1
|
Record CJ, Pipis M, Skorupinska M, Blake J, Poh R, Polke JM, Eggleton K, Nanji T, Zuchner S, Cortese A, Houlden H, Rossor AM, Laura M, Reilly MM. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease. Brain 2024; 147:3144-3156. [PMID: 38481354 PMCID: PMC11370804 DOI: 10.1093/brain/awae064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/04/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009 to 2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome sequencing and WGS and, latterly, WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. In summary, 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100 000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment, leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre and has benefitted from the use of WGS, particularly access to the raw data. However, almost one-quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Menelaos Pipis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kelly Eggleton
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Tina Nanji
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
2
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
3
|
Searson PC. The Cancer Moonshot, the role of in vitro models, model accuracy, and the need for validation. NATURE NANOTECHNOLOGY 2023; 18:1121-1123. [PMID: 37644124 DOI: 10.1038/s41565-023-01486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
4
|
Mahungu AC, Monnakgotla N, Nel M, Heckmann JM. A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet J Rare Dis 2022; 17:133. [PMID: 35331287 PMCID: PMC8944057 DOI: 10.1186/s13023-022-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies (Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in Africans. Methods PubMed was searched for relevant articles and manual checking of references and review publications were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in population controls (including up to date frequencies from the gnomAD database). Results For HSP, 23 reports were found spanning the years 2000–2019 of which 19 related to North Africans, with high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002–2021, of which 16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported. There were 12 reports spanning years 1999–2020 related to SMN1-SMA caused by homozygous exon 7 ± 8 deletion. Interestingly, the population frequency of heterozygous SMN1-exon 7 deletion mutations appeared 2 × lower in Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact SMN1-SMA prognosis. Conclusions Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa. Highlights Review of genetic variants reported in hereditary spastic paraplegia in Africans Review of genetic variants reported in genetic neuropathies in Africans Review of genetic underpinnings of spinal muscular atrophies in Africans Assessment of pathogenic evidence for candidate variants
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02280-2.
Collapse
Affiliation(s)
- Amokelani C Mahungu
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | | | - Melissa Nel
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | - Jeannine M Heckmann
- E8-74 Neurology, Department of Medicine, Groote Schuur Hospital and the University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Raga SV, Wilmshurst JM, Smuts I, Meldau S, Bardien S, Schoonen M, van der Westhuizen FH. A case for genomic medicine in South African paediatric patients with neuromuscular disease. Front Pediatr 2022; 10:1033299. [PMID: 36467485 PMCID: PMC9713312 DOI: 10.3389/fped.2022.1033299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Paediatric neuromuscular diseases are under-recognised and under-diagnosed in Africa, especially those of genetic origin. This may be attributable to various factors, inclusive of socioeconomic barriers, high burden of communicable and non-communicable diseases, resource constraints, lack of expertise in specialised fields and paucity of genetic testing facilities and biobanks in the African population, making access to and interpretation of results more challenging. As new treatments become available that are effective for specific sub-phenotypes, it is even more important to confirm a genetic diagnosis for affected children to be eligible for drug trials and potential treatments. This perspective article aims to create awareness of the major neuromuscular diseases clinically diagnosed in the South African paediatric populations, as well as the current challenges and possible solutions. With this in mind, we introduce a multi-centred research platform (ICGNMD), which aims to address the limited knowledge on NMD aetiology and to improve genetic diagnostic capacities in South African and other African populations.
Collapse
Affiliation(s)
- Sharika V Raga
- Department of Neurophysiology, Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jo Madeleine Wilmshurst
- Department of Neurophysiology, Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Surita Meldau
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service and University of Cape Town, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
6
|
Considerations for a Reliable In Vitro Model of Chemotherapy-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9110300. [PMID: 34822690 PMCID: PMC8620674 DOI: 10.3390/toxics9110300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.
Collapse
|
7
|
Boraschi D, Li D, Li Y, Italiani P. In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211769. [PMID: 34831525 PMCID: PMC8623312 DOI: 10.3390/ijerph182211769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
The immunological safety of drugs, nanomaterials and contaminants is a central point in the regulatory evaluation and safety monitoring of working and public places and of the environment. In fact, anomalies in immune responses may cause diseases and hamper the physical and functional integrity of living organisms, from plants to human beings. In the case of nanomaterials, many experimental models are used for assessing their immunosafety, some of which have been adopted by regulatory bodies. All of them, however, suffer from shortcomings and approximations, and may be inaccurate in representing real-life responses, thereby leading to incomplete, incorrect or even misleading predictions. Here, we review the advantages and disadvantages of current nanoimmunosafety models, comparing in vivo vs. in vitro models and examining the use of animal vs. human cells, primary vs. transformed cells, complex multicellular and 3D models, organoids and organs-on-chip, in view of implementing a reliable and personalized nanoimmunosafety testing. The general conclusion is that the choice of testing models is key for obtaining reliable predictive information, and therefore special attention should be devoted to selecting the most relevant and realistic suite of models in order to generate relevant information that can allow for safer-by-design nanotechnological developments.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (D.L.); (Y.L.)
- Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy;
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence:
| | - Dongjie Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (D.L.); (Y.L.)
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (D.L.); (Y.L.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy;
| |
Collapse
|
8
|
Affiliation(s)
- Rhys C Roberts
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|