1
|
Necpál J, Schneider SA, Zech M, Jech R. Paradoxical caffeine-responsive paroxysmal nonkinesigenic dyskinesias. Acta Neurol Belg 2024:10.1007/s13760-024-02666-y. [PMID: 39436557 DOI: 10.1007/s13760-024-02666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Ján Necpál
- Department of Neurology, Zvolen Hospital, Kuzmányho nábrežie 28, Zvolen, 960 01, Slovakia.
- Parkinsonism and Movement Disorders Treatment Center, Zvolen Hospital, Zvolen, Slovakia.
| | | | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Robert Jech
- Department of Neurology, Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Meredith AL. BK Channelopathies and KCNMA1-Linked Disease Models. Annu Rev Physiol 2024; 86:277-300. [PMID: 37906945 DOI: 10.1146/annurev-physiol-030323-042845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
3
|
Sandmo S, Dietrichs E, Bahr R. When You Hear Hoofbeats, Don't Forget the ZEBRA: Paroxysmal DYSKINESIAS as A Cause of Atypical Movements in Athletes. Curr Sports Med Rep 2024; 23:38-40. [PMID: 38315430 DOI: 10.1249/jsr.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Affiliation(s)
| | | | - Roald Bahr
- Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
4
|
Boisclair M, Hadjinicolaou A, Nigam M. Clinical Reasoning: A 3-Year-Old Boy With Abnormal Movements During Sleep. Neurology 2023; 101:1134-1139. [PMID: 37857493 PMCID: PMC10791058 DOI: 10.1212/wnl.0000000000207980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
We report a case of a 3-year-old boy who presented with abnormal movements that initially occurred only during sleep. Three years later, he went on to develop hyperkinetic movements during the daytime while awake. There was a strong family history of various paroxysmal neurologic disorders. In this report, we discuss the clinical approach, differential diagnosis, investigation, and treatment options for nocturnal hyperkinetic movements and paroxysmal movement disorders.
Collapse
Affiliation(s)
- Mélissa Boisclair
- From the Centre Hospitalier de l'Université de Montréal (M.B.), Faculty of Medicine, University of Montreal; Department of Neurosciences (M.B., A.H., M.N.), Université de Montréal; Department of Pediatrics (A.H.), Division of Neurology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal; and Centre for Advanced Research in Sleep Medicine (M.N.), Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Aristides Hadjinicolaou
- From the Centre Hospitalier de l'Université de Montréal (M.B.), Faculty of Medicine, University of Montreal; Department of Neurosciences (M.B., A.H., M.N.), Université de Montréal; Department of Pediatrics (A.H.), Division of Neurology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal; and Centre for Advanced Research in Sleep Medicine (M.N.), Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Milan Nigam
- From the Centre Hospitalier de l'Université de Montréal (M.B.), Faculty of Medicine, University of Montreal; Department of Neurosciences (M.B., A.H., M.N.), Université de Montréal; Department of Pediatrics (A.H.), Division of Neurology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal; and Centre for Advanced Research in Sleep Medicine (M.N.), Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| |
Collapse
|
5
|
Serranová T, Di Vico I, Tinazzi M. Functional Movement Disorder: Assessment and Treatment. Neurol Clin 2023; 41:583-603. [PMID: 37775192 DOI: 10.1016/j.ncl.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Functional movement disorder (FMD) is a common, potentially reversible source of disability in neurology. Over the last two decades, there have been major advances in our understanding of the clinical picture, diagnosis, and management of this condition. Motor presentation is heterogeneous and several non-motor symptoms (e.g., pain, fatigue) are part of the clinical spectrum. The diagnosis should be made by neurologists or neuropsychiatrists based on the presence of positive signs of inconsistency and incongruence with neurological diseases. Promising evidence has accumulated for the efficacy of physiotherapy, psychotherapy, or both in the management of FMD, for a majority of patients.
Collapse
Affiliation(s)
- Tereza Serranová
- Department of Neurology and Centre of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Kateřinská 30, 12 800, Prague, Czech Republic.
| | - Ilaria Di Vico
- Movement Disorders Division, Department of Neurosciences, Neurology Unit, Biomedicine and Movement Sciences, University of Verona, Piazzale L. A. Scuro 10, 37124, Verona, VR, Italy
| | - Michele Tinazzi
- Movement Disorders Division, Department of Neurosciences, Neurology Unit, Biomedicine and Movement Sciences, University of Verona, Piazzale L. A. Scuro 10, 37124, Verona, VR, Italy
| |
Collapse
|
6
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
7
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
8
|
Shafique A, Arif B, Chu ML, Moran E, Hussain T, Zamora FM, Wohler E, Sobreira N, Klein C, Lohmann K, Naz S. MRM2 variants in families with complex dystonic syndromes: evidence for phenotypic heterogeneity. J Med Genet 2023; 60:352-358. [PMID: 36002240 DOI: 10.1136/jmg-2022-108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dystonia involves repetitive movements and muscle contractions leading to abnormal postures. We investigated patients in two families, DYAF11 and M, exhibiting dystonic or involuntary movement disorders. METHODS Clinical investigations were performed for all patients. Genetic analyses included genome-wide linkage analysis and exome sequencing followed by Sanger sequencing validation. MRM2-specific transcripts were analysed from participants' blood samples in Family DYAF11 after cloning of gene-specific cDNA. RESULTS Four affected siblings in Family DYAF11 had progressive dystonic features. Two patients in Family M exhibited a neurodevelopmental disorder accompanied by involuntary movements. In Family DYAF11, linkage was detected to the telomere at chromosome 7p22.3, spanning <2 Mb. Exome sequencing identified a donor splice-site variant, c.8+1G>T in MRM2, which segregated with the phenotype, corresponding to the linkage data since all affected individuals were homozygous while the obligate unaffected carriers were heterozygous for the variant. In the MRM2 c.8+1G>T allele, an aberrant alternative acceptor splice-site located within exon 2 was used in a subset of the transcripts, creating a frameshift in the open reading frame. Exome sequencing in Family M revealed a rare missense variant c.242C>T, p.(Ala81Val), which affected a conserved amino acid. CONCLUSIONS Our results expand the clinical and allelic spectrum of MRM2 variants. Previously, these descriptions were based on observations in a single patient, diagnosed with mitochondrial DNA depletion syndrome 17, in whom movement disorder was accompanied by recurrent strokes and epilepsy. We also demonstrate a subset of correctly spliced tt-ag MRM2 transcripts, raising the possibility to develop treatment by understanding the disease mechanism.
Collapse
Affiliation(s)
- Anum Shafique
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Beenish Arif
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Mary Lynn Chu
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
- Langone Orthopedic Hospital, New York University, New York, New York, USA
| | - Ellen Moran
- Clinical Genetics, Center for Children, Hassenfeld Children's Hospital, New York University, New York, New York, USA
| | - Tooba Hussain
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | | | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
9
|
Perez DL, Hoch DB, Cohen JN. Case 10-2023: A 27-Year-Old Man with Convulsions. N Engl J Med 2023; 388:1210-1218. [PMID: 36988597 DOI: 10.1056/nejmcpc2211365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Affiliation(s)
- David L Perez
- From the Departments of Neurology (D.L.P., D.B.H.) and Psychiatry (D.L.P., J.N.C.), Massachusetts General Hospital, and the Departments of Neurology (D.L.P., D.B.H.) and Psychiatry (D.L.P., J.N.C.), Harvard Medical School - both in Boston
| | - Daniel B Hoch
- From the Departments of Neurology (D.L.P., D.B.H.) and Psychiatry (D.L.P., J.N.C.), Massachusetts General Hospital, and the Departments of Neurology (D.L.P., D.B.H.) and Psychiatry (D.L.P., J.N.C.), Harvard Medical School - both in Boston
| | - Jonah N Cohen
- From the Departments of Neurology (D.L.P., D.B.H.) and Psychiatry (D.L.P., J.N.C.), Massachusetts General Hospital, and the Departments of Neurology (D.L.P., D.B.H.) and Psychiatry (D.L.P., J.N.C.), Harvard Medical School - both in Boston
| |
Collapse
|
10
|
Garg D, Mohammad S, Shukla A, Sharma S. Genetic Links to Episodic Movement Disorders: Current Insights. Appl Clin Genet 2023; 16:11-30. [PMID: 36883047 PMCID: PMC9985884 DOI: 10.2147/tacg.s363485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Episodic or paroxysmal movement disorders (PxMD) are conditions, which occur episodically, are transient, usually have normal interictal periods, and are characterized by hyperkinetic disorders, including ataxia, chorea, dystonia, and ballism. Broadly, these comprise paroxysmal dyskinesias (paroxysmal kinesigenic and non-kinesigenic dyskinesia [PKD/PNKD], paroxysmal exercise-induced dyskinesias [PED]) and episodic ataxias (EA) types 1-9. Classification of paroxysmal dyskinesias has traditionally been clinical. However, with advancement in genetics and the discovery of the molecular basis of several of these disorders, it is becoming clear that phenotypic pleiotropy exists, that is, the same variant may give rise to a variety of phenotypes, and the classical understanding of these disorders requires a new paradigm. Based on molecular pathogenesis, paroxysmal disorders are now categorized as synaptopathies, transportopathies, channelopathies, second-messenger related disorders, mitochondrial or others. A genetic paradigm also has an advantage of identifying potentially treatable disorders, such as glucose transporter 1 deficiency syndromes, which necessitates a ketogenic diet, and ADCY5-related disorders, which may respond to caffeine. Clues for a primary etiology include age at onset below 18 years, presence of family history and fixed triggers and attack duration. Paroxysmal movement disorder is a network disorder, with both the basal ganglia and the cerebellum implicated in pathogenesis. Abnormalities in the striatal cAMP turnover pathway may also be contributory. Although next-generation sequencing has restructured the approach to paroxysmal movement disorders, the genetic underpinnings of several entities remain undiscovered. As more genes and variants continue to be reported, these will lead to enhanced understanding of pathophysiological mechanisms and precise treatment.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College and Hospital, Manipal, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Hospital, New Delhi, India
| |
Collapse
|
11
|
Erro R, Magrinelli F, Bhatia KP. Paroxysmal movement disorders: Paroxysmal dyskinesia and episodic ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:347-365. [PMID: 37620078 DOI: 10.1016/b978-0-323-98817-9.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Huang X, Chen J, Ren L. The Choreoathetotic Movement of Paroxysmal Nonkinesigenic Dyskinesia. JAMA Neurol 2022; 79:1079-1080. [PMID: 35969391 DOI: 10.1001/jamaneurol.2022.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This case report describes a 14-year-old boy with paroxysmal involuntary movement attacks that were diagnosed as paroxysmal nonkinesigenic dyskinesia.
Collapse
Affiliation(s)
- Xinqi Huang
- Xuanwu Hospital, Clinical Center for Epilepsy, Department of Neurology, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, Chinese Institute for Brain Research, Beijing, China
| | - Jia Chen
- Xuanwu Hospital, Clinical Center for Epilepsy, Department of Neurology, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, Chinese Institute for Brain Research, Beijing, China
| | - Liankun Ren
- Xuanwu Hospital, Clinical Center for Epilepsy, Department of Neurology, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
13
|
Jiang T, Xie Y, Maimaiti B, Cheng Y, Li Z, Meng H. Case Report: Migraine-Induced Dystonia of the Lower Extremities. Front Neurol 2022; 13:855698. [PMID: 35614918 PMCID: PMC9124883 DOI: 10.3389/fneur.2022.855698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Migraine is a highly prevalent neurological disorder characterized by recurrent, unilateral, or bilateral throbbing severe headaches. Currently, there are extremely rare cases of migraine-induced dystonia. A 52-year-old woman was admitted for intractable migraine for about 5 days and walking difficulties for 1 day. The symptom of an inability to walk appeared on the fourth day of the headache attack lasting for 1 day and resolved on its own as the headache subsided. The same symptoms appeared once 6 years ago. Neurological examination, brain Magnetic resonance imaging (MRI), laboratory tests of blood and cerebrospinal fluid (CSF) were normal. The contrast transcranial Doppler echocardiography (cTCD) revealed a latent and massive right-to-left shunt (RLS) after the release of the Valsalva maneuver. The patient was diagnosed with migraine-induced dystonia of the lower limbs. Oral ibuprofen and flunarizine and avoidance of increased chest pressure maneuvers were used for treatment and prevention. During the 6-month follow-up, the patient was free of headaches and walking difficulties. Our study reported a rare case of migraine-induced dystonia of the lower extremities.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Yu Cheng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hongmei Meng
| |
Collapse
|
14
|
Rare tremors and tremors occurring in other neurological disorders. J Neurol Sci 2022; 435:120200. [DOI: 10.1016/j.jns.2022.120200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
|
15
|
Soliani L, Martorell L, Yubero D, Verges C, Petit V, Ortigoza‐Escobar JD. Paroxysmal Non-Kinesigenic Dyskinesia: Utility of the Quantification of GLUT1 in Red Blood Cells. Mov Disord Clin Pract 2021; 9:252-254. [PMID: 35146065 PMCID: PMC8810440 DOI: 10.1002/mdc3.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età pediatricaBolognaItaly,Dipartimento di Scienze Mediche e Chirurgiche (DIMEC)Università di BolognaBolognaItaly
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPERInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos IIIMadridSpain
| | - Delia Yubero
- Department of Genetic and Molecular Medicine IPERInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Carla Verges
- Rehabilitation Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | | | - Juan Darío Ortigoza‐Escobar
- Movement Disorders Unit, Pediatric Neurology DepartmentInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain,European Reference Network for Rare Neurological Diseases (ERN‐RND)TübingenGermany
| |
Collapse
|
16
|
Spitz MA, Lenaers G, Charif M, Wirth T, Chelly J, Abi-Warde MT, Meyer P, Leboucq N, Schaefer E, Anheim M, Roubertie A. Paroxysmal Dyskinesias Revealing 3-Hydroxy-Isobutyryl-CoA Hydrolase (HIBCH) Deficiency. Neuropediatrics 2021; 52:410-414. [PMID: 33506479 DOI: 10.1055/s-0040-1722678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Paroxysmal dyskinesias (PD) are rare movement disorders characterized by recurrent attacks of dystonia, chorea, athetosis, or their combination, with large phenotypic and genetic heterogeneity. 3-Hydroxy-isobutyryl-CoA hydrolase (HIBCH) deficiency is a neurodegenerative disease characterized in most patients by a continuous decline in psychomotor abilities or a secondary regression triggered by febrile infections and metabolic crises.We describe two PD patients from two pedigrees, both carrying a homozygous c.913A > G, p.Thr305Ala mutation in the HIBCH gene, associated with an unusual clinical presentation. The first patient presented in the second year of life with right paroxysmal hemidystonia lasting for 30 minutes, without any loss of consciousness and without any triggering factor. The second patient has presented since the age of 3 recurrent exercise-induced PD episodes which have been described as abnormal equinovarus, contractures of the lower limbs, lasting for 1 to 4 hours, associated with choreic movements of the hands. Their neurological examination and metabolic screening were normal, while brain magnetic resonance imaging showed abnormal signal of the pallidi.We suggest that HIBCH deficiency, through the accumulation of metabolic intermediates of the valine catabolic pathway, leads to a secondary defect in respiratory chain activity and pyruvate dehydrogenase (PDH) activity and to a broad phenotypic spectrum ranging from Leigh syndrome to milder phenotypes. The two patients presented herein expand the spectrum of the disease to include unusual paroxysmal phenotypes and HIBCH deficiency should be considered in the diagnostic strategy of PD to enable adequate preventive treatment.
Collapse
Affiliation(s)
| | - Guy Lenaers
- Équipe Mitolab, Institut MITOVASC, INSERM U1083, CNRS 6015, Université d'Angers, Angers, France
| | - Majida Charif
- Équipe Mitolab, Institut MITOVASC, INSERM U1083, CNRS 6015, Université d'Angers, Angers, France
| | - Thomas Wirth
- Service de Neurologie, CHRU Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS/Unistra, INSERM U1258, Illkirch, France.,Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jameleddine Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS/Unistra, INSERM U1258, Illkirch, France
| | | | - Pierre Meyer
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Nicolas Leboucq
- Service de Neuroradiologie, Hôpital Gui de Chauliac, CHRU Montpellier, Montpellier, France
| | - Elise Schaefer
- Service de Génétique Médicale, CHRU Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, CHRU Strasbourg, Strasbourg, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,INSERM U 1051, Institut des Neurosciences de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Danti FR, Invernizzi F, Moroni I, Garavaglia B, Nardocci N, Zorzi G. Pediatric Paroxysmal Exercise-Induced Neurological Symptoms: Clinical Spectrum and Diagnostic Algorithm. Front Neurol 2021; 12:658178. [PMID: 34140924 PMCID: PMC8203909 DOI: 10.3389/fneur.2021.658178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Paroxysmal exercise-induced neurological symptoms (PENS) encompass a wide spectrum of clinical phenomena commonly presenting during childhood and characteristically elicited by physical exercise. Interestingly, few shared pathogenetic mechanisms have been identified beyond the well-known entity of paroxysmal exercise-induced dyskinesia, PENS could be part of more complex phenotypes including neuromuscular, neurodegenerative, and neurometabolic disease, epilepsies, and psychogenetic disorders. The wide and partially overlapping phenotypes and the genetic heterogeneity make the differential diagnosis frequently difficult and delayed; however, since some of these disorders may be treatable, a prompt diagnosis is mandatory. Therefore, an accurate characterization of these symptoms is pivotal for orienting more targeted biochemical, radiological, neurophysiological, and genetic investigations and finally treatment. In this article, we review the clinical, genetic, pathophysiologic, and therapeutic landscape of paroxysmal exercise induced neurological symptoms, focusing on phenomenology and differential diagnosis.
Collapse
Affiliation(s)
- Federica Rachele Danti
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Nardo Nardocci
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Zorzi
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
18
|
Massimino CR, Portale L, Sapuppo A, Pizzo F, Sciuto L, Romano C, Salafia S, Falsaperla R. PRRT2 Related Epilepsies: A Gene Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
PRRT2 encodes for proline-rich transmembrane protein 2 involved in synaptic vesicle fusion and presynaptic neurotransmitter release. Mutations in human PRRT2 have been related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with choreoathetosis, benign familial infantile epilepsies, and hemiplegic migraine. PRRT2 mutations cause neuronal hyperexcitability, which could be related to basal ganglia or cortical circuits dysfunction, leading to paroxysmal disorders. PRRT2 is expressed in the cerebral cortex, basal ganglia, and cerebellum. Approximately, 90% of pathogenic variants are inherited and 10% are de novo. Paroxysmal attacks in PKD are characterized by dystonia, choreoathetosis, and ballismus. In the benign familial infantile epilepsy (BFIE), seizures are usually focal with or without generalization, usually begin between 3 and 12 months of age and remit by 2 years of age. In 30% of cases of PRRT2-associated PKD, there is an association with BFIE, and this entity is referred to as PKD with infantile convulsions (PKD/IC). PRRT2 mutations are the cause of benign family childhood epilepsy and PKD/IC. On the other hand, PRRT2 mutations do not seem to correlate with other types of epilepsy. The increasing incidence of hemiplegic migraine in families with PRRT2-associated PKD or PKD/IC suggests a common disease pathway, and it is possible to assert that BFIE, paroxysmal kinesigenic dyskinesia, and PKD with IC belong to a continuous disease spectrum of PRRT2-associated diseases.
Collapse
Affiliation(s)
- Carmela Rita Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Romano
- Italian Blind Union, Catania section, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
19
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
20
|
Magrinelli F, Balint B, Bhatia KP. Challenges in Clinicogenetic Correlations: One Gene - Many Phenotypes. Mov Disord Clin Pract 2021; 8:299-310. [PMID: 33816657 PMCID: PMC8015894 DOI: 10.1002/mdc3.13165] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Progress in genetics – particularly the advent of next‐generation sequencing (NGS) – has enabled an unparalleled gene discovery and revealed unmatched complexity of genotype–phenotype correlations in movement disorders. Among other things, it has emerged that mutations in one and the same gene can cause multiple, often markedly different phenotypes. Consequently, movement disorder specialists have increasingly experienced challenges in clinicogenetic correlations. Objectives To deconstruct biological phenomena and mechanistic bases of phenotypic heterogeneity in monogenic movement disorders and neurodegenerative diseases. To discuss the evolving role of movement disorder specialists in reshaping disease phenotypes in the NGS era. Methods This scoping review details phenomena contributing to phenotypic heterogeneity and their underlying mechanisms. Results Three phenomena contribute to phenotypic heterogeneity, namely incomplete penetrance, variable expressivity and pleiotropy. Their underlying mechanisms, which are often shared across phenomena and non‐mutually exclusive, are not fully elucidated. They involve genetic factors (ie, different mutation types, dynamic mutations, somatic mosaicism, intragenic intra‐ and inter‐allelic interactions, modifiers and epistatic genes, mitochondrial heteroplasmy), epigenetic factors (ie, genomic imprinting, X‐chromosome inactivation, modulation of genetic and chromosomal defects), and environmental factors. Conclusion Movement disorders is unique in its reliance on clinical judgment to accurately define disease phenotypes. This has been reaffirmed by the NGS revolution, which provides ever‐growing sequencing data and fuels challenges in variant pathogenicity assertions for such clinically heterogeneous disorders. Deep phenotyping, with characterization and continual updating of “core” phenotypes, and comprehension of determinants of genotype–phenotype complex relationships are crucial for clinicogenetic correlations and have implications for the diagnosis, treatment and counseling.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
21
|
de Gusmão CM, Garcia L, Mikati MA, Su S, Silveira-Moriyama L. Paroxysmal Genetic Movement Disorders and Epilepsy. Front Neurol 2021; 12:648031. [PMID: 33833732 PMCID: PMC8021799 DOI: 10.3389/fneur.2021.648031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Paroxysmal movement disorders include paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and episodic ataxias. In recent years, there has been renewed interest and recognition of these disorders and their intersection with epilepsy, at the molecular and pathophysiological levels. In this review, we discuss how these distinct phenotypes were constructed from a historical perspective and discuss how they are currently coalescing into established genetic etiologies with extensive pleiotropy, emphasizing clinical phenotyping important for diagnosis and for interpreting results from genetic testing. We discuss insights on the pathophysiology of select disorders and describe shared mechanisms that overlap treatment principles in some of these disorders. In the near future, it is likely that a growing number of genes will be described associating movement disorders and epilepsy, in parallel with improved understanding of disease mechanisms leading to more effective treatments.
Collapse
Affiliation(s)
- Claudio M. de Gusmão
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Lucas Garcia
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
| | - Mohamad A. Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samantha Su
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
- Education Unit, University College London Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
22
|
Okamoto N, Miya F, Kitai Y, Tsunoda T, Kato M, Saitoh S, Kanemura Y, Kosaki K. Homozygous ADCY5 mutation causes early-onset movement disorder with severe intellectual disability. Neurol Sci 2021; 42:2975-2978. [PMID: 33704598 DOI: 10.1007/s10072-021-05152-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mutations of theADCY5 have been identified in patients with familial dyskinesia, early-onsetautosomal dominant chorea and dystonia, and benign hereditary chorea. Most ofthe ADCY5 mutations are de novo or transmitted in an autosomal dominantfashion. Only two pedigrees are known to show autosomal recessive inheritance. OBJECTIVES We report twosiblings with severe ID, dystonic movement, and growth failure with unknownetiology. METHODS We planned a proband-parentapproach using whole exome sequencing. RESULTS Homozygous mutationin exon 21 of the ADCY5 (p.R1238W) was identified in the siblings. Althoughtheir parents were heterozygous for the mutation, they were free from clinicalmanifestations. CONCLUSIONS Our results furtherexpand the phenotype/genotype correlations of the ADCY5-related disorders.Mutations of ADCY5 should be considered in pediatric patients with ID andinvoluntary movement.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Kitai
- Department of Pediatric Neurology, Bobath Memorial Hospital, Osaka, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Landolfi A, Barone P, Erro R. The Spectrum of PRRT2-Associated Disorders: Update on Clinical Features and Pathophysiology. Front Neurol 2021; 12:629747. [PMID: 33746883 PMCID: PMC7969989 DOI: 10.3389/fneur.2021.629747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the PRRT2 (proline-rich transmembrane protein 2) gene have been identified as the main cause of an expanding spectrum of disorders, including paroxysmal kinesigenic dyskinesia and benign familial infantile epilepsy, which places this gene at the border between epilepsy and movement disorders. The clinical spectrum has largely expanded to include episodic ataxia, hemiplegic migraine, and complex neurodevelopmental disorders in cases with biallelic mutations. Prior to the discovery of PRRT2 as the causative gene for this spectrum of disorders, the sensitivity of paroxysmal kinesigenic dyskinesia to anticonvulsant drugs regulating ion channel function as well as the co-occurrence of epilepsy in some patients or families fostered the hypothesis this could represent a channelopathy. However, recent evidence implicates PRRT2 in synapse functioning, which disproves the "channel hypothesis" (although PRRT2 modulates ion channels at the presynaptic level), and justifies the classification of these conditions as synaptopathies, an emerging rubric of brain disorders. This review aims to provide an update of the clinical and pathophysiologic features of PRRT2-associated disorders.
Collapse
Affiliation(s)
| | | | - Roberto Erro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana, ” University of Salerno, Baronissi, Italy
| |
Collapse
|
24
|
Green S, Olby N. Levetiracetam-responsive paroxysmal exertional dyskinesia in a Welsh Terrier. J Vet Intern Med 2021; 35:1093-1097. [PMID: 33638219 PMCID: PMC7995356 DOI: 10.1111/jvim.16068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/12/2023] Open
Abstract
A 5-and-a-half-year old, 9-kg, spayed, female Welsh Terrier presented with a 12 month history of paroxysmal exertion-induced dyskinesia (PED) characterized by recurrent episodes of involuntary hyperkinetic movements, abnormal muscle tone, and contractions triggered by exercise. A single episode occurred within 2 hours after exercise, lasted from 7 to 10 minutes, and resolved without treatment. The owner sought treatment for the dog when the episodes began to last longer (20-30 minutes), and occurred as long as 2.5 to 8 hours after exercise. Diazepam administered intranasally at the start of an episode promptly alleviated the symptoms. Maintenance therapy with levetiracetam proved effective, such that the dog was gradually returned to exercise. However, attempts to wean the dog off the drug resulted in reoccurrence. Although the pathophysiology of PED is not fully understood, the clinical presentation and the positive response to antiepileptic therapy highlight the overlap between disease pathways in epilepsy and PED in dogs.
Collapse
Affiliation(s)
- Sherril Green
- Stanford University ‐ Comparative MedicineStanfordCaliforniaUSA
| | - Natasha Olby
- North Carolina State University ‐ College of Veterinary MedicineRaleighNorth CarolinaUSA
| |
Collapse
|
25
|
Recommendations for the diagnosis and treatment of paroxysmal kinesigenic dyskinesia: an expert consensus in China. Transl Neurodegener 2021; 10:7. [PMID: 33588936 PMCID: PMC7885391 DOI: 10.1186/s40035-021-00231-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Paroxysmal dyskinesias are a group of neurological diseases characterized by intermittent episodes of involuntary movements with different causes. Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesia and can be divided into primary and secondary types based on the etiology. Clinically, PKD is characterized by recurrent and transient attacks of involuntary movements precipitated by a sudden voluntary action. The major cause of primary PKD is genetic abnormalities, and the inheritance pattern of PKD is mainly autosomal-dominant with incomplete penetrance. The proline-rich transmembrane protein 2 (PRRT2) was the first identified causative gene of PKD, accounting for the majority of PKD cases worldwide. An increasing number of studies has revealed the clinical and genetic characteristics, as well as the underlying mechanisms of PKD. By seeking the views of domestic experts, we propose an expert consensus regarding the diagnosis and treatment of PKD to help establish standardized clinical evaluation and therapies for PKD. In this consensus, we review the clinical manifestations, etiology, clinical diagnostic criteria and therapeutic recommendations for PKD, and results of genetic analyses in PKD patients performed in domestic hospitals.
Collapse
|
26
|
The Identification of a Novel Fucosidosis-Associated FUCA1 Mutation: A Case of a 5-Year-Old Polish Girl with Two Additional Rare Chromosomal Aberrations and Affected DNA Methylation Patterns. Genes (Basel) 2021; 12:genes12010074. [PMID: 33435586 PMCID: PMC7827884 DOI: 10.3390/genes12010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Fucosidosis is a rare neurodegenerative autosomal recessive disorder, which manifests as progressive neurological and psychomotor deterioration, growth retardation, skin and skeletal abnormalities, intellectual disability and coarsening of facial features. It is caused by biallelic mutations in FUCA1 encoding the α-L-fucosidase enzyme, which in turn is responsible for degradation of fucose-containing glycoproteins and glycolipids. FUCA1 mutations lead to severe reduction or even loss of α-L-fucosidase enzyme activity. This results in incomplete breakdown of fucose-containing compounds leading to their deposition in different tissues and, consequently, disease progression. To date, 36 pathogenic variants in FUCA1 associated with fucosidosis have been documented. Among these are three splice site variants. Here, we report a novel fucosidosis-related 9-base-pair deletion (NG_013346.1:g.10233_10241delACAGGTAAG) affecting the exon 3/intron 3 junction within a FUCA1 sequence. This novel pathogenic variant was identified in a five-year-old Polish girl with a well-defined pattern of fucosidosis symptoms. Since it is postulated that other genetic, nongenetic or environmental factors can also contribute to fucosidosis pathogenesis, we performed further analysis and found two rare de novo chromosomal aberrations in the girl’s genome involving a 15q11.1-11.2 microdeletion and an Xq22.2 gain. These abnormalities were associated with genome-wide changes in DNA methylation status in the epigenome of blood cells.
Collapse
|
27
|
Delorme C, Giron C, Bendetowicz D, Méneret A, Mariani LL, Roze E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev Neurother 2020; 21:81-97. [PMID: 33089715 DOI: 10.1080/14737175.2021.1840978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Paroxysmal movement disorders mostly comprise paroxysmal dyskinesia and episodic ataxia, and can be the consequence of a genetic disorder or symptomatic of an acquired disease. AREAS COVERED In this review, the authors focused on certain hot-topic issues in the field: the respective contribution of the cerebellum and striatum to the generation of paroxysmal dyskinesia, the importance of striatal cAMP turnover in the pathogenesis of paroxysmal dyskinesia, the treatable causes of paroxysmal movement disorders not to be missed, with a special emphasis on the treatment strategy to bypass the glucose transport defect in paroxysmal movement disorders due to GLUT1 deficiency, and functional paroxysmal movement disorders. EXPERT OPINION Treatment of genetic causes of paroxysmal movement disorders is evolving towards precision medicine with targeted gene-specific therapy. Alteration of the cerebellar output and modulation of the striatal cAMP turnover offer new perspectives for experimental therapeutics, at least for paroxysmal movement disorders due to selected causes. Further characterization of cell-specific molecular pathways or network dysfunctions that are critically involved in the pathogenesis of paroxysmal movement disorders will likely result in the identification of new biomarkers and testing of innovative-targeted therapeutics.
Collapse
Affiliation(s)
- Cécile Delorme
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - Camille Giron
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France
| | - David Bendetowicz
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Aurélie Méneret
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Louise-Laure Mariani
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière , Paris, France.,Inserm U 1127, CNRS UMR 7225- Institut du cerveau (ICM), Sorbonne Université , Paris, France
| |
Collapse
|
28
|
Stan A, Gherghel N, Muresanu DF. Adult-onset idiopathic lower-extremity dystonia: A rare task-specific dystonia. Clin Neurol Neurosurg 2020; 198:106106. [DOI: 10.1016/j.clineuro.2020.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
|
29
|
Abstract
Paroxysmal dyskinesia (PxD) is a heterogeneous group of syndromes characterized by recurrent attacks of abnormal movements, triggered by detectable factors, without loss of consciousness. According to the precipitating factors, they are classified as paroxysmal kinesigenic dyskinesia (PKD), paroxysmal non-kinesigenic dyskinesia (PNKD), and paroxysmal exercise-induced dystonia (PED). PxD treatment is based on the combination of nonpharmacologic and pharmacologic approaches. Pharmacologic and nonpharmacologic treatments effective for PNKD and PED also are available. In PxD refractory to conventional treatment, surgery might be an alternative therapeutic option. The course of PRRT2-PKD and MR-1-PNKD is benign, and treatment might not be needed with advancing age.
Collapse
|
30
|
Bech S, Løkkegaard A, Nielsen TT, Nørremølle A, Grønborg S, Hasholt L, Steffensen GK, Graehn G, Olesen JH, Tommerup N, Mang Y, Bak M, Nielsen JE, Eiberg H, Hjermind LE. Paroxysmal Cranial Dyskinesia and Nail-Patella Syndrome Caused by a Novel Variant in the LMX1B Gene. Mov Disord 2020; 35:2343-2347. [PMID: 32949189 PMCID: PMC8151874 DOI: 10.1002/mds.28244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In a Danish family, multiple individuals in five generations present with early-onset paroxysmal cranial dyskinesia, musculoskeletal abnormalities, and kidney dysfunction. OBJECTIVE To demonstrate linkage and to identify the underlying genetic cause of disease. METHODS Genome-wide single-nucleotide polymorphisms analysis, Sequence-Tagged-Site marker analyses, exome sequencing, and Sanger sequencing were performed. RESULTS Linkage analyses identified a candidate locus on chromosome 9. Exome sequencing revealed a novel variant in LMX1B present in all affected individuals, logarithm of the odds (LOD) score of z = 6.54, predicted to be damaging. Nail-patella syndrome (NPS) is caused by pathogenic variants in LMX1B encoding a transcription factor essential to cytoskeletal and kidney growth and dopaminergic and serotonergic network development. NPS is characterized by abnormal musculoskeletal features and kidney dysfunction. Movement disorders have not previously been associated with NPS. CONCLUSIONS Paroxysmal dyskinesia is a heretofore unrecognized feature of the NPS spectrum. The pathogenic mechanism might relate to aberrant dopaminergic circuits. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sara Bech
- Department of Neurology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Troels T Nielsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabine Grønborg
- Department of Pediatrics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lis Hasholt
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gudrun K Steffensen
- Department of Nephrology, Sygehus Lillebaelt, Kolding Sygehus, Kolding, Denmark
| | - Gabor Graehn
- Department of Nephrology, Hospital of Southern Denmark, Sønderborg, Denmark
| | - Jess H Olesen
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Mang
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen E Nielsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Eiberg
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lena E Hjermind
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Coleman J, Dean M. Longstanding Paroxysmal Dyskinesia in
GLUT1
Deficiency Syndrome. Mov Disord Clin Pract 2020; 7:S96-S98. [DOI: 10.1002/mdc3.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Marissa Dean
- University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
32
|
Pandey S, Chouksey A, Bhattad S. Severe Choreo-Ballism Episodes Due to PRRT2 Gene Mutations-A Vignette. Mov Disord Clin Pract 2020; 7:857-858. [PMID: 33043084 DOI: 10.1002/mdc3.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/01/2023] Open
Affiliation(s)
- Sanjay Pandey
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| | - Anjali Chouksey
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| | - Sonali Bhattad
- Department of Neurology Govind Ballabh Pant Postgraduate Institute of Medical Education and Research New Delhi India
| |
Collapse
|
33
|
Fang J, Wang S, Zhao G, Cao L. Novel mutation of the PRRT2 gene in two cases of paroxysmal kinesigenic dyskinesia: Two case reports. Biomed Rep 2020; 12:309-312. [PMID: 32346475 PMCID: PMC7184952 DOI: 10.3892/br.2020.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a rare condition characterized by recurrent brief episodes of dystonia, chorea, athetosis or any combination of these, without alterations of consciousness. The proline-rich transmembrane protein 2 (PRRT2) gene has been widely investigated as a causative gene of PKD. To date, a cluster of pathogenic variants associated with PKD have been identified in the PRRT2 gene. In the present case report, two Chinese patients with sporadic PKD are discussed. Genetic analysis revealed a de novo heterozygous missense mutation, c.955G>T (p.Val319Leu) in exon 3 of the PRRT2 gene. Compared with the commonly reported clinical manifestation of PRRT2-associated PKD, the patients in this report showed several primary distinctive features. The mutations identified in the present analysis expand upon the mutation spectrum of the PRRT2 gene, and this newly found variant further reinforces the importance of the PRR2 gene in PKD.
Collapse
Affiliation(s)
- Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Shige Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China.,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Cao
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
34
|
Sturchio A, Marsili L, Mahajan A, Grimberg MB, Kauffman MA, Espay AJ. How have advances in genetic technology modified movement disorder nosology? Eur J Neurol 2020; 27:1461-1470. [PMID: 32356310 DOI: 10.1111/ene.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
The role of genetics and its technological development have been fundamental in advancing the field of movement disorders, opening the door to precision medicine. Starting from the revolutionary discovery of the locus of the Huntington's disease gene, we review the milestones of genetic discoveries in movement disorders and their impact on clinical practice and research efforts. Before the 1980s, early techniques did not allow the identification of genetic alteration in complex diseases. Further advances increasingly defined a large number of pathogenic genetic alterations. Moreover, these techniques allowed epigenomic, transcriptomic and microbiome analyses. In the 2020s, these new technologies are poised to displace phenotype-based classifications towards a nosology based on genetic/biological data. Advances in genetic technologies are engineering a reversal of the phenotype-to-genotype order of nosology development, replacing convergent clinicopathological disease models with the genotypic divergence required for future precision medicine applications.
Collapse
Affiliation(s)
- A Sturchio
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - L Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - A Mahajan
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - M B Grimberg
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - M A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología 'José María Ramos Mejía' y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA and Programa de Medicina de Precision y Genomica Clinica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Pilar, Argentina
| | - A J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
35
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
36
|
Saranza G, Grütz K, Klein C, Westenberger A, Lang AE. Primary brain calcification due to a homozygous MYORG mutation causing isolated paroxysmal kinesigenic dyskinesia. Brain 2020; 143:e36. [PMID: 32303062 DOI: 10.1093/brain/awaa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Gerard Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
LaFaver K, Lang AE, Stone J, Morgante F, Edwards M, Lidstone S, Maurer CW, Hallett M, Dwivedi AK, Espay AJ. Opinions and clinical practices related to diagnosing and managing functional (psychogenic) movement disorders: changes in the last decade. Eur J Neurol 2020; 27:975-984. [DOI: 10.1111/ene.14200] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022]
Affiliation(s)
- K. LaFaver
- Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL USA
| | - A. E. Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital University of Toronto Toronto CN Canada
| | - J. Stone
- Centre for Clinical Brain Sciences University of Edinburgh EdinburghUK
| | - F. Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute St George's University of London London UK
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - M. Edwards
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute St George's University of London London UK
| | - S. Lidstone
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital University of Toronto Toronto CN Canada
| | - C. W. Maurer
- Department of Neurology Stony Brook University School of Medicine Stony Brook NYUSA
| | - M. Hallett
- Human Motor Control Section Medical Neurology Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda MDUSA
| | - A. K. Dwivedi
- Division of Biostatistics and Epidemiology Department of Molecular and Translational Medicine Texas Tech University Health Sciences Center El Paso El Paso TXUSA
| | - A. J. Espay
- Department of Neurology UC Gardner Neuroscience Institute James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders University of Cincinnati Cincinnati OH USA
| |
Collapse
|
38
|
Zúñiga-Ramírez C, Kramis-Hollands M, Mercado-Pimentel R, González-Usigli HA, Sáenz-Farret M, Soto-Escageda A, Fasano A. Generalized Dystonia and Paroxysmal Dystonic Attacks due to a Novel ATP1A3 Variant. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-723. [PMID: 31871823 PMCID: PMC6925393 DOI: 10.7916/tohm.v0.723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
Background Paroxysmal movement disorders are a heterogeneous group of neurological diseases, better understood in recent years thanks to widely available genetic testing. Case report A pair of monozygotic twins with dystonia and paroxysmal attacks, resembling paroxysmal non-kinesigenic dyskinesias, due to a novel ATP1A3 variant are reported. The complete resolution of their paroxysms was achieved using levodopa and deep brain stimulation of the internal globus pallidus. Improvement of interictal dystonia was also achieved with this therapy. Discussion Paroxysmal worsening of movement disorders should be suspected as part of the ATP1A3 spectrum. Treatment outcome might be predicted based on the phenotype.
Collapse
Affiliation(s)
- Carlos Zúñiga-Ramírez
- Movement Disorders and Neurodegenerative Diseases Unit (UMANO), Guadalajara, MX.,Hospital Civil de Guadalajara "Fray Antonio Alcalde," Guadalajara, MX
| | | | - Rodrigo Mercado-Pimentel
- Movement Disorders and Neurodegenerative Diseases Unit (UMANO), Guadalajara, MX.,Hospital Civil de Guadalajara "Fray Antonio Alcalde," Guadalajara, MX
| | - Héctor Alberto González-Usigli
- Movement Disorders and Neurodegenerative Diseases Unit (UMANO), Guadalajara, MX.,Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, MX
| | - Michel Sáenz-Farret
- Movement Disorders and Neurodegenerative Diseases Unit (UMANO), Guadalajara, MX.,Hospital Civil de Guadalajara "Fray Antonio Alcalde," Guadalajara, MX
| | - Alberto Soto-Escageda
- Movement Disorders and Neurodegenerative Diseases Unit (UMANO), Guadalajara, MX.,Hospital Civil de Guadalajara "Fray Antonio Alcalde," Guadalajara, MX
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, CA.,Krembil Brain Institute, Toronto, Ontario, CA
| |
Collapse
|
39
|
Di Fonzo A, Franco G, Barone P, Erro R. Parkinsonism in diseases predominantly presenting with dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:307-326. [PMID: 31779818 DOI: 10.1016/bs.irn.2019.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
If the presence of dystonia is a well-recognized phenomenon in disorders predominantly presenting with parkinsonism, including sporadic Parkinson Disease, the term dystonia-parkinsonism usually refers to rare conditions, often genetic, in which the severity of dystonia usually equates that of parkinsonism. At variance with parkinsonian syndromes with additional dystonia, the conditions reviewed in this chapter have usually their onset in childhood and their diagnostic work-up is different. In fact, the phenotype is not usually specific of the underlying defect and additional investigations are therefore required. Here, we review the diseases predominantly presenting with dystonia where parkinsonism can develop, according to their main pathophysiological mechanism including disorders of dopamine biosynthesis, neurotransmitter transporter disorders, disorder of metal metabolism (i.e., iron, copper and manganese) and other inherited dystonia-parkinsonism conditions.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Franco
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
40
|
Mencacci NE, Jinnah HA. Naming Genes for Dystonia: DYT-z or Ditzy? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-710. [PMID: 31523486 PMCID: PMC6714488 DOI: 10.7916/tohm.v0.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/01/2022]
Abstract
Dystonias are a clinically and etiologically diverse group of disorders. Numerous genes have now been associated with different dystonia syndromes, and multiple strategies have been proposed for how these genes should be lumped and split into meaningful categories. The traditional approach has been based on the Human Genome Organization’s plan for naming genetic loci for all disorders. For dystonia this involves a DYT prefix followed by a number (e.g., DYT1, DYT2, DYT3, etc.). A more recently proposed approach involves assigning multiple prefixes according to the main elements of the phenotype (e.g., DYT, PARK, CHOR, TREM, etc.) followed by the name of the responsible gene. This article describes these nomenclature systems and summarizes some of their limitations. We focus on dystonia as an example, although the concepts may be applied to all movement disorders.
Collapse
Affiliation(s)
- Niccolo E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - H A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
Jinnah H, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019; 129:159-168. [DOI: 10.1016/j.nbd.2019.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
|
42
|
De Gusmao CM, Silveira-Moriyama L. Paroxysmal movement disorders - practical update on diagnosis and management. Expert Rev Neurother 2019; 19:807-822. [PMID: 31353980 DOI: 10.1080/14737175.2019.1648211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Paroxysmal dyskinesias and episodic ataxias are often caused by mutations in genes related to cell membrane and synaptic function. Despite the exponential increase in publications of genetically confirmed cases, management remains largely clinical based on non-systematic evidence. Areas covered: The authors provide a historical and clinical review of the main types of paroxysmal dyskinesias and episodic ataxias, with recommendations for diagnosis and management of patients suffering from these conditions. Expert opinion: After secondary paroxysmal dyskinesias, the most common paroxysmal movement disorders are likely to be PRRT2-associated paroxysmal kinesigenic dyskinesias, which respond well to small doses of carbamazepine, and episodic ataxia type 2, which often responds to acetazolamide. Familial paroxysmal non-kinesigenic dyskinesias are largely caused by mutations in PNKD and have poor response to therapy but improve with age. Exercise-induced dyskinesias are genetically heterogeneous, caused by disorders of glucose transport, mitochondrial function, dopaminergic pathways or neurodegenerative conditions amongst others. GNAO1 and ADCY5 mutations can also cause paroxysmal movement disorders, often in the context of ongoing motor symptoms. Although a therapeutic trial is justified for classic cases and in limited resource settings, genetic testing may help direct initial or rescue therapy. Deep brain stimulation may be an option for severe cases.
Collapse
Affiliation(s)
- Claudio M De Gusmao
- Department of Neurology, Harvard Medical School, Boston Children's Hospital , Boston , MA , USA.,Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil.,Education Unit, UCL Institute of Neurology, University College London , London , UK.,Department of Neurology, Hospital Bairral, Fundação Espírita Américo Bairral , Itapira , Brazil
| |
Collapse
|
43
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
44
|
Abstract
PURPOSE OF REVIEW Recent advancements in next-generation sequencing (NGS) have enabled techniques such as whole exome sequencing (WES) and whole genome sequencing (WGS) to be used to study paroxysmal movement disorders (PMDs). This review summarizes how the recent genetic advances have altered our understanding of the pathophysiology and treatment of the PMDs. Recently described disease entities are also discussed. RECENT FINDINGS With the recognition of the phenotypic and genotypic heterogeneity that occurs amongst the PMDs, an increasing number of gene mutations are now implicated to cause the disorders. PMDs can also occur as part of a complex phenotype. The increasing complexity of PMDs challenges the way we view and classify them. The identification of new causative genes and their genotype-phenotype correlation will shed more light on the underlying pathophysiology and will facilitate development of genetic testing guidelines and identification of novel drug targets for PMDs.
Collapse
Affiliation(s)
- Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Che-Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Bukit Merah, Singapore, Singapore
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|
45
|
Tan AH, Ong TL, Ramli N, Tan LK, Lim JL, Azhan MA, Ahmad-Annuar A, Ibrahim KA, Abdul-Aziz Z, Ozelius LJ, Brashear A, Lim SY. Alternating Hemiplegia of Childhood in a Person of Malay Ethnicity with Diffusion Tensor Imaging Abnormalities. J Mov Disord 2019; 12:132-134. [PMID: 31158946 PMCID: PMC6547042 DOI: 10.14802/jmd.18063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ai Huey Tan
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tien Lee Ong
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Norlisah Ramli
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Li Kuo Tan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamad Addin Azhan
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul-Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Laurie J Ozelius
- Departments of Genetics and Genomic Sciences and Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Allison Brashear
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shen-Yang Lim
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Manso-Calderón R. Clinical Features and Treatment in the Spectrum of Paroxysmal Dyskinesias: An Observational Study in South-West Castilla y Leon, Spain. Neurol Res Int 2019; 2019:4191796. [PMID: 31186958 PMCID: PMC6521303 DOI: 10.1155/2019/4191796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Paroxysmal dyskinesias (PxD) are a group of heterogeneous disorders characterized by intermittent episodes of involuntary movements. PxD include paroxysmal kinesigenic (PKD), nonkinesigenic (PNK), and exercise-induced (PED) varieties. OBJECTIVES To define the phenotype of primary and secondary PxD forms. METHODS Twenty-two patients with PxD (9 men/13 women) were evaluated in two hospitals in south-west Castilla y Leon, Spain. Clinical features of the episodes, causes, family history, and response to treatment were collected. RESULTS Thirteen participants with primary PxD (6 men/7 women) and 9 with secondary PxD (3 men/6 women) were recruited. Nine patients belong to three nonrelated families (2 had PKD and 1 had PED). Mean age at onset in primary PKD cases was 10 years (range 5-23 years), earlier than in PNKD (24 years) and PED (20 years). Most primary PKD cases experienced daily episodes of duration <1 minute, which are more frequent and shorter attacks than in PNKD (1-2 per month, 5 minutes) and PED (1 per day, 15 minutes). The location of the involuntary movements varied widely; isolated dystonia was more common than mixed chorea and dystonia. All PKD patients who received antiepileptic treatment significantly improved. Levodopa and ketogenic diet proved to be effective in two patients with PED. Secondary forms presented a later mean age of onset (51 years). Six cases had PNKD, 1 had PKD, 1 both PNKD and PKD, and 1 had PED. Causes comprised vascular lesions, encephalitis, multiple sclerosis, peripheral trauma, endocrinopathies, and drugs such as selective serotonin reuptake inhibitors (SSRIs). CONCLUSION The knowledge of the clinical features and spectrum of causes related to PxD is crucial to avoid delays in diagnosis and treatment, or even a nonorganic disorder diagnosis.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
47
|
Balint B, Stephen CD, Udani V, Sankhla CS, Barad NH, Lang AE, Bhatia KP. Paroxysmal Asymmetric Dystonic Arm Posturing-A Less Recognized but Characteristic Manifestation of ATP1A3-related disease. Mov Disord Clin Pract 2019; 6:312-315. [PMID: 31061839 DOI: 10.1002/mdc3.12747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 02/03/2023] Open
Abstract
Background ATP1A3 mutations cause a wide clinical spectrum, and are one of the "commoner rare diseases". Methods Case series of four patients with ATP1A3 mutations. Results The patients displayed characteristic episodes of dystonic arm posturing, involving a dystonic, flexed arm held in front of the body or close to the body, but with the hand raised upwards. Other attacks manifested with arm extension, either beside the body or reaching upwards. Dystonic posturing occurred paroxysmally, with no neurological signs between attacks, or combined with other signs like chorea, ataxia, and hypotonia. Conclusions While previous diagnostic criteria have not included paroxysmal or episodic dystonia, recent expert consensus has proposed to include alternating or paroxysmal dystonia as major feature calling for ATP1A3 genetic testing. Attacks of marked arm flexion posturing, either paroxysmal or as episodic exacerbation of mild pre-existent dystonia, are a characteristic clue to ATP1A3-related disease.
Collapse
Affiliation(s)
- Bettina Balint
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Christopher D Stephen
- Movement Disorders Unit, Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | | | | | | | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital - UHN, Division of Neurology University of Toronto Toronto Ontario Canada
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom
| |
Collapse
|
48
|
Zhang XJ, Xu ZY, Wu YC, Tan EK. Paroxysmal movement disorders: Recent advances and proposal of a classification system. Parkinsonism Relat Disord 2019; 59:131-139. [PMID: 30902529 DOI: 10.1016/j.parkreldis.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
The increasing recognition of the phenotypic and genotypic heterogeneity that exists amongst the paroxysmal movement disorders (PMDs) is challenging the way these disorders have been traditionally classified. The present review aims to summarize how recent genetic advances have influenced our understanding of the nosology, pathophysiology and treatment strategies of paroxysmal movement disorders. We propose classifying PMDs using a system that would combine both phenotype and genotype information to allow these disorders to be better categorized and studied. In the era of next generation sequencing, the use of a standardized algorithm and employment of selective genetic screening will lead to greater diagnostic certainty and targeted therapeutics for the patients.
Collapse
Affiliation(s)
- Xiao-Jin Zhang
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore; Department of Neurology, Shanghai General Hospital, China; Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Zhe-Yu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|