Butterbrod
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital Tilburg, the Netherlands; Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Tuncer MS, Fekonja LS, Ott S, Pfnür A, Karbe AG, Engelhardt M, Faust K, Picht T, Coburger J, Dührsen L, Vajkoczy P, Onken J. Role of interhemispheric connectivity in recovery from postoperative supplementary motor area syndrome in glioma patients. J Neurosurg 2023; 139:324-333. [PMID: 36461815 DOI: 10.3171/2022.10.jns221303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Surgical resection of gliomas involving the supplementary motor area (SMA) frequently results in SMA syndrome, a symptom complex characterized by transient akinesia and mutism. Because the factors influencing patient functional outcomes after surgery remain elusive, the authors investigated network-based predictors in a multicentric cohort of glioma patients. METHODS The participants were 50 patients treated for glioma located in the SMA at one of the three centers participating in the study. Postoperative functional outcomes (motor deficits, mutism) and duration of symptoms were assessed during hospitalization. Long-term outcome was assessed 3 months after surgery. MRI-based lesion-symptom mapping was performed to estimate the severity of gray matter damage and white matter disconnection. RESULTS The median duration of acute symptoms was 3 days (range 1-42 days). Long-term deficits involving fine motor movements and speech were found at follow-up in 27 patients (54%). Disconnection of the central callosal fibers was associated with prolonged acute symptoms (p < 0.05). Postoperative mutism was significantly related to disconnection severity of the left frontopontine tract, frontal aslant tract, cingulum, and corticostriatal tract (p < 0.05). Disconnection of midposterior callosal fibers and lesion loads within the left medial Brodmann area 4 were associated with long-term motor deficits (p < 0.05). CONCLUSIONS This study provides evidence for the pathophysiology and predictive factors of postoperative SMA syndrome by demonstrating the relation of the disconnection of callosal fibers with prolonged symptom duration (central segment) and long-term motor deficits (midposterior segment). These data may be useful for presurgical risk assessment and adequate consultation for patients prior to undergoing resection of glioma located within the SMA region.
Collapse
Affiliation(s)
- Mehmet Salih Tuncer
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Lucius S Fekonja
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 2Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin
| | - Stefanie Ott
- 3Department of Neurosurgery, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Andreas Pfnür
- 4Department of Neurosurgery, Universitätsklinikum Ulm, Günzburg
| | - Anna-Gila Karbe
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Melina Engelhardt
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 5Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin; and
| | - Katharina Faust
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Thomas Picht
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 2Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin
- 5Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin; and
| | - Jan Coburger
- 4Department of Neurosurgery, Universitätsklinikum Ulm, Günzburg
| | - Lasse Dührsen
- 3Department of Neurosurgery, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Peter Vajkoczy
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Julia Onken
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 6German Cancer Consortium (DKTK), Partner Site Berlin, Germany
| |
Collapse
|
13
|
Silverstein JW, Doron O, Ellis JA. Temporary vessel occlusion in cerebral aneurysm surgery guided by direct cortical motor evoked potentials. Acta Neurochir (Wien) 2023; 165:645-646. [PMID: 36534185 DOI: 10.1007/s00701-022-05447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Justin W Silverstein
- Department of Neurology, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
- Neuro Protective Solutions, New York, NY, USA
| | - Omer Doron
- Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, 130 East 77Th Street, Black Hall Bldg, Third Floor, New York, NY, 10075, USA
- Biomedical Engineering Department, The Iby and Aladar, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Jason A Ellis
- Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, 130 East 77Th Street, Black Hall Bldg, Third Floor, New York, NY, 10075, USA.
| |
Collapse
|
14
|
Rech F, Duffau H. Beyond Avoiding Hemiplegia after Glioma Surgery: The Need to Map Complex Movement in Awake Patient to Preserve Conation. Cancers (Basel) 2023; 15:cancers15051528. [PMID: 36900318 PMCID: PMC10001205 DOI: 10.3390/cancers15051528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Improving the onco-functional balance has always been a challenge in glioma surgery, especially regarding motor function. Given the importance of conation (i.e., the willingness which leads to action) in patient's quality of life, we propose here to review the evolution of its intraoperative assessment through a reminder of the increasing knowledge of its neural foundations-based upon a meta-networking organization at three levels. Historical preservation of the primary motor cortex and pyramidal pathway (first level), which was mostly dedicated to avoid hemiplegia, has nonetheless shown its limits to prevent the occurrence of long-term deficits regarding complex movement. Then, preservation of the movement control network (second level) has permitted to prevent such more subtle (but possibly disabling) deficits thanks to intraoperative mapping with direct electrostimulations in awake conditions. Finally, integrating movement control in a multitasking evaluation during awake surgery (third level) enabled to preserve movement volition in its highest and finest level according to patients' specific demands (e.g., to play instrument or to perform sports). Understanding these three levels of conation and its underlying cortico-subcortical neural basis is therefore critical to propose an individualized surgical strategy centered on patient's choice: this implies an increasingly use of awake mapping and cognitive monitoring regardless of the involved hemisphere. Moreover, this also pleads for a finer and systematic assessment of conation before, during and after glioma surgery as well as for a stronger integration of fundamental neurosciences into clinical practice.
Collapse
Affiliation(s)
- Fabien Rech
- Department of Neurosurgery, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France
- Le Centre de Recherche en Automatique de Nancy, Le Centre National de la Recherche Scientifique, Université de Lorraine, F-54000 Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumours’, INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
15
|
De Kock R, Zhou W, Datta P, Mychal Joiner W, Wiener M. The role of consciously timed movements in shaping and improving auditory timing. Proc Biol Sci 2023; 290:20222060. [PMID: 36722075 PMCID: PMC9890119 DOI: 10.1098/rspb.2022.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Our subjective sense of time is intertwined with a plethora of perceptual, cognitive and motor functions, and likewise, the brain is equipped to expertly filter, weight and combine these signals for seamless interactions with a dynamic world. Until relatively recently, the literature on time perception has excluded the influence of simultaneous motor activity, yet it has been found that motor circuits in the brain are at the core of most timing functions. Several studies have now identified that concurrent movements exert robust effects on perceptual timing estimates, but critically have not assessed how humans consciously judge the duration of their own movements. This creates a gap in our understanding of the mechanisms driving movement-related effects on sensory timing. We sought to address this gap by administering a sensorimotor timing task in which we explicitly compared the timing of isolated auditory tones and arm movements, or both simultaneously. We contextualized our findings within a Bayesian cue combination framework, in which separate sources of temporal information are weighted by their reliability and integrated into a unitary time estimate that is more precise than either unisensory estimate. Our results revealed differences in accuracy between auditory, movement and combined trials, and (crucially) that combined trials were the most accurately timed. Under the Bayesian framework, we found that participants' combined estimates were more precise than isolated estimates, yet were sub-optimal when compared with the model's prediction, on average. These findings elucidate previously unknown qualities of conscious motor timing and propose computational mechanisms that can describe how movements combine with perceptual signals to create unified, multimodal experiences of time.
Collapse
Affiliation(s)
- Rose De Kock
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Weiwei Zhou
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Poorvi Datta
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Wilsaan Mychal Joiner
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
16
|
Yamao Y, Sawamoto N, Kunieda T, Inano R, Shibata S, Kikuchi T, Arakawa Y, Yoshida K, Matsumoto R, Ikeda A, Takahashi R, Fukuyama H, Miyamoto S. Changes in Distributed Motor Network Connectivity Correlates With Functional Outcome After Surgical Resection of Brain Tumors. NEUROSURGERY OPEN 2023. [DOI: 10.1227/neuprac.0000000000000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
17
|
Alekseev IM, Zuev AA. [Surgical treatment of tumors of the supplementary motor area]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:5-14. [PMID: 36763548 DOI: 10.17116/neiro2023870115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
After surgical treatment of tumors of the supplementary motor area (SMA) post-operative speech and/or motor neurological deficit may occur. OBJECTIVE To determinate frequency and reversibility of such deficit and identify risk factors for its development. MATERIAL AND METHODS We retrospectively analyzed postoperative outcomes in 34 patients with SMA tumors. Pre- and postoperative neurological status, localization of tumors, extent of resection relative to adjacent regions and relationship of tumor with white matter tracts were assessed. We also analyzed the influence of these factors on the risk of postoperative neurological impairment. RESULTS Postoperative neurological impairment occurred in 47% of cases. Complete or significant regression was observed in all patients within 5.7 month after surgery. Major risk factors were lesion of dominant hemisphere (p=0.029), tumor spreading to primary motor cortex (p=0.018) and resection of SMA together with cingulate gyrus (p=0.000). Location of frontal aslant tract in dominant hemisphere just near the tumor contributed to disorders regarding speech initiation and fluency (p=0.016). Resection of SMA with cingulate gyrus in dominant hemisphere affected development of more serious speech disorders (p=0.003). CONCLUSION Surgery for SMA tumors is safe and followed by favorable functional outcomes.
Collapse
Affiliation(s)
- I M Alekseev
- Pirogov National Medical Surgical Center, Moscow, Russia
| | - A A Zuev
- Pirogov National Medical Surgical Center, Moscow, Russia
| |
Collapse
|
18
|
Sato S, Shibahara I, Inukai M, Komai H, Hide T, Kumabe T. Anatomical and neurophysiological localization of the leg motor area at the medial central sulcus. Clin Neurophysiol 2022; 143:67-74. [PMID: 36126357 DOI: 10.1016/j.clinph.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The exact location of the leg motor area is still in debate due to the lack of landmarks such as 'precentral knob' in the medial cortex. This study tried to identify the leg motor area based on intraoperative neurophysiological data and neuroimaging techniques. METHODS Intraoperative data of somatosensory evoked potential (SEP) elicited by tibial nerve stimulation and motor evoked potential (MEP) of the leg muscles induced by direct cortical stimulation were recorded using subdural electrodes placed in the medial cortex. We displayed the neurophysiological data on the individual MR images and the MNI52. RESULTS Definite N40-P40 phase reversal was observed with the shallow grooves in the medial cortex in 5 cases. Leg MEP was successfully obtained in all 12 cases preserving the leg motor function. Superimposed SEP and leg MEP data on the MNI152 indicated the leg motor area was predominantly located in the posterior two-thirds between the vertical lines passing through the anterior commissure and the posterior commissure (VCP). CONCLUSIONS Our study revealed the location of the leg motor area and the presence of the 'medial central sulcus' in the medial cortex. SIGNIFICANCE The VCP can be useful landmark to identify the sensorimotor border in the medial cortex.
Collapse
Affiliation(s)
- Sumito Sato
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideto Komai
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
19
|
Segregated circuits for phonemic and semantic fluency: A novel patient-tailored disconnection study. Neuroimage Clin 2022; 36:103149. [PMID: 35970113 PMCID: PMC9400120 DOI: 10.1016/j.nicl.2022.103149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.
Collapse
|
20
|
Vachha BA, Middlebrooks EH. Brain Functional Imaging Anatomy. Neuroimaging Clin N Am 2022; 32:491-505. [PMID: 35843658 DOI: 10.1016/j.nic.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human brain function is an increasingly complex framework that has important implications in clinical medicine. In this review, the anatomy of the most commonly assessed brain functions in clinical neuroradiology, including motor, language, and vision, is discussed. The anatomy and function of the primary and secondary sensorimotor areas are discussed with clinical case examples. Next, the dual stream of language processing is reviewed, as well as its implications in clinical medicine and surgical planning. Last, the authors discuss the striate and extrastriate visual cortex and review the dual stream model of visual processing.
Collapse
Affiliation(s)
- Behroze Adi Vachha
- Department of Radiology, Neuroradiology Section, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
21
|
Palmisciano P, Haider AS, Balasubramanian K, Dadario NB, Robertson FC, Silverstein JW, D'Amico RS. Supplementary Motor Area Syndrome after Brain Tumor Surgery: A Systematic Review. World Neurosurg 2022; 165:160-171.e2. [PMID: 35752423 DOI: 10.1016/j.wneu.2022.06.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Supplementary motor area syndrome (SMAS) may occur after frontal tumor surgery, with variable presentation and outcomes. We reviewed the literature on postoperative SMAS following brain tumor resection. METHODS PubMed, Web-of-Science, Scopus, and Cochrane were searched following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to include studies reporting SMAS after brain tumor resection. RESULTS We included 31 studies encompassing 236 patients. Most tumors were gliomas (94.5%), frequently of low-grade (61.4%). Most lesions were located on the left hemisphere (64.4%), involving the supplementary motor area (61.4%) and the cingulate gyrus (20.8%). Tractography and functional MRI evaluation were completed in 45 (19.1%) and 26 (11%) patients. Gross total resection was achieved in 46.3% cases and complete SMA resection in 69.4%. 215 procedures (91.1%) utilized intraoperative neuromonitoring mostly consisting of direct cortical/subcortical stimulation (56.4%), motor (33.9%), and somatosensory (25.4%) evoked potentials. Postoperative SMAS symptoms occurred within 24 hours after surgery, characterized by motor deficits (97%) including paresis (68.6%) and hemiplegia (16.1%), and speech disorders (53%) including hesitancy (24.2%) and mutism (22%). Average SMAS duration was 45 days (range, 1-365), with total resolution occurring in 188 patients (79.7%) and partial improvement in 46 (19.5%). 48 patients (20.3%) had persisting symptoms, mostly speech hesitancy (60.4%) and fine motor disorders (45.8%). CONCLUSION Postoperative SMAS may occur within the first 24 hours after mesial frontal tumor surgery. Preoperative mapping and intraoperative neuromonitoring may assist resection and predict outcomes. Neuroplasticity and interhemispheric connectivity play a major role in resolution.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Haider
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center
| | | | - Nicholas B Dadario
- Department of Neurological Surgery, Northwell Health, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Faith C Robertson
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin W Silverstein
- Department of Neurology, Northwell Health, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA; Neuro Protective Solutions, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Northwell Health, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| |
Collapse
|
22
|
Preisig BC, Riecke L, Hervais-Adelman A. Speech sound categorization: The contribution of non-auditory and auditory cortical regions. Neuroimage 2022; 258:119375. [PMID: 35700949 DOI: 10.1016/j.neuroimage.2022.119375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Which processes in the human brain lead to the categorical perception of speech sounds? Investigation of this question is hampered by the fact that categorical speech perception is normally confounded by acoustic differences in the stimulus. By using ambiguous sounds, however, it is possible to dissociate acoustic from perceptual stimulus representations. Twenty-seven normally hearing individuals took part in an fMRI study in which they were presented with an ambiguous syllable (intermediate between /da/ and /ga/) in one ear and with disambiguating acoustic feature (third formant, F3) in the other ear. Multi-voxel pattern searchlight analysis was used to identify brain areas that consistently differentiated between response patterns associated with different syllable reports. By comparing responses to different stimuli with identical syllable reports and identical stimuli with different syllable reports, we disambiguated whether these regions primarily differentiated the acoustics of the stimuli or the syllable report. We found that BOLD activity patterns in left perisylvian regions (STG, SMG), left inferior frontal regions (vMC, IFG, AI), left supplementary motor cortex (SMA/pre-SMA), and right motor and somatosensory regions (M1/S1) represent listeners' syllable report irrespective of stimulus acoustics. Most of these regions are outside of what is traditionally regarded as auditory or phonological processing areas. Our results indicate that the process of speech sound categorization implicates decision-making mechanisms and auditory-motor transformations.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands; Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland; Department of Comparative Language Science, Evolutionary Neuroscience of Language, University of Zurich, 8050 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Valls Carbo A, Reid RI, Tosakulwong N, Weigand SD, Duffy JR, Clark HM, Utianski RL, Botha H, Machulda MM, Strand EA, Schwarz CG, Jack CR, Josephs KA, Whitwell JL. Tractography of supplementary motor area projections in progressive speech apraxia and aphasia. Neuroimage Clin 2022; 34:102999. [PMID: 35395498 PMCID: PMC8987652 DOI: 10.1016/j.nicl.2022.102999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022]
Abstract
Degeneration of SMA white matter tracts occurs in progressive apraxia of speech. SMA commissural, putamen and precentral tracts were associated with speech apraxia. Agrammatism was associated with SMA-prefrontal and frontal aslant tracts. Tract profile analysis suggests different disease epicenters across syndromes.
Progressive apraxia of speech (AOS) is a motor speech disorder affecting the ability to produce phonetically or prosodically normal speech. Progressive AOS can present in isolation or co-occur with agrammatic aphasia and is associated with degeneration of the supplementary motor area. We aimed to assess breakdowns in structural connectivity from the supplementary motor area in patients with any combination of progressive AOS and/or agrammatic aphasia to determine which supplementary motor area tracts are specifically related to these clinical symptoms. Eighty-four patients with progressive AOS or progressive agrammatic aphasia were recruited by the Neurodegenerative Research Group and underwent neurological, speech/language, and neuropsychological testing, as well as 3 T diffusion magnetic resonance imaging. Of the 84 patients, 36 had apraxia of speech in isolation (primary progressive apraxia of speech, PPAOS), 40 had apraxia of speech and agrammatic aphasia (AOS-PAA), and eight had agrammatic aphasia in isolation (progressive agrammatic aphasia, PAA). Tractography was performed to identify 5 distinct tracts connecting to the supplementary motor area. Fractional anisotropy and mean diffusivity were assessed at 10 positions along the length of the tracts to construct tract profiles, and median profiles were calculated for each tract. In a case-control comparison, decreased fractional anisotropy and increased mean diffusivity were observed along the supplementary motor area commissural fibers in all three groups compared to controls. PPAOS also had abnormal diffusion in tracts from the supplementary motor area to the putamen, prefrontal cortex, Broca’s area (frontal aslant tract) and motor cortex, with greatest abnormalities observed closest to the supplementary motor area. The AOS-PAA group showed abnormalities in the same set of tracts, but with greater involvement of the supplementary motor area to prefrontal tract compared to PPAOS. PAA showed abnormalities in the left prefrontal and frontal aslant tracts compared to both other groups, with PAA showing greatest abnormalities furthest from the supplementary motor area. Severity of AOS correlated with tract metrics in the supplementary motor area commissural and motor cortex tracts. Severity of aphasia correlated with the frontal aslant and prefrontal tracts. These findings provide insight into how AOS and agrammatism are differentially related to disrupted diffusivity, with progressive AOS associated with abnormalities close to the supplementary motor area, and the frontal aslant and prefrontal tracts being particularly associated with agrammatic aphasia.
Collapse
Affiliation(s)
- Adrian Valls Carbo
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Edythe A Strand
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
24
|
Young JS, Gogos AJ, Aabedi AA, Morshed RA, Pereira MP, Lashof-Regas S, Mansoori Z, Luks T, Hervey-Jumper SL, Villanueva-Meyer JE, Berger MS. Resection of supplementary motor area gliomas: revisiting supplementary motor syndrome and the role of the frontal aslant tract. J Neurosurg 2022; 136:1278-1284. [PMID: 34598138 DOI: 10.3171/2021.4.jns21187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The supplementary motor area (SMA) is an eloquent region that is frequently a site for glioma, or the region is included in the resection trajectory to deeper lesions. Although the clinical relevance of SMA syndrome has been well described, it is still difficult to predict who will become symptomatic. The object of this study was to define which patients with SMA gliomas would go on to develop a postoperative SMA syndrome. METHODS The University of California, San Francisco, tumor registry was searched for patients who, between 2010 and 2019, had undergone resection for newly diagnosed supratentorial diffuse glioma (WHO grades II-IV) performed by the senior author and who had at least 3 months of follow-up. Pre- and postoperative MRI studies were reviewed to confirm the tumor was located in the SMA region, and the extent of SMA resection was determined by volumetric assessment. Patient, tumor, and outcome data were collected retrospectively from documents available in the electronic medical record. Tumors were registered to a standard brain atlas to create a frequency heatmap of tumor volumes and resection cavities. RESULTS During the study period, 56 patients (64.3% male, 35.7% female) underwent resection of a newly diagnosed glioma in the SMA region. Postoperatively, 60.7% developed an SMA syndrome. Although the volume of tumor within the SMA region did not correlate with the development of SMA syndrome, patients with the syndrome had larger resection cavities in the SMA region (25.4% vs 14.2% SMA resection, p = 0.039). The size of the resection cavity in the SMA region did not correlate with the severity of the SMA syndrome. Patients who developed the syndrome had cavities that were located more posteriorly in the SMA region and in the cingulate gyrus. When the frontal aslant tract (FAT) was preserved, 50% of patients developed the SMA syndrome postoperatively, whereas 100% of the patients with disruption of the FAT during surgery developed the SMA syndrome (p = 0.06). Patients with SMA syndrome had longer lengths of stay (5.6 vs 4.1 days, p = 0.027) and were more likely to be discharged to a rehabilitation facility (41.9% vs 0%, p < 0.001). There was no difference in overall survival for newly diagnosed glioblastoma patients with SMA syndrome compared to those without SMA syndrome (1.6 vs 3.0 years, p = 0.33). CONCLUSIONS For patients with SMA glioma, more extensive resections and resections involving the posterior SMA region and posterior cingulate gyrus increased the likelihood of a postoperative SMA syndrome. Although SMA syndrome occurred in all cases in which the FAT was resected, FAT preservation does not reliably avoid SMA syndrome postoperatively.
Collapse
Affiliation(s)
- Jacob S Young
- 1Department of Neurological Surgery, University of California, San Francisco
| | - Andrew J Gogos
- 1Department of Neurological Surgery, University of California, San Francisco
| | | | - Ramin A Morshed
- 1Department of Neurological Surgery, University of California, San Francisco
| | | | | | - Ziba Mansoori
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Tracy Luks
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | | | - Javier E Villanueva-Meyer
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Mitchel S Berger
- 1Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
25
|
Jöhr J, Aureli V, Meyer I, Cossu G, Diserens K. Clinical Cognitive Motor Dissociation: A Case Report Showing How Pitfalls Can Hinder Early Clinical Detection of Awareness. Brain Sci 2022; 12:brainsci12020157. [PMID: 35203921 PMCID: PMC8870211 DOI: 10.3390/brainsci12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
This study presents the case of a brain-injured patient whose pathological awakening after coma and absence of interaction led to a diagnosis of lack of consciousness when standard clinical scales were administered. However, we were able to demonstrate conscious perception in this patient from initial clinical assessments using the Motor Behaviour Tool in the acute stage, complemented by a systematic search for potential obstacles blocking his execution of motor responses (pitfalls). This refinement of the diagnosis enabled prediction of a favourable outcome despite the severity of the lesions, with the patient’s evolution confirming our prediction. Faced with an unresponsive patient, every specialist should go beyond the absence of response with the standard scores, consider the possibility of a hidden consciousness and look for rigorous ways of proving it.
Collapse
Affiliation(s)
- Jane Jöhr
- Acute Neuro-Rehabilitation Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (I.M.); (K.D.)
- Correspondence: ; Tel.: +41-795566642
| | - Viviana Aureli
- Service of Neurosurgery, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (V.A.); (G.C.)
| | - Ivo Meyer
- Acute Neuro-Rehabilitation Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (I.M.); (K.D.)
| | - Giulia Cossu
- Service of Neurosurgery, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (V.A.); (G.C.)
| | - Karin Diserens
- Acute Neuro-Rehabilitation Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (I.M.); (K.D.)
| |
Collapse
|
26
|
Dobos D, Szabó E, Baksa D, Gecse K, Kocsel N, Pap D, Zsombók T, Kozák LR, Kökönyei G, Juhász G. Regular Practice of Autogenic Training Reduces Migraine Frequency and Is Associated With Brain Activity Changes in Response to Fearful Visual Stimuli. Front Behav Neurosci 2022; 15:780081. [PMID: 35126068 PMCID: PMC8814632 DOI: 10.3389/fnbeh.2021.780081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several factors can contribute to the development and chronification of migraines, including stress, which is undoubtedly a major trigger. Beyond pharmacotherapy, other treatment methods also exist, including behavioral techniques aiming at reducing patients’ stress response. However, the exact brain mechanisms underlying the efficacy of such methods are poorly understood. Our pilot study examined whether the regular practice of autogenic training (AT) induces functional brain changes and if so, how it could be associated with the improvement of migraine parameters. By exploring neural changes through which AT exerts its effect, we can get closer to the pathomechanism of migraine. In particular, we investigated the effect of a headache-specific AT on brain activation using an implicit face emotion processing functional MRI (fMRI) task in female subjects with and without episodic migraine. Our focus was on migraine- and psychological stress-related brain regions. After a 16-week training course, migraineurs showed decreased activation in the migraine-associated dorsal pons to fearful compared with neutral visual stimuli. We also detected decreasing differences in supplementary motor area (SMA) activation to fearful stimuli, and in posterior insula activation to happy stimuli between healthy subjects and migraineurs. Furthermore, migraineurs reported significantly less migraine attacks. These brain activation changes suggest that AT may influence the activity of brain regions responsible for emotion perception, emotional and motor response integration, as well as cognitive control, while also being able to diminish the activation of regions that have an active role in migraine attacks. Improvements induced by the training and the underlying neurophysiological mechanisms are additional arguments in favor of evidence-based personalized behavioral therapies.
Collapse
Affiliation(s)
- Dóra Dobos
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Edina Szabó
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Baksa
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Natália Kocsel
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terézia Zsombók
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Lajos R. Kozák
- Magnetic Resonance Research Center, Semmelweis University, Budapest, Hungary
| | - Gyöngyi Kökönyei
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhász
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhász,
| |
Collapse
|
27
|
Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J Clin Med 2022; 11:jcm11020358. [PMID: 35054052 PMCID: PMC8780504 DOI: 10.3390/jcm11020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.
Collapse
|
28
|
Mekki Y, Guillemot V, Lemaitre H, Carrion-Castillo A, Forkel S, Frouin V, Philippe C. The genetic architecture of language functional connectivity. Neuroimage 2021; 249:118795. [PMID: 34929384 DOI: 10.1016/j.neuroimage.2021.118795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.
Collapse
Affiliation(s)
- Yasmina Mekki
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Hervé Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | | | - Stephanie Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Vincent Frouin
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - Cathy Philippe
- NeuroSpin, Institut Joliot, CEA - Université Paris-Saclay, Gif-Sur-Yvette, 91191, France.
| |
Collapse
|
29
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
30
|
Dadario NB, Tabor JK, Silverstein J, Sun XR, DAmico RS. Postoperative Focal Lower Extremity Supplementary Motor Area Syndrome: Case Report and Review of the Literature. Neurodiagn J 2021; 61:169-185. [PMID: 34781833 DOI: 10.1080/21646821.2021.1991716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Supplementary motor area (SMA) syndrome refers to varying degrees of transient hemiparesis and mutism following insult to the medial posterior frontal lobe. We describe a rare case of an isolated lower limb SMA deficit with associated pre- and post-operative multimodality neurophysiological monitoring data. We review the literature on SMA somatotopy and the prognostic abilities of intraoperative motor evoked potentials in suspected SMA dysfunction. A 45-year-old male underwent staged resection of a complex parasagittal WHO grade II meningioma involving the posterior superior frontal gyrus bilaterally. Intraoperative neurophysiological monitoring with transcranial motor evoked potentials (TCMEP) and direct cortical motor evoked potentials (DCMEP) were used during both stages of resection. The patient developed an isolated left foot drop despite unchanged DCMEP and TCMEP data obtained during the first stage of the procedure. During the second stage of resection 3 days later, repeat neurophysiological monitoring confirmed intact corticospinal tracts. Deep peroneal somatosensory evoked potentials (SSEPs) revealed good morphology, appropriate latency and amplitudes during the second stage of resection. These results suggested a diagnosis of focal SMA dysfunction. Left foot drop persisted 7 days post-operatively. At one month follow up, the patient was neurologically intact with full strength noted in all muscle groups of the left lower extremity. An improved understanding of the somatotopic organization of the SMA with additional neuromonitoring data can allow neurosurgeons to better predict and understand perioperative SMA dysfunctions.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| | - Joanna K Tabor
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| | - Justin Silverstein
- Department of Neurology Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra New York, New York.,Clinical Neurophysiology, Neuro Protective Solutions, New York, New York
| | - Xiaonan R Sun
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| | - Randy S DAmico
- Department of Neurological Surgery Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at HofstraNew York, New York
| |
Collapse
|
31
|
Landers MJF, Meesters SPL, van Zandvoort M, de Baene W, Rutten GJM. The frontal aslant tract and its role in executive functions: a quantitative tractography study in glioma patients. Brain Imaging Behav 2021; 16:1026-1039. [PMID: 34716878 PMCID: PMC9107421 DOI: 10.1007/s11682-021-00581-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
Focal white matter lesions can cause cognitive impairments due to disconnections within or between networks. There is some preliminary evidence that there are specific hubs and fiber pathways that should be spared during surgery to retain cognitive performance. A tract potentially involved in important higher-level cognitive processes is the frontal aslant tract. It roughly connects the posterior parts of the inferior frontal gyrus and the superior frontal gyrus. Functionally, the left frontal aslant tract has been associated with speech and the right tract with executive functions. However, there currently is insufficient knowledge about the right frontal aslant tract’s exact functional importance. The aim of this study was to investigate the role of the right frontal aslant tract in executive functions via a lesion-symptom approach. We retrospectively examined 72 patients with frontal glial tumors and correlated measures from tractography (distance between tract and tumor, and structural integrity of the tract) with cognitive test performances. The results indicated involvement of the right frontal aslant tract in shifting attention and letter fluency. This involvement was not found for the left tract. Although this study was exploratory, these converging findings contribute to a better understanding of the functional frontal subcortical anatomy. Shifting attention and letter fluency are important for healthy cognitive functioning, and when impaired they may greatly influence a patient’s wellbeing. Further research is needed to assess whether or not damage to the right frontal aslant tract causes permanent cognitive impairments, and consequently identifies this tract as a critical pathway that should be taken into account during neurosurgical procedures.
Collapse
Affiliation(s)
- Maud J F Landers
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands. .,Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Stephan P L Meesters
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wouter de Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
32
|
Ko N, Lee HH, Kim K, Kim BR, Moon WJ, Lee J. Role of Cortico-ponto-cerebellar Tract from Supplementary Motor Area in Ataxic Hemiparesis of Supratentorial Stroke Patients. BRAIN & NEUROREHABILITATION 2021; 14:e22. [PMID: 36741219 PMCID: PMC9879374 DOI: 10.12786/bn.2021.14.e22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022] Open
Abstract
Cortical lesions of the supplementary motor area (SMA) are important in balance control and postural recovery in stroke patients, while the role of subcortical lesions of the SMA has not been studied. This study aimed to investigate the subcortical projections of the SMA and its relationship with ataxia in supratentorial stroke patients. Thirty-three patients with hemiparesis were divided into 3 groups (severe ataxia, n = 9; mild to moderate ataxia, n = 13; no ataxia, n = 11). Ataxia severity was assessed using the Scale for Ataxia Rating Assessment. Diffusion tensor imaging analysis used the fractional anisotropy (FA) values and tract volume as parameters of white matter tract degeneration. The FA values of regions related to ataxia were analyzed, that is the SMA, posterior limb of the internal capsule, basal ganglia, superior cerebellar peduncle, middle cerebellar peduncle, inferior cerebellar peduncle, and cerebellum. Tract volumes of the corticostriatal tract and cortico-ponto-cerebellar (CPC) tract originating from the SMA were evaluated. There were significant differences among the 3 groups in FA values of the subcortical regions of the CPC tract. Furthermore, the volume of the CPC tract originating from the SMA showed significant negative correlation with ataxia severity. There was no correlation between ataxia and corticostriatal tract volume. Therefore, we found that subcortical lesions of the CPC tract originating from the SMA could contribute to ataxia severity in stroke patients with ataxic hemiparesis.
Collapse
Affiliation(s)
- Nayeon Ko
- Department of Rehabilitation Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyungmin Kim
- Department of Rehabilitation Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Bo-Ram Kim
- Department of Rehabilitation Medicine, Gyeongin Rehabilitation Center Hospital, Incheon, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.,Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Gajardo-Vidal A, Lorca-Puls DL, Team P, Warner H, Pshdary B, Crinion JT, Leff AP, Hope TMH, Geva S, Seghier ML, Green DW, Bowman H, Price CJ. Damage to Broca's area does not contribute to long-term speech production outcome after stroke. Brain 2021; 144:817-832. [PMID: 33517378 PMCID: PMC8041045 DOI: 10.1093/brain/awaa460] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 02/03/2023] Open
Abstract
Broca's area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca's area damage is best explained by the combination of damage to Broca's area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca's two historic cases. Here, we dissociate the effect of damage to Broca's area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca's area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca's area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca's area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca's area than after damage to Broca's area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca's area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca's area; and (iii) the prior association between persistent speech production impairments and Broca's area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus.
Collapse
Affiliation(s)
- Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.,Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.,Department of Speech, Language and Hearing Sciences, Faculty of Medicine, Universidad de Concepcion, Concepcion, Chile
| | - Ploras Team
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Holly Warner
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Bawan Pshdary
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Sharon Geva
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, UAE.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - David W Green
- Department of Experimental Psychology, University College London, London, UK
| | - Howard Bowman
- Centre for Cognitive Neuroscience and Cognitive Systems and the School of Computing, University of Kent, Canterbury, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
34
|
Bakola S, Burman KJ, Bednarek S, Chan JM, Jermakow N, Worthy KH, Majka P, Rosa MGP. Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cereb Cortex 2021; 32:41-62. [PMID: 34255833 DOI: 10.1093/cercor/bhab193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.
Collapse
Affiliation(s)
- Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Piotr Majka
- Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Izadi-Najafabadi S, Zwicker JG. White Matter Changes With Rehabilitation in Children With Developmental Coordination Disorder: A Randomized Controlled Trial. Front Hum Neurosci 2021; 15:673003. [PMID: 34149383 PMCID: PMC8209514 DOI: 10.3389/fnhum.2021.673003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives: Children with developmental coordination disorder (DCD) have difficulty learning motor skills, which can affect their participation in activities of daily living and psychosocial well-being. Over 50% of children with DCD also have attention deficit hyperactivity disorder (ADHD), which further exacerbates their motor problems and impact on quality of life. A rehabilitation approach known as Cognitive Orientation to Occupational Performance uses problem-solving strategies to help children learn motor skills they wish to achieve. While this cognitive approach has been effective for children with DCD, few studies have examined the effectiveness of this approach for children with co-occurring ADHD. Further, the underlying mechanism and neural basis of this intervention are largely unknown. Methods: In this randomized waitlist-controlled trial, we used MRI to examine white matter microstructure after intervention in 8–12-year-old children with DCD (n = 28) and with DCD and co-occurring ADHD (n = 25). Children in both groups were randomized to either a treatment group or waitlist group at their first MRI. The treatment group began the intervention after their MRI scan and returned for a post-treatment scan at 3 months, and follow-up scan at 6 months; the waitlist group waited 3 months before their second MRI, received the intervention, and then had a post-treatment scan. Each child received intervention once weekly for 10 weeks. Diffusion tensor imaging was used to acquire white matter diffusion parameters and was analyzed using tract-based spatial statistics (TBSS). Results and Conclusion: Children with DCD showed significant improvement in white matter microstructure in the bilateral anterior thalamic radiation, bilateral sensorimotor tract, bilateral cingulum, fornix, splenium and body of corpus callosum, right inferior fronto-occipital fasciculus, and white matter pathways to bilateral inferior gyri, right middle frontal gyrus, frontal medial cortex, and left cuneus. We suggest that these rehabilitation-induced neural changes in children with DCD occurred in regions associated with attention, self-regulation, motor planning, and inter-hemispheric communication, which positively affected brain connectivity and motor function. In contrast, children with DCD and co-occurring ADHD did not show any brain changes following the intervention. Modifications to the treatment protocol might help address the attentional and self-regulatory needs of children with a dual diagnosis. Clinical Trial Registration: ClinicalTrials.gov ID: NCT02597751.
Collapse
Affiliation(s)
- Sara Izadi-Najafabadi
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada.,Brain, Behaviour, and Development Theme, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jill G Zwicker
- Brain, Behaviour, and Development Theme, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Sunny Hill Health Centre at BC Children's Hospital, Vancouver, BC, Canada.,CanChild Centre for Childhood Disability Research, Hamilton, ON, Canada
| |
Collapse
|
36
|
Pinson H, Van Lerbeirghe J, Vanhauwaert D, Van Damme O, Hallaert G, Kalala JP. The supplementary motor area syndrome: a neurosurgical review. Neurosurg Rev 2021; 45:81-90. [PMID: 33993354 DOI: 10.1007/s10143-021-01566-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
The supplementary motor area (SMA) syndrome is a frequently encountered clinical phenomenon associated with surgery of the dorsomedial prefrontal lobe. The region has a known motor sequencing function and the dominant pre-SMA specifically is associated with more complex language functions; the SMA is furthermore incorporated in the negative motor network. The SMA has a rich interconnectivity with other cortical regions and subcortical structures using the frontal aslant tract (FAT) and the frontostriatal tract (FST). The development of the SMA syndrome is positively correlated with the extent of resection of the SMA region, especially its medial side. This may be due to interruption of the nearby callosal association fibres as the contralateral SMA has a particular important function in brain plasticity after SMA surgery. The syndrome is characterized by a profound decrease in interhemispheric connectivity of the motor network hubs. Clinical improvement is related to increasing connectivity between the contralateral SMA region and the ipsilateral motor hubs. Overall, most patients know a full recovery of the SMA syndrome, however a minority of patients might continue to suffer from mild motor and speech dysfunction. Rarely, no recovery of neurological function after SMA region resection is reported.
Collapse
Affiliation(s)
- Harry Pinson
- Department of Neurosurgery, AZ Delta, Roeselare, Belgium. .,Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | | | | | | | - Giorgio Hallaert
- Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Jean-Pierre Kalala
- Department of Neurosurgery, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
37
|
Jung K, Eickhoff SB, Popovych OV. Tractography density affects whole-brain structural architecture and resting-state dynamical modeling. Neuroimage 2021; 237:118176. [PMID: 34000399 DOI: 10.1016/j.neuroimage.2021.118176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. The main objective of this study is to explore how the quality of the model validation can vary across the considered simulation conditions. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.
Collapse
Affiliation(s)
- Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - Oleksandr V Popovych
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
38
|
Nakajima R, Kinoshita M, Okita H, Shinohara H, Nakada M. Disconnection of posterior part of the frontal aslant tract causes acute phase motor functional deficit. Brain Cogn 2021; 151:105752. [PMID: 33993006 DOI: 10.1016/j.bandc.2021.105752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
The frontal aslant tract (FAT) mainly connects the supplementary motor area (SMA) and inferior frontal gyrus. The left FAT is involved in language-related functions, while the functional role of the right FAT is not fully understood. The aim of this study was to investigate the function of the right FAT by dividing it into three segments according to the anatomical structure. A total of 34 right frontal gliomas who had undergone surgery were studied. Participants were assessed for the acute and chronic phases of several neuropsychological and motor functions. FAT was reconstructed into the anterior, middle, and posterior segments according to the cortical connections as the medial prefrontal cortex, pre-SMA, and SMA proper, respectively. The relationships between the damaged severity of each FAT segment and behavioral scores were analyzed. A significant relationship was observed only in the acute phase motor function and posterior segment of the FAT. The middle segment was involved in motor function, but it did not have a sufficient significance level compared to the posterior segment. Our study revealed that the right FAT can be divided into three segments and that its posterior segment is related to acute phase motor function.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Harumichi Shinohara
- Department of Functional Anatomy, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
39
|
Morán I, Perez-Orive J, Melchor J, Figueroa T, Lemus L. Auditory decisions in the supplementary motor area. Prog Neurobiol 2021; 202:102053. [PMID: 33957182 DOI: 10.1016/j.pneurobio.2021.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
In human speech and communication across various species, recognizing and categorizing sounds is fundamental for the selection of appropriate behaviors. However, how does the brain decide which action to perform based on sounds? We explored whether the supplementary motor area (SMA), responsible for linking sensory information to motor programs, also accounts for auditory-driven decision making. To this end, we trained two rhesus monkeys to discriminate between numerous naturalistic sounds and words learned as target (T) or non-target (nT) categories. We found that the SMA at single and population neuronal levels perform decision-related computations that transition from auditory to movement representations in this task. Moreover, we demonstrated that the neural population is organized orthogonally during the auditory and the movement periods, implying that the SMA performs different computations. In conclusion, our results suggest that the SMA integrates acoustic information in order to form categorical signals that drive behavior.
Collapse
Affiliation(s)
- Isaac Morán
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Javier Perez-Orive
- Instituto Nacional de Rehabilitacion "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Jonathan Melchor
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tonatiuh Figueroa
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Luis Lemus
- Department of Cognitive Neuroscience, Institute of Cell Physiology, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
40
|
Vergani F, Ghimire P, Rajashekar D, Dell'acqua F, Lavrador JP. Superior longitudinal fasciculus (SLF) I and II: an anatomical and functional review. J Neurosurg Sci 2021; 65:560-565. [PMID: 33940781 DOI: 10.23736/s0390-5616.21.05327-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we summarise the current knowledge regarding the Superior Longitudinal Fasciculus (SLF) I and II. These fibres represent a longitudinal association tract between the parietal and frontal lobes of the brain. We highlight the anatomical representation of the SLF I and II in the primate and in the human brain. The fibres of the SLF I extend from the superior parietal lobule and precuneus, running anteriorly to reach the superior frontal gyrus and the supplementary motor area. The anatomy of the SLF I is debated in the literature, with some Authors questioning the existence of the SLF I as an individual tract. The SLF II is located inferiorly and laterally compared to the SLF I. The fibres of the SLF II extend from the inferior parietal lobule to the middle frontal gyrus. The putative functions of these tracts are reviewed, with particular regards to intraoperative findings and their relevance in applied neurosurgery. Considered together, the two tracts link associative parietal areas with premotor and supplementary motor frontal areas. The two tracts seem therefore involved in supporting the integration of sensory information and motor planning, finalised to visuospatial attention and complex motor behaviour. Finally, we discuss future directions for further study of these fibre tracts, highlighting the need for more detailed anatomical study of the SLF I and additional intraoperative tests that have been suggested to explore the function of these tracts during surgery.
Collapse
Affiliation(s)
- Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK -
| | - Prajwal Ghimire
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Devika Rajashekar
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Flavio Dell'acqua
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King's College London, London, UK
| | - Jose P Lavrador
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
41
|
Joswig H, Surbeck W, Scholtes F, Bratelj D, Hildebrandt G. The debate on apraxia and the supplementary motor area in the twentieth century. Acta Neurochir (Wien) 2021; 163:1247-1255. [PMID: 32725365 DOI: 10.1007/s00701-020-04509-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Hand function and apraxia are equally relevant to neurosurgeons: as a symptom, as well as through the functional anatomy of "praxis" which underlies the dexterity needed for neurosurgical practice. The supplementary motor area is crucial for its understanding. Historically, Hugo Liepmann dominated the apraxia debate at the beginning of the twentieth century, a debate that has remained influential until today. Kurt Goldstein, a contemporary of Liepmann, is regularly mentioned as the first to have described the alien hand syndrome in 1909. Wilder Penfield was a key figure in exploring the role of the fronto-mesial cortex in human motor control and coined the term "supplementary motor area". It was Goldstein who not only contributed substantially to the apraxia debate more than 100 years ago; he also established the link between the dysfunction of the fronto-mesial cortex and abnormal higher motor control in humans.
Collapse
|
42
|
Mihara M, Fujimoto H, Hattori N, Otomune H, Kajiyama Y, Konaka K, Watanabe Y, Hiramatsu Y, Sunada Y, Miyai I, Mochizuki H. Effect of Neurofeedback Facilitation on Poststroke Gait and Balance Recovery: A Randomized Controlled Trial. Neurology 2021; 96:e2587-e2598. [PMID: 33879597 PMCID: PMC8205450 DOI: 10.1212/wnl.0000000000011989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/01/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that supplementary motor area (SMA) facilitation with functional near-infrared spectroscopy-mediated neurofeedback (fNIRS-NFB) augments poststroke gait and balance recovery, we conducted a 2-center, double-blind, randomized controlled trial involving 54 Japanese patients using the 3-meter Timed Up and Go (TUG) test. METHODS Patients with subcortical stroke-induced mild to moderate gait disturbance more than 12 weeks from onset underwent 6 sessions of SMA neurofeedback facilitation during gait- and balance-related motor imagery using fNIRS-NFB. Participants were randomly allocated to intervention (28 patients) or placebo (sham: 26 patients). In the intervention group, the fNIRS signal contained participants' cortical activation information. The primary outcome was TUG improvement 4 weeks postintervention. RESULTS The intervention group showed greater improvement in the TUG test (12.84 ± 15.07 seconds, 95% confidence interval 7.00-18.68) than the sham group (5.51 ± 7.64 seconds, 95% confidence interval 2.43-8.60; group difference 7.33 seconds, 95% CI 0.83-13.83; p = 0.028), even after adjusting for covariates (group × time interaction; F 1.23,61.69 = 4.50, p = 0.030, partial η2 = 0.083). Only the intervention group showed significantly increased imagery-related SMA activation and enhancement of resting-state connectivity between SMA and ventrolateral premotor area. Adverse effects associated with fNIRS-mediated neurofeedback intervention were absent. CONCLUSION SMA facilitation during motor imagery using fNIRS neurofeedback may augment poststroke gait and balance recovery by modulating the SMA and its related network. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that for patients with gait disturbance from subcortical stroke, SMA neurofeedback facilitation improves TUG time (UMIN000010723 at UMIN-CTR; umin.ac.jp/english/).
Collapse
Affiliation(s)
- Masahito Mihara
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan.
| | - Hiroaki Fujimoto
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Noriaki Hattori
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Hironori Otomune
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yuta Kajiyama
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Kuni Konaka
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yoshiyuki Watanabe
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yuichi Hiramatsu
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Yoshihide Sunada
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Ichiro Miyai
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| | - Hideki Mochizuki
- From the Department of Neurology (M.M., Y.S.), Kawasaki Medical School, Kurashiki; Departments of Neurology (M.M., H.O., Y.K., K.K., H.M.) and Radiology (Y.W.), Osaka University Graduate School of Medicine, Suita; Neurorehabilitation Research Institute (H.F., Y.H., I.M.), Morinomiya Hospital, Osaka; Division of Clinical Neuroengineering (N.H.), Osaka University Global Center for Medical Engineering and Informatics, Suita; and Department of Rehabilitation (N.H.), Toyama University, Japan
| |
Collapse
|
43
|
Burkhardt E, Kinoshita M, Herbet G. Functional anatomy of the frontal aslant tract and surgical perspectives. J Neurosurg Sci 2021; 65:566-580. [PMID: 33870673 DOI: 10.23736/s0390-5616.21.05344-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The frontal aslant tract (FAT) is an intralobar white matter fasciculus providing dense connections between the medial part of the superior frontal gyrus, in particular the pre-supplementary motor area (SMA) and the SMA proper, and the lateral part of the frontal lobe, especially the inferior frontal gyrus. Although this tract has been characterized belatedly, it has received important attention in recent years due notably to its increasingly evidenced role in the speech and language networks. As cerebral tumors frequently affect the frontal lobe, an improved knowledge of the functional anatomy of the FAT is mandatory to refine the way neurosurgeries are performed and to give the patients the best opportunities to recover after surgery. In this work, we first describe the spatial arrangement of the FAT and detail its cortical projections. We then provide a comprehensive review of the functions supposedly mediated by this transverse frontal connectivity. It is structured following a tripartite organization where the linguistic (i.e. speech and language), supralinguistic (i.e. functions that interact with speech and language: executive functions, working memory, and social communication) and extralinguistic implications (i.e. functions outside the linguistic domain: visuospatial processing, praxis and motor skills) are successively addressed. We lastly discussed this knowledge in the context of wide-awake neurosurgeries for brain tumors. We emphasize the need to evaluate thoroughly the functions conveyed by FAT by means of longitudinally-designed studies to first estimate its plasticity potential and then to determine which tasks should be selected to avoid lasting impairments due to its disconnective breakdown.
Collapse
Affiliation(s)
- Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Masashi Kinoshita
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Guillaume Herbet
- University of Montpellier, CNRS UMR5203, INSERM U1191, Institute of Functional Genomics, Montpellier, France - .,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
44
|
Abstract
Aberrant functional connectivity of brain networks has been demonstrated in migraine sufferers. Functional magnetic resonance imaging (fMRI) may illustrate altered connectivity in patients suffering from migraine without aura (MwoA). Here, we applied a seed-based approach based on limbic regions to investigate disrupted functional connectivity between spontaneous migraine attacks. Resting-state fMRI data were obtained from 28 migraine patients without aura and 23 well-matched healthy controls (HC). The functional connectivity of the limbic system was characterized using a seed-based whole-brain correlation method. The resulting functional connectivity measurements were assessed for correlations with other clinical features. Neuropsychological data revealed significantly increased connectivity between the limbic system (bilateral amygdala and right hippocampus) and left middle occipital gyrus (MOG), and a positive correlation was revealed between disease duration and connective intensity of the left amygdala and the ipsilateral MOG. There was decreased functional connectivity between the right amygdala and contralateral orbitofrontal cortex (OFC). In addition, resting-state fMRI showed that, compared to HC, patients without aura had significant functional connectivity consolidation between the bilateral hippocampus and cerebellum, and a negative correlation was detected between scores on the headache impact test (HIT) and connectivity intensity of the right hippocampus and bilateral cerebellum. There was decreased functional connectivity between the left hippocampus and three brain areas, encompassing the bilateral inferior parietal gyri (IPG) and contralateral supplementary motor area (SMA). There were no structural differences between the two groups. Our data suggest that migraine patients have disrupted limbic functional connectivity to pain-related regions of the modulatory and encoding cortices, which are associated with specific clinical characteristics. Disturbances of resting-state functional connectivity may play a key role in neuropathological features, perception and affection of migraine. The current study provides further insights into the complex scenario of migraine mechanisms. .
Collapse
|
45
|
Hazem SR, Awan M, Lavrador JP, Patel S, Wren HM, Lucena O, Semedo C, Irzan H, Melbourne A, Ourselin S, Shapey J, Kailaya-Vasan A, Gullan R, Ashkan K, Bhangoo R, Vergani F. Middle Frontal Gyrus and Area 55b: Perioperative Mapping and Language Outcomes. Front Neurol 2021; 12:646075. [PMID: 33776898 PMCID: PMC7988187 DOI: 10.3389/fneur.2021.646075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The simplistic approaches to language circuits are continuously challenged by new findings in brain structure and connectivity. The posterior middle frontal gyrus and area 55b (pFMG/area55b), in particular, has gained a renewed interest in the overall language network. Methods: This is a retrospective single-center cohort study of patients who have undergone awake craniotomy for tumor resection. Navigated transcranial magnetic simulation (nTMS), tractography, and intraoperative findings were correlated with language outcomes. Results: Sixty-five awake craniotomies were performed between 2012 and 2020, and 24 patients were included. nTMS elicited 42 positive responses, 76.2% in the inferior frontal gyrus (IFG), and hesitation was the most common error (71.4%). In the pMFG/area55b, there were seven positive errors (five hesitations and two phonemic errors). This area had the highest positive predictive value (43.0%), negative predictive value (98.3%), sensitivity (50.0%), and specificity (99.0%) among all the frontal gyri. Intraoperatively, there were 33 cortical positive responses—two (6.0%) in the superior frontal gyrus (SFG), 15 (45.5%) in the MFG, and 16 (48.5%) in the IFG. A total of 29 subcortical positive responses were elicited−21 in the deep IFG–MFG gyri and eight in the deep SFG–MFG gyri. The most common errors identified were speech arrest at the cortical level (20 responses−13 in the IFG and seven in the MFG) and anomia at the subcortical level (nine patients—eight in the deep IFG–MFG and one in the deep MFG–SFG). Moreover, 83.3% of patients had a transitory deterioration of language after surgery, mainly in the expressive component (p = 0.03). An increased number of gyri with intraoperative positive responses were related with better preoperative (p = 0.037) and worse postoperative (p = 0.029) outcomes. The involvement of the SFG–MFG subcortical area was related with worse language outcomes (p = 0.037). Positive nTMS mapping in the IFG was associated with a better preoperative language outcome (p = 0.017), relating to a better performance in the expressive component, while positive mapping in the MFG was related to a worse preoperative receptive component of language (p = 0.031). Conclusion: This case series suggests that the posterior middle frontal gyrus, including area 55b, is an important integration cortical hub for both dorsal and ventral streams of language.
Collapse
Affiliation(s)
- Sally Rosario Hazem
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Mariam Awan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Hilary Margaret Wren
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Oeslle Lucena
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carla Semedo
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hassna Irzan
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Shapey
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ahilan Kailaya-Vasan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
46
|
Gandolla M, Niero L, Molteni F, Guanziroli E, Ward NS, Pedrocchi A. Brain Plasticity Mechanisms Underlying Motor Control Reorganization: Pilot Longitudinal Study on Post-Stroke Subjects. Brain Sci 2021; 11:329. [PMID: 33807679 PMCID: PMC8002039 DOI: 10.3390/brainsci11030329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Functional Electrical Stimulation (FES) has demonstrated to improve walking ability and to induce the carryover effect, long-lasting persisting improvement. Functional magnetic resonance imaging has been used to investigate effective connectivity differences and longitudinal changes in a group of chronic stroke patients that attended a FES-based rehabilitation program for foot-drop correction, distinguishing between carryover effect responders and non-responders, and in comparison with a healthy control group. Bayesian hierarchical procedures were employed, involving nonlinear models at within-subject level-dynamic causal models-and linear models at between-subjects level. Selected regions of interest were primary sensorimotor cortices (M1, S1), supplementary motor area (SMA), and angular gyrus. Our results suggest the following: (i) The ability to correctly plan the movement and integrate proprioception information might be the features to update the motor control loop, towards the carryover effect, as indicated by the reduced sensitivity to proprioception input to S1 of FES non-responders; (ii) FES-related neural plasticity supports the active inference account for motor control, as indicated by the modulation of SMA and M1 connections to S1 area; (iii) SMA has a dual role of higher order motor processing unit responsible for complex movements, and a superintendence role in suppressing standard motor plans as external conditions changes.
Collapse
Affiliation(s)
- Marta Gandolla
- NearLab@Lecco, Polo Territoriale di Lecco, Politecnico di Milano, Via Gaetano Previati, 1/c, 23900 Lecco, Italy; (L.N.); (A.P.)
- Department of Mechanical Engineering, Politecnico di Milano, Via Privata Giuseppe La Masa, 1, 20156 Milano, Italy
| | - Lorenzo Niero
- NearLab@Lecco, Polo Territoriale di Lecco, Politecnico di Milano, Via Gaetano Previati, 1/c, 23900 Lecco, Italy; (L.N.); (A.P.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro, 17, 23845 Costa Masnaga, Italy; (F.M.); (E.G.)
| | - Elenora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro, 17, 23845 Costa Masnaga, Italy; (F.M.); (E.G.)
| | - Nick S. Ward
- Department of Movement and Clinical Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
- The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Alessandra Pedrocchi
- NearLab@Lecco, Polo Territoriale di Lecco, Politecnico di Milano, Via Gaetano Previati, 1/c, 23900 Lecco, Italy; (L.N.); (A.P.)
- NearLab, Department of Electronic Information and Bioengineering, Politecnico di Milano, Via Giuseppe Ponzio, 34/5, 20133 Milano, Italy
| |
Collapse
|
47
|
Sahoo D, Satterthwaite TD, Davatzikos C. Hierarchical Extraction of Functional Connectivity Components in Human Brain Using Resting-State fMRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:940-950. [PMID: 33284752 DOI: 10.1109/tmi.2020.3042873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of functional networks of the human brain has been of significant interest in cognitive neuroscience for over two decades, albeit they are typically extracted at a single scale using various methods, including decompositions like ICA. However, since numerous studies have suggested that the functional organization of the brain is hierarchical, analogous decompositions might better capture functional connectivity patterns. Moreover, hierarchical decompositions can efficiently reduce the very high dimensionality of functional connectivity data. This paper provides a novel method for the extraction of hierarchical connectivity components in the human brain using resting-state fMRI. The method builds upon prior work of Sparse Connectivity Patterns (SCPs) by introducing a hierarchy of sparse, potentially overlapping patterns. The components are estimated by cascaded factorization of correlation matrices generated from fMRI. The goal of the paper is to extract sparse interpretable hierarchically-organized patterns using correlation matrices where a low rank decomposition is formed by a linear combination of a higher rank decomposition. We formulate the decomposition as a non-convex optimization problem and solve it using gradient descent algorithms with adaptive step size. Along with the hierarchy, our method aims to capture the heterogeneity of the set of common patterns across individuals. We first validate our model through simulated experiments. We then demonstrate the effectiveness of the developed method on two different real-world datasets by showing that multi-scale hierarchical SCPs are reproducible between sub-samples and are more reproducible as compared to single scale patterns. We also compare our method with an existing hierarchical community detection approach.
Collapse
|
48
|
Yamao Y, Matsumoto R, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S. Intraoperative Brain Mapping by Cortico-Cortical Evoked Potential. Front Hum Neurosci 2021; 15:635453. [PMID: 33679353 PMCID: PMC7930065 DOI: 10.3389/fnhum.2021.635453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/04/2022] Open
Abstract
To preserve postoperative brain function, it is important for neurosurgeons to fully understand the brain's structure, vasculature, and function. Intraoperative high-frequency electrical stimulation during awake craniotomy is the gold standard for mapping the function of the cortices and white matter; however, this method can only map the "focal" functions and cannot monitor large-scale cortical networks in real-time. Recently, an in vivo electrophysiological method using cortico-cortical evoked potentials (CCEPs) induced by single-pulse electrical cortical stimulation has been developed in an extraoperative setting. By using the CCEP connectivity pattern intraoperatively, mapping and real-time monitoring of the dorsal language pathway is available. This intraoperative CCEP method also allows for mapping of the frontal aslant tract, another language pathway, and detection of connectivity between the primary and supplementary motor areas in the frontal lobe network. Intraoperative CCEP mapping has also demonstrated connectivity between the frontal and temporal lobes, likely via the ventral language pathway. Establishing intraoperative electrophysiological monitoring is clinically useful for preserving brain function, even under general anesthesia. This CCEP technique demonstrates potential clinical applications for mapping and monitoring large-scale cortical networks.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kikuchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
49
|
Utility of Preoperative Blood-Oxygen-Level-Dependent Functional MR Imaging in Patients with a Central Nervous System Neoplasm. Neuroimaging Clin N Am 2021; 31:93-102. [PMID: 33220831 PMCID: PMC10040207 DOI: 10.1016/j.nic.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional neuroimaging provides means to understand the relationship between brain structure and associated functions. Functional MR (fMR) imaging can offer a unique insight into preoperative planning for central nervous system (CNS) neoplasms by identifying areas of the brain effected or spared by the neoplasm. BOLD (blood-oxygen-level-dependent) fMR imaging can be reliably used to map eloquent cortex presurgically and is sufficiently accurate for neurosurgical planning. In patients with brain tumors undergoing neurosurgical intervention, fMR imaging can decrease postoperative morbidity. This article discusses the applications, significance, and interpretation of BOLD fMR imaging, and its applications in presurgical planning for CNS neoplasms.
Collapse
|
50
|
Giampiccolo D, Parisi C, Meneghelli P, Tramontano V, Basaldella F, Pasetto M, Pinna G, Cattaneo L, Sala F. Long-term motor deficit in brain tumour surgery with preserved intra-operative motor-evoked potentials. Brain Commun 2021; 3:fcaa226. [PMID: 33615216 PMCID: PMC7884605 DOI: 10.1093/braincomms/fcaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Muscle motor-evoked potentials are commonly monitored during brain tumour surgery in motor areas, as these are assumed to reflect the integrity of descending motor pathways, including the corticospinal tract. However, while the loss of muscle motor-evoked potentials at the end of surgery is associated with long-term motor deficits (muscle motor-evoked potential-related deficits), there is increasing evidence that motor deficit can occur despite no change in muscle motor-evoked potentials (muscle motor-evoked potential-unrelated deficits), particularly after surgery of non-primary regions involved in motor control. In this study, we aimed to investigate the incidence of muscle motor-evoked potential-unrelated deficits and to identify the associated brain regions. We retrospectively reviewed 125 consecutive patients who underwent surgery for peri-Rolandic lesions using intra-operative neurophysiological monitoring. Intraoperative changes in muscle motor-evoked potentials were correlated with motor outcome, assessed by the Medical Research Council scale. We performed voxel–lesion–symptom mapping to identify which resected regions were associated with short- and long-term muscle motor-evoked potential-associated motor deficits. Muscle motor-evoked potentials reductions significantly predicted long-term motor deficits. However, in more than half of the patients who experienced long-term deficits (12/22 patients), no muscle motor-evoked potential reduction was reported during surgery. Lesion analysis showed that muscle motor-evoked potential-related long-term motor deficits were associated with direct or ischaemic damage to the corticospinal tract, whereas muscle motor-evoked potential-unrelated deficits occurred when supplementary motor areas were resected in conjunction with dorsal premotor regions and the anterior cingulate. Our results indicate that long-term motor deficits unrelated to the corticospinal tract can occur more often than currently reported. As these deficits cannot be predicted by muscle motor-evoked potentials, a combination of awake and/or novel asleep techniques other than muscle motor-evoked potentials monitoring should be implemented.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Cristiano Parisi
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Pietro Meneghelli
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Vincenzo Tramontano
- Division of Neurology and Intraoperative Neurophysiology Unit, University Hospital, Verona, Italy
| | - Federica Basaldella
- Division of Neurology and Intraoperative Neurophysiology Unit, University Hospital, Verona, Italy
| | - Marco Pasetto
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Giampietro Pinna
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Luigi Cattaneo
- CIMEC-Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| |
Collapse
|