1
|
Ayyubova G. APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:342-352. [PMID: 36872358 DOI: 10.2174/1871527322666230303114425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
2
|
Anglada-Huguet M, Endepols H, Sydow A, Hilgers R, Neumaier B, Drzezga A, Kaniyappan S, Mandelkow E, Mandelkow EM. Reversal of Tau-Dependent Cognitive Decay by Blocking Adenosine A1 Receptors: Comparison of Transgenic Mouse Models with Different Levels of Tauopathy. Int J Mol Sci 2023; 24:ijms24119260. [PMID: 37298211 DOI: 10.3390/ijms24119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The accumulation of tau is a hallmark of several neurodegenerative diseases and is associated with neuronal hypoactivity and presynaptic dysfunction. Oral administration of the adenosine A1 receptor antagonist rolofylline (KW-3902) has previously been shown to reverse spatial memory deficits and to normalize the basic synaptic transmission in a mouse line expressing full-length pro-aggregant tau (TauΔK) at low levels, with late onset of disease. However, the efficacy of treatment remained to be explored for cases of more aggressive tauopathy. Using a combination of behavioral assays, imaging with several PET-tracers, and analysis of brain tissue, we compared the curative reversal of tau pathology by blocking adenosine A1 receptors in three mouse models expressing different types and levels of tau and tau mutants. We show through positron emission tomography using the tracer [18F]CPFPX (a selective A1 receptor ligand) that intravenous injection of rolofylline effectively blocks A1 receptors in the brain. Moreover, when administered to TauΔK mice, rolofylline can reverse tau pathology and synaptic decay. The beneficial effects are also observed in a line with more aggressive tau pathology, expressing the amyloidogenic repeat domain of tau (TauRDΔK) with higher aggregation propensity. Both models develop a progressive tau pathology with missorting, phosphorylation, accumulation of tau, loss of synapses, and cognitive decline. TauRDΔK causes pronounced neurofibrillary tangle assembly concomitant with neuronal death, whereas TauΔK accumulates only to tau pretangles without overt neuronal loss. A third model tested, the rTg4510 line, has a high expression of mutant TauP301L and hence a very aggressive phenotype starting at ~3 months of age. This line failed to reverse pathology upon rolofylline treatment, consistent with a higher accumulation of tau-specific PET tracers and inflammation. In conclusion, blocking adenosine A1 receptors by rolofylline can reverse pathology if the pathological potential of tau remains below a threshold value that depends on concentration and aggregation propensity.
Collapse
Affiliation(s)
- Marta Anglada-Huguet
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Sydow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Ronja Hilgers
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
3
|
de Frutos Lucas J, Sewell KR, García-Colomo A, Markovic S, Erickson KI, Brown BM. How does apolipoprotein E genotype influence the relationship between physical activity and Alzheimer's disease risk? A novel integrative model. Alzheimers Res Ther 2023; 15:22. [PMID: 36707869 PMCID: PMC9881295 DOI: 10.1186/s13195-023-01170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Wide evidence suggests that physical activity (PA) confers protection against Alzheimer's disease (AD). On the other hand, the apolipoprotein E gene (APOE) ε4 allele represents the greatest genetic risk factor for developing AD. Extensive research has been conducted to determine whether frequent PA can mitigate the increased AD risk associated with APOE ε4. However, thus far, these attempts have produced inconclusive results. In this context, one possible explanation could be that the influence of the combined effect of PA and APOE ε4 carriage might be dependent on the specific outcome measure utilised. MAIN BODY In order to bridge these discrepancies, the aim of this theoretical article is to propose a novel model on the interactive effects of PA and APOE ε4 carriage on well-established mechanisms underlying AD. Available literature was searched to investigate how PA and APOE ε4 carriage, independently and in combination, may alter several molecular pathways involved in AD pathogenesis. The reviewed mechanisms include amyloid beta (Aβ) and tau deposition and clearance, neuronal resilience and neurogenesis, lipid function and cerebrovascular alterations, brain immune response and glucose metabolism. Finally, combining all this information, we have built an integrative model, which includes evidence-based and theoretical synergistic interactions across mechanisms. Moreover, we have identified key knowledge gaps in the literature, providing a list of testable hypotheses that future studies need to address. CONCLUSIONS We conclude that PA influences a wide array of molecular targets involved in AD neuropathology. A deeper understanding of where, when and, most importantly, how PA decreases AD risk even in the presence of the APOE ε4 allele will enable the creation of new protocols using exercise along pharmaceuticals in combined therapeutic approaches.
Collapse
Affiliation(s)
- Jaisalmer de Frutos Lucas
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain.
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- Departamento de PsicologíaFacultad de Ciencias de la Vida y de la Naturaleza, Universidad Antonio de Nebrija, 28015, Madrid, Spain.
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Alejandra García-Colomo
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain
| | - Shaun Markovic
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
- AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Belinda M Brown
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
4
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
5
|
Johnson CN, McCoin CS, Kueck PJ, Hawley AG, John CS, Thyfault JP, Swerdlow RH, Geiger PC, Morris JK. Relationship of Muscle Apolipoprotein E Expression with Markers of Cellular Stress, Metabolism, and Blood Biomarkers in Cognitively Healthy and Impaired Older Adults. J Alzheimers Dis 2023; 92:1027-1035. [PMID: 36847010 PMCID: PMC10116140 DOI: 10.3233/jad-221192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Individuals with mild cognitive impairment (MCI) have reduced lipid-stimulated mitochondrial respiration in skeletal muscle. A major risk factor for Alzheimer's disease (AD), the apolipoprotein E4 (APOE4) allele, is implicated in lipid metabolism and is associated with metabolic and oxidative stress that can result from dysfunctional mitochondria. Heat shock protein 72 (Hsp72) is protective against these stressors and is elevated in the AD brain. OBJECTIVE Our goal was to characterize skeletal muscle ApoE and Hsp72 protein expression in APOE4 carriers in relationship to cognitive status, muscle mitochondrial respiration and AD biomarkers. METHODS We analyzed previously collected skeletal muscle tissue from 24 APOE4 carriers (60y+) who were cognitively healthy (CH, n = 9) or MCI (n = 15). We measured ApoE and Hsp72 protein levels in muscle and phosphorylated tau181 (pTau181) levels in plasma, and leveraged previously collected data on APOE genotype, mitochondrial respiration during lipid oxidation, and VO2 max. RESULTS Muscle ApoE (p = 0.013) and plasma pTau181 levels (p < 0.001) were higher in MCI APOE4 carriers. Muscle ApoE positively correlated with plasma pTau181 in all APOE4 carriers (R2 = 0.338, p = 0.003). Hsp72 expression negatively correlated with ADP (R2 = 0.775, p = <0.001) and succinate-stimulated respiration (R2 = 0.405, p = 0.003) in skeletal muscle of MCI APOE4 carriers. Plasma pTau181 negatively tracked with VO2 max in all APOE4 carriers (R2 = 0.389, p = 0.003). Analyses were controlled for age. CONCLUSION This work supports a relationship between cellular stress in skeletal muscle and cognitive status in APOE4 carriers.
Collapse
Affiliation(s)
- Chelsea N. Johnson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Colin S. McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul J. Kueck
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amelia G. Hawley
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Casey S. John
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - John P. Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C. Geiger
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas University Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Ma JP, Robbins CB, Lee JM, Soundararajan S, Stinnett SS, Agrawal R, Plassman BL, Lad EM, Whitson H, Grewal DS, Fekrat S. Longitudinal Analysis of the Retina and Choroid in Cognitively Normal Individuals at Higher Genetic Risk of Alzheimer Disease. Ophthalmol Retina 2022; 6:607-619. [PMID: 35283324 PMCID: PMC9271592 DOI: 10.1016/j.oret.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the baseline differences and longitudinal rate of change in retinal and choroidal imaging parameters between apolipoprotein ε4 (APOE ε4) carriers and noncarriers with normal cognition. DESIGN Prospective study. SUBJECTS Four hundred thirteen eyes of 218 individuals with normal cognition aged ≥ 55 years with known APOE status (98 APOE ε4 carriers and 120 noncarriers). The exclusion criteria included diabetes mellitus, uncontrolled hypertension, glaucoma, and vitreoretinal or neurodegenerative disease. METHODS OCT and OCT angiography (OCTA) were performed at baseline and 2 years (Zeiss Cirrus HD-OCT 5000 with AngioPlex; Zeiss Meditec). The groups were compared using sex- and age-adjusted generalized estimating equations. MAIN OUTCOME MEASURES OCT parameters: retinal nerve fiber layer thickness, macular ganglion cell-inner plexiform layer thickness, central subfield thickness (CST), and choroidal vascularity index. OCT angiography parameters: foveal avascular zone area, perfusion density (PD), vessel density, peripapillary capillary PD (CPD), and capillary flux index (CFI). The rate of change per year was calculated. RESULTS At the baseline, the APOE ε4 carriers had lower CST (P = 0.018), PD in the 6-mm ETDRS circle (P = 0.049), and temporal CFI (P = 0.047). Seventy-one APOE ε4 carriers and 78 noncarriers returned at 2 years; at follow-up, the 6-mm ETDRS circle (P = 0.05) and outer ring (P = 0.049) showed lower PD in the APOE ε4 carriers, with no differences in the rates of change between the groups (all P > 0.05). CONCLUSIONS There was exploratory evidence of differences in the CST, PD, and peripapillary CFI between the APOE ε4 carriers and noncarriers with normal cognition. Larger and longer-term studies may help further elucidate the potential prognostic value of these findings.
Collapse
Affiliation(s)
- Justin P Ma
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Cason B Robbins
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Jia Min Lee
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Srinath Soundararajan
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sandra S Stinnett
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore; Duke NUS Medical School, Singapore, Singapore
| | - Brenda L Plassman
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Departments of Psychiatry and Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Heather Whitson
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Dilraj S Grewal
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sharon Fekrat
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
7
|
Rao IY, Hanson LR, Johnson JC, Rosenbloom MH, Frey WH. Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer's and Parkinson's Diseases. Pharmaceuticals (Basel) 2022; 15:551. [PMID: 35631378 PMCID: PMC9143620 DOI: 10.3390/ph15050551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine the relationship between the presence of glucose hypometabolism (GHM) and brain iron accumulation (BIA), two potential pathological mechanisms in neurodegenerative disease, in different regions of the brain in people with late-onset Alzheimer's disease (AD) or Parkinson's disease (PD). Studies that conducted fluorodeoxyglucose positron emission tomography (FDG-PET) to map GHM or quantitative susceptibility mapping-magnetic resonance imaging (QSM-MRI) to map BIA in the brains of patients with AD or PD were reviewed. Regions of the brain where GHM or BIA were reported in each disease were compared. In AD, both GHM and BIA were reported in the hippocampus, temporal, and parietal lobes. GHM alone was reported in the cingulate gyrus, precuneus and occipital lobe. BIA alone was reported in the caudate nucleus, putamen and globus pallidus. In PD, both GHM and BIA were reported in thalamus, globus pallidus, putamen, hippocampus, and temporal and frontal lobes. GHM alone was reported in cingulate gyrus, caudate nucleus, cerebellum, and parietal and occipital lobes. BIA alone was reported in the substantia nigra and red nucleus. GHM and BIA are observed independent of one another in various brain regions in both AD and PD. This suggests that GHM is not always necessary or sufficient to cause BIA and vice versa. Hypothesis-driven FDG-PET and QSM-MRI imaging studies, where both are conducted on individuals with AD or PD, are needed to confirm or disprove the observations presented here about the potential relationship or lack thereof between GHM and BIA in AD and PD.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - Julia C. Johnson
- HealthPartners Struthers Parkinson’s Center, Minneapolis, MN 55427, USA;
| | - Michael H. Rosenbloom
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - William H. Frey
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
8
|
Robb WH, Khan OA, Ahmed HA, Li J, Moore EE, Cambronero FE, Pechman KR, Liu D, Gifford KA, Landman BA, Donahue MJ, Hohman TJ, Jefferson AL. Lower cerebral oxygen utilization is associated with Alzheimer's disease-related neurodegeneration and poorer cognitive performance among apolipoprotein E ε4 carriers. J Cereb Blood Flow Metab 2022; 42:642-655. [PMID: 34743630 PMCID: PMC9051148 DOI: 10.1177/0271678x211056393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022]
Abstract
Oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) are markers of cerebral oxygen homeostasis and metabolism that may offer insights into abnormal changes in brain aging. The present study cross-sectionally related OEF and CMRO2 to cognitive performance and structural neuroimaging variables among older adults (n = 246, 74 ± 7 years, 37% female) and tested whether apolipoprotein E (APOE)-ε4 status modified these associations. Main effects of OEF and CMRO2 were null (p-values >0.06), and OEF interactions with APOE-ε4 status on cognitive and structural imaging outcomes were null (p-values >0.06). However, CMRO2 interacted with APOE-ε4 status on language (p = 0.002), executive function (p = 0.03), visuospatial (p = 0.005), and episodic memory performances (p = 0.03), and on hippocampal (p = 0.006) and inferior lateral ventricle volumes (p = 0.02). In stratified analyses, lower oxygen metabolism related to worse language (p = 0.02) and episodic memory performance (p = 0.03) among APOE-ε4 carriers only. Associations between CMRO2 and cognitive performance were primarily driven by APOE-ε4 carriers with existing cognitive impairment. Congruence across language and episodic memory results as well as hippocampal and inferior lateral ventricle volume findings suggest that APOE-ε4 may interact with cerebral oxygen metabolism in the pathogenesis of Alzheimer's disease and related neurodegeneration.
Collapse
Affiliation(s)
- W Hudson Robb
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| | - Omair A Khan
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
| | - Humza A Ahmed
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| | - Judy Li
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| | - Elizabeth E Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| | - Francis E Cambronero
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
| | - Bennett A Landman
- Department of Neurology, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University
Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
- Department of Medicine, Vanderbilt University Medical
Center, Vanderbilt University Medical Center, Nashville, TN,
USA
| |
Collapse
|
9
|
Mishra A, Wang Y, Yin F, Vitali F, Rodgers KE, Soto M, Mosconi L, Wang T, Brinton RD. A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer's prevention & treatment. Ageing Res Rev 2022; 74:101542. [PMID: 34929348 PMCID: PMC8884386 DOI: 10.1016/j.arr.2021.101542] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Neurological aging is frequently viewed as a linear process of decline, whereas in reality, it is a dynamic non-linear process. The dynamic nature of neurological aging is exemplified during midlife in the female brain. To investigate fundamental mechanisms of midlife aging that underlie risk for development of Alzheimer's disease (AD) in late life, we investigated the brain at greatest risk for the disease, the aging female brain. Outcomes of our research indicate that mid-life aging in the female is characterized by the emergence of three phases: early chronological (pre-menopause), endocrinological (peri-menopause) and late chronological (post-menopause) aging. The endocrinological aging program is sandwiched between early and late chronological aging. Throughout the three stages of midlife aging, two systems of biology, metabolic and immune, are tightly integrated through a network of signaling cascades. The network of signaling between these two systems of biology underlie an orchestrated sequence of adaptative starvation responses that shift the brain from near exclusive dependence on a single fuel, glucose, to utilization of an auxiliary fuel derived from lipids, ketone bodies. The dismantling of the estrogen control of glucose metabolism during mid-life aging is a critical contributor to the shift in fuel systems and emergence of dynamic neuroimmune phenotype. The shift in fuel reliance, puts the largest reservoir of local fatty acids, white matter, at risk for catabolism as a source of lipids to generate ketone bodies through astrocytic beta oxidation. APOE4 genotype accelerates the tipping point for emergence of the bioenergetic crisis. While outcomes derived from research conducted in the female brain are not directly translatable to the male brain, the questions addressed in a female centric program of research are directly applicable to investigation of the male brain. Like females, males with AD exhibit deficits in the bioenergetic system of the brain, activation of the immune system and hallmark Alzheimer's pathologies. The drivers and trajectory of mechanisms underlying neurodegeneration in the male brain will undoubtedly share common aspects with the female in addition to factors unique to the male. Preclinical and clinical evidence indicate that midlife endocrine aging can also be a transitional bridge to autoimmune disorders. Collectively, the data indicate that endocrinological aging is a critical period "tipping point" in midlife which can initiate emergence of the prodromal stage of late-onset-Alzheimer's disease. Interventions that target both immune and metabolic shifts that occur during midlife aging have the potential to alter the trajectory of Alzheimer's risk in late life. Further, to achieve precision medicine for AD, chromosomal sex is a critical variable to consider along with APOE genotype, other genetic risk factors and stage of disease.
Collapse
Affiliation(s)
- Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Kathleen E Rodgers
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Maira Soto
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
10
|
Clarke H, Messaritaki E, Dimitriadis SI, Metzler-Baddeley C. Dementia Risk Factors Modify Hubs but Leave Other Connectivity Measures Unchanged in Asymptomatic Individuals: A Graph Theoretical Analysis. Brain Connect 2022; 12:26-40. [PMID: 34030485 PMCID: PMC8867081 DOI: 10.1089/brain.2020.0935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the most common form of dementia with genetic and environmental risk contributing to its development. Graph theoretical analyses of brain networks constructed from structural and functional magnetic resonance imaging (MRI) measurements have identified connectivity changes in AD and individuals with mild cognitive impairment. However, brain connectivity in asymptomatic individuals at risk of AD remains poorly understood. Methods: We analyzed diffusion-weighted MRI data from 161 asymptomatic individuals (38-71 years) from the Cardiff Ageing and Risk of Dementia Study (CARDS). We calculated white matter tracts and constructed whole-brain, default mode network (DMN) and visual structural brain networks that incorporate multiple structural metrics as edge weights. We then calculated the relationship of three AD risk factors, namely Apolipoprotein-E ɛ4 (APOE4) genotype, family history of dementia (FH), and central obesity (Waist-Hip-Ratio [WHR]), on graph theoretical measures and hubs. Results: We observed no risk-related differences in clustering coefficients, characteristic path lengths, eccentricity, diameter, and radius across the whole-brain, DMN or visual system. However, a hub in the right paracentral lobule was present in all the high-risk groups (FH, APOE4, obese), but absent in low-risk groups (no FH, APOE4-ve, healthy WHR). Discussion: We identified no risk-related effects on graph theoretical metrics in the structural brain networks of cognitively healthy individuals. However, high risk was associated with a hub in the right paracentral lobule, a medial fronto-parietal cortical area with motor and sensory functions. This finding is consistent with accumulating evidence for right parietal cortex contributions in AD. If this phenotype is shown to predict symptom development in longitudinal studies, it could be used as an early biomarker of AD. Impact statement Alzheimer's disease (AD) is a common form of dementia that to date has no cure. Identifying early biomarkers will aid the discovery and development of treatments that may slow AD progression in the future. In this article, we report that asymptomatic individuals at heightened risk of dementia due to their family history, Apolipoprotein-E ɛ4 genotype, and central adiposity have a hub in the right paracentral lobule, which is absent in low-risk groups. If this phenotype were to predict the development of symptoms in a longitudinal study of the same cohort, it could provide an early biomarker of disease progression.
Collapse
Affiliation(s)
- Hannah Clarke
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- BRAIN Biomedical Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Wilkins HM, Wang X, Menta BW, Koppel SJ, Bothwell R, Becker AM, Anderson H, Schwartz E, Pei D, Yellapu NK, Chalise P, Gouvion CM, Haeri M, Burns JM, Swerdlow RH. Bioenergetic and inflammatory systemic phenotypes in Alzheimer's disease APOE ε4-carriers. Aging Cell 2021; 20:e13356. [PMID: 33939248 PMCID: PMC8135087 DOI: 10.1111/acel.13356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We examined the impact of an APOE ε4 genotype on Alzheimer's disease (AD) subject platelet and lymphocyte metabolism. Mean platelet mitochondrial cytochrome oxidase Vmax activity was lower in APOE ε4 carriers and lymphocyte Annexin V, a marker of apoptosis, was significantly higher. Proteins that mediate mitophagy and energy sensing were higher in APOE ε4 lymphocytes which could represent compensatory changes and recapitulate phenomena observed in post‐mortem AD brains. Analysis of the lipid synthesis pathway found higher AceCSI, ATP CL, and phosphorylated ACC levels in APOE ε4 lymphocytes. Lymphocyte ACC changes were also observed in post‐mortem brain tissue. Lymphocyte RNAseq showed lower APOE ε4 carrier sphingolipid Transporter 3 (SPNS3) and integrin Subunit Alpha 1 (ITGA1) expression. RNAseq pathway analysis revealed APOE ε4 alleles activated inflammatory pathways and modulated bioenergetic signaling. These findings support a relationship between APOE genotype and bioenergetic pathways and indicate platelets and lymphocytes from APOE ε4 carriers exist in a state of bioenergetic stress. Neither medication use nor brain‐localized AD histopathology can account for these findings, which define an APOE ε4‐determined molecular and systemic phenotype that informs AD etiology.
Collapse
Affiliation(s)
- Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Biochemistry and Molecular Biology University of Kansas Medical Center Kansas City KS USA
| | - Xiaowan Wang
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Blaise W. Menta
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Biochemistry and Molecular Biology University of Kansas Medical Center Kansas City KS USA
| | - Scott J. Koppel
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Molecular and Integrative Physiology University of Kansas Medical Center Kansas City KS USA
| | - Rebecca Bothwell
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | | | - Heidi Anderson
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Erin Schwartz
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Dong Pei
- Department of Biostatistics and Data Science University of Kansas Medical Center Kansas City KS USA
| | - Nanda K. Yellapu
- Department of Biostatistics and Data Science University of Kansas Medical Center Kansas City KS USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science University of Kansas Medical Center Kansas City KS USA
| | - Cynthia M. Gouvion
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Pathology & Laboratory Medicine University of Kansas Medical Center Kansas City KS USA
| | - Mohammad Haeri
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Pathology & Laboratory Medicine University of Kansas Medical Center Kansas City KS USA
| | - Jeffrey M. Burns
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Russell H. Swerdlow
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Biochemistry and Molecular Biology University of Kansas Medical Center Kansas City KS USA
- Department of Molecular and Integrative Physiology University of Kansas Medical Center Kansas City KS USA
| |
Collapse
|
12
|
Qian J, Betensky RA, Hyman BT, Serrano-Pozo A. Association of APOE Genotype With Heterogeneity of Cognitive Decline Rate in Alzheimer Disease. Neurology 2021; 96:e2414-e2428. [PMID: 33771840 PMCID: PMC8166439 DOI: 10.1212/wnl.0000000000011883] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Objective To test the hypothesis that the APOE genotype is a significant driver of heterogeneity in Alzheimer disease (AD) clinical progression, which could have important implications for clinical trial design and interpretation. Methods We applied novel reverse-time longitudinal models to analyze the trajectories of Clinical Dementia Rating Sum of Boxes (CDR-SOB) and Mini-Mental State Examination (MMSE) scores—2 common outcome measures in AD clinical trials—in 1,102 autopsy-proven AD cases (moderate/frequent neuritic plaques and Braak tangle stage III or greater) from the National Alzheimer's Coordinating Center Neuropathology database resembling participants with mild to moderate AD in therapeutic clinical trials. Results APOE ε4 carriers exhibited ≈1.5 times faster CDR-SOB increase than APOE ε3/ε3 carriers (2.12 points per year vs 1.44 points per year) and ≈1.3 times faster increase than APOE ε2 carriers (1.65 points per year), whereas APOE ε2 vs APOE ε3/ε3 difference was not statistically significant. APOE ε4 carriers had ≈1.1 times faster MMSE decline than APOE ε3/ε3 carriers (−3.45 vs −3.03 points per year) and ≈1.4 times faster decline than APOE ε2 carriers (−2.43 points per year), whereas APOE ε2 carriers had ≈1.2 times slower decline than APOE ε3/ε3 carriers (−2.43 vs −3.03 points per year). These findings remained largely unchanged after controlling for the effect of AD neuropathologic changes on the rate of cognitive decline and for the presence and severity of comorbid pathologies. Conclusion Compared to the APOE ε3/ε3 reference genotype, the APOE ε2 and ε4 alleles have opposite (slowing and accelerating, respectively) effects on the rate of cognitive decline, which are clinically relevant and largely independent of the differential APOE allele effects on AD and comorbid pathologies. Thus, APOE genotype contributes to the heterogeneity in rate of clinical progression in AD.
Collapse
Affiliation(s)
- Jing Qian
- From the Department of Biostatistics and Epidemiology (J.Q.), University of Massachusetts, Amherst; New York University College of Global Public Health (R.A.B.), New York City; Department of Neurology (B.T.H., A.S.-P.), Massachusetts General Hospital, Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Rebecca A Betensky
- From the Department of Biostatistics and Epidemiology (J.Q.), University of Massachusetts, Amherst; New York University College of Global Public Health (R.A.B.), New York City; Department of Neurology (B.T.H., A.S.-P.), Massachusetts General Hospital, Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Bradley T Hyman
- From the Department of Biostatistics and Epidemiology (J.Q.), University of Massachusetts, Amherst; New York University College of Global Public Health (R.A.B.), New York City; Department of Neurology (B.T.H., A.S.-P.), Massachusetts General Hospital, Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Alberto Serrano-Pozo
- From the Department of Biostatistics and Epidemiology (J.Q.), University of Massachusetts, Amherst; New York University College of Global Public Health (R.A.B.), New York City; Department of Neurology (B.T.H., A.S.-P.), Massachusetts General Hospital, Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA.
| |
Collapse
|
13
|
Abstract
Since the introduction of menopausal hormone therapy (MHT) in the 1940s, randomized clinical trials and observational studies have been performed to determine the benefits and risks of MHT. However, MHT therapeutic impact remains under debate as multiple factors including genetic biomarkers and medical history contribute to inter-individual variations in neurodegenerative diseases. Herein, we review the characteristics of women who participated in clinical studies and methodological approaches for study analyses to assess the critical variables influencing an association between MHT and risk of neurodegenerative diseases. Outcomes of the review indicated that: (1) observational studies assessed outcomes of MHT in symptomatic women whereas MHT clinical trials were conducted in asymptomatic postmenopausal women not treated for menopausal symptoms, (2) in asymptomatic postmenopausal women, late MHT intervention was of no benefit, (3) different MHT treatments and regimens between observational studies and clinical trials may impact outcomes, and (4) observational studies may provide greater predictive validity for long-term neurological health outcomes as MHT was introduced in symptomatic women and administered over a long period of time. Going forward, achieving precision hormone therapy will require a priori identification of symptomatic women appropriate for MHT and the type and dose of MHT appropriate for their genetic profile and health risks.
Collapse
Affiliation(s)
- Y J Kim
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
15
|
Blujus JK, Korthauer LE, Awe E, Frahmand M, Driscoll I. Single Nucleotide Polymorphisms in Alzheimer's Disease Risk Genes Are Associated with Intrinsic Connectivity in Middle Age. J Alzheimers Dis 2020; 78:309-320. [PMID: 32986668 DOI: 10.3233/jad-200444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is critical to identify individuals at risk for Alzheimer's disease (AD) earlier in the disease time course, such as middle age and preferably well prior to the onset of clinical symptoms, when intervention efforts may be more successful. Genome-wide association and candidate gene studies have identified single nucleotide polymorphisms (SNPs) in APOE, CLU, CR1, PICALM, and SORL1 that confer increased risk of AD. OBJECTIVE In the current study, we investigated the associations between SNPs in these genes and resting-state functional connectivity within the default mode network (DMN), frontoparietal network (FPN), and executive control network (ECN) in healthy, non-demented middle-aged adults (age 40 -60; N = 123; 74 females). METHODS Resting state networks of interest were identified through independent components analysis using a template-matching procedure and individual spatial maps and time courses were extracted using dual regression. RESULTS Within the posterior DMN, functional connectivity was associated with CR1 rs1408077 and CLU rs9331888 polymorphisms (p's < 0.05). FPN connectivity was associated with CR1 rs1408077, CLU rs1136000, SORL1 rs641120, and SORL1 rs689021 (p's < 0.05). Functional connectivity within the ECN was associated with the CLU rs11136000 (p < 0.05). There were no APOE- or PICALM-related differences in any of the networks investigated (p's > 0.05). CONCLUSION This is the first demonstration of the relationship between intrinsic network connectivity and AD risk alleles in CLU, CR1, and SORL1 in healthy, middle-aged adults. These SNPs should be considered in future investigations aimed at identifying potential preclinical biomarkers for AD.
Collapse
Affiliation(s)
| | - Laura Elizabeth Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Elizabeth Awe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marijam Frahmand
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
16
|
Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer's Disease. Mol Neurobiol 2020; 57:4961-4977. [PMID: 32820459 DOI: 10.1007/s12035-020-02065-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and chronic neurodegenerative disorder that interferes with memory, thinking, and behavior. The consumption of dietary fat has been considered a vital factor for AD as this disease is related to blood-brain barrier function and cholesterol signaling. The ε4 allele of apolipoprotein E (APOE4) is a primary genetic risk factor that encodes one of many proteins accountable for the transport of cholesterol and it is deemed as the leading cholesterol transport proteins in the brain. In case of AD development, the causative factor is the high level of serum/plasma cholesterol. However, this statement is arguable and, in the meantime, the levels of brain cholesterol in individuals with AD are extremely inconstant and levels of cholesterol in the brain and serum/plasma of AD individuals do not reflect cholesterol as a risk factor. In fact, APOE4 is neither fundamental nor sufficient for the advancement of AD; it just acts as a synergistic and increases the danger of AD. Another noticeable characteristic of AD is area-specific decreases in the metabolism of brain glucose. It has been found that the brain cells cannot efficiently metabolize fats; hence, they totally rely upon glucose as a vitality substrate. Thus, suppression of glucose metabolism can possess an intense effect on brain actions. Hypometabolism is frequently found in AD and has quite recently achieved impressive consideration as a plausible target for interfering in the progression of the disease. One promising approach is to keep up the normal supply of glucose to the brain with ketone bodies from the ketogenic diet signifies a potential therapeutic agent for AD. Therefore, this review represents the role of ketogenic diets to combat AD pathogenesis by considering the influence of APOE.
Collapse
|
17
|
Ricci M, Chiaravalloti A, Martorana A, Koch G, De Lucia V, Barbagallo G, Schillaci O. The role of epsilon phenotype in brain glucose consumption in Alzheimer's disease. Ann Nucl Med 2020; 34:254-262. [PMID: 32016694 DOI: 10.1007/s12149-020-01441-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the impact of the epsilon phenotype in brain glucose consumption in a population with Alzheimer's disease. METHODS Statistical Parametric Mapping (SPM8) was used to investigate differences in brain glucose consumption (as detectable by means of 18F FDG-PET/CT) in the population examined. A total of 129 patients (72 females and 57 males) with a diagnosis of probable AD according to the NINCDS-ADRDA criteria underwent the PET/CT examination. The mean (SD) age of the patients was 70 (± 7) years; the mean Mini-Mental State Examination was 19(± 5.6). 59 expressed epsilon 4 phenotype (E4) and 70 expressed the epsilon 3 phenotype (E3). Cerebral spinal fluid amyloid, tau, and t-tau have been measured resulting equal to 367.4 (± 149.1), 584.7 (± 312.1), and 79.2(± 45.9) pg/ml, respectively. Patients with confirmed amyloid and Tau changes were classified as AD. Patients with amyloid changes but negative Tau, considered as high risk of AD, were classified as IAD. Age, sex, MMSE, scholarship, and CSF parameters were used as a covariate in the SPM analyses. RESULTS We did not find significant differences in age, gender, and MMSE and CSF parameters among groups. In the analysis of the AD group as compared to AD-E3, AD-E4 subjects show a significant reduction of brain glucose consumption in inferior frontal gyrus bilaterally (BA 45, BA 47). In the analysis of the IAD group as compared to IAD-E3, IAD-E4 subjects show a significant reduction of brain glucose consumption in right in medial, middle, and superior frontal gyrus (BA10, BA11), and in left medial and middle frontal gyrus (BA10, BA11). The differences between IAD-E3 and AD-E3 and between IAD-E4 and AD-E4 (and vice versa analysis) resulted not significant. CONCLUSIONS APO-e4 is related to a major involvement of the frontal cortex confirming its role of risk factor in AD, while APO-3 seems not related to a specific pattern, supporting the hypothesis of neutral/protective role in AD.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Faculty of Medicine and Surgery, La Sapienza University, Rome, Italy.
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, UOC Medicina Nucleare, Pozzilli, IS, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze PTV, System Medicine, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giacomo Koch
- UOSD Centro Demenze PTV, System Medicine, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Vincenzo De Lucia
- UOSD Centro Demenze PTV, System Medicine, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Gaetano Barbagallo
- Institute of Neurology, Magna Græcia University, 88100, Catanzaro, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, UOC Medicina Nucleare, Pozzilli, IS, Italy
| |
Collapse
|
18
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
19
|
Shang Y, Mishra A, Wang T, Wang Y, Desai M, Chen S, Mao Z, Do L, Bernstein AS, Trouard TP, Brinton RD. Evidence in support of chromosomal sex influencing plasma based metabolome vs APOE genotype influencing brain metabolome profile in humanized APOE male and female mice. PLoS One 2020; 15:e0225392. [PMID: 31917799 PMCID: PMC6952084 DOI: 10.1371/journal.pone.0225392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
Late onset Alzheimer’s disease (LOAD) is a progressive neurodegenerative disease with four well-established risk factors: age, APOE4 genotype, female chromosomal sex, and maternal history of AD. Each risk factor impacts multiple systems, making LOAD a complex systems biology challenge. To investigate interactions between LOAD risk factors, we performed multiple scale analyses, including metabolomics, transcriptomics, brain magnetic resonance imaging (MRI), and beta-amyloid assessment, in 16 months old male and female mice with humanized human APOE3 (hAPOE3) or APOE4 (hAPOE4) genes. Metabolomic analyses indicated a sex difference in plasma profile whereas APOE genotype determined brain metabolic profile. Consistent with the brain metabolome, gene and pathway-based RNA-Seq analyses of the hippocampus indicated increased expression of fatty acid/lipid metabolism related genes and pathways in both hAPOE4 males and females. Further, female transcription of fatty acid and amino acids pathways were significantly different from males. MRI based imaging analyses indicated that in multiple white matter tracts, hAPOE4 males and females exhibited lower fractional anisotropy than their hAPOE3 counterparts, suggesting a lower level of white matter integrity in hAPOE4 mice. Consistent with the brain metabolomic and transcriptomic profile of hAPOE4 carriers, beta-amyloid generation was detectable in 16-month-old male and female brains. These data provide therapeutic targets based on chromosomal sex and APOE genotype. Collectively, these data provide a framework for developing precision medicine interventions during the prodromal phase of LOAD, when the potential to reverse, prevent and delay LOAD progression is greatest.
Collapse
Affiliation(s)
- Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Maunil Desai
- School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
| | - Loi Do
- Biomedical Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Adam S. Bernstein
- College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Theodore P. Trouard
- Biomedical Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
20
|
Dong Q, Zhang J, Li Q, Wang J, Leporé N, Thompson PM, Caselli RJ, Ye J, Wang Y. Integrating Convolutional Neural Networks and Multi-Task Dictionary Learning for Cognitive Decline Prediction with Longitudinal Images. J Alzheimers Dis 2020; 75:971-992. [PMID: 32390615 PMCID: PMC7427104 DOI: 10.3233/jad-190973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Disease progression prediction based on neuroimaging biomarkers is vital in Alzheimer's disease (AD) research. Convolutional neural networks (CNN) have been proved to be powerful for various computer vision research by refining reliable and high-level feature maps from image patches. OBJECTIVE A key challenge in applying CNN to neuroimaging research is the limited labeled samples with high dimensional features. Another challenge is how to improve the prediction accuracy by joint analysis of multiple data sources (i.e., multiple time points or multiple biomarkers). To address these two challenges, we propose a novel multi-task learning framework based on CNN. METHODS First, we pre-trained CNN on the ImageNet dataset and transferred the knowledge from the pre-trained model to neuroimaging representation. We used this deep model as feature extractor to generate high-level feature maps of different tasks. Then a novel unsupervised learning method, termed Multi-task Stochastic Coordinate Coding (MSCC), was proposed for learning sparse features of multi-task feature maps by using shared and individual dictionaries. Finally, Lasso regression was performed on these multi-task sparse features to predict AD progression measured by the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-Cog). RESULTS We applied this novel CNN-MSCC system on the Alzheimer's Disease Neuroimaging Initiative dataset to predict future MMSE/ADAS-Cog scales. We found our method achieved superior performances compared with seven other methods. CONCLUSION Our work may add new insights into data augmentation and multi-task deep model research and facilitate the adoption of deep models in neuroimaging research.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Junwen Wang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Natasha Leporé
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
21
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 720] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
22
|
Gu J, Jin N, Ma D, Chu D, Iqbal K, Gong CX, Liu F. Calpain I Activation Causes GLUT3 Proteolysis and Downregulation of O-GlcNAcylation in Alzheimer's Disease Brain. J Alzheimers Dis 2019; 62:1737-1746. [PMID: 29614685 DOI: 10.3233/jad-171047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impairment of cerebral glucose uptake/metabolism in individuals with Alzheimer's disease (AD) is believed to lead to downregulation of protein O-GlcNAcylation, which contributes to tau pathogenesis through tau hyperphosphorylation. Level of glucose transporter 3 (GLUT3), a neuronal specific glucose transporter, is decreased in AD brain, which may contribute to impaired brain glucose uptake/metabolism. However, what causes the reduction of GLUT3 in AD brain is not fully understood. Here, we report 1) that decrease of GLUT3 is associated with the reduction of protein O-GlcNAcylation in AD brain, 2) that GLUT3 level is negatively correlated with calpain I activation in human brain, 3) that calpain I proteolyzes GLUT3 at the N-terminus in vitro, and 4) that activation of calpain I is negatively correlated with protein O-GlcNAcylation in AD brain. Furthermore, we found that overexpression of GLUT3 enhances protein O-GlcNAcylation in N2a cells. Overexpression of calpain I suppresses protein O-GlcNAcylation in these cells. These findings suggest a novel mechanism by which calpain I overactivation leads to GLUT3 degradation and the consequent down-regulation of protein O-GlcNAcylation in AD brain.
Collapse
Affiliation(s)
- Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Denglei Ma
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
23
|
Morsy A, Trippier PC. Amyloid-Binding Alcohol Dehydrogenase (ABAD) Inhibitors for the Treatment of Alzheimer’s Disease. J Med Chem 2018; 62:4252-4264. [DOI: 10.1021/acs.jmedchem.8b01530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
24
|
Stage E, Duran T, Risacher SL, Goukasian N, Do TM, West JD, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ, Apostolova LG. The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:53-66. [PMID: 28054028 PMCID: PMC5198883 DOI: 10.1016/j.dadm.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent.
Collapse
Affiliation(s)
- Eddie Stage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tugce Duran
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith Phillips
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Indiana University Network Science Institute, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Wang Y, Brinton RD. Triad of Risk for Late Onset Alzheimer's: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex. Front Aging Neurosci 2016; 8:232. [PMID: 27757081 PMCID: PMC5047907 DOI: 10.3389/fnagi.2016.00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer’s, Parkinson’s, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency. Herein, we focus on the association between mitochondrial haplotype and risk of late onset Alzheimer’s disease (LOAD). Evidence for the association of mitochondrial genetic variances/haplotypes and the risk of developing LOAD are explored and discussed. Further, we provide a conceptual framework that suggests an interaction between mitochondrial haplotypes and two demonstrated risk factors for Alzheimer’s disease (AD), apolipoprotein E (APOE) genotype and chromosomal sex. We posit herein that mitochondrial haplotype, and hence respiratory capacity, plays a key role in determining risk of LOAD and other age-associated neurodegenerative diseases. Further, therapeutic design and targeting that involve mitochondrial haplotype would advance precision medicine for AD and other age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
26
|
Dose J, Huebbe P, Nebel A, Rimbach G. APOE genotype and stress response - a mini review. Lipids Health Dis 2016; 15:121. [PMID: 27457486 PMCID: PMC4960866 DOI: 10.1186/s12944-016-0288-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The APOE gene is one of currently only two genes that have consistently been associated with longevity. Apolipoprotein E (APOE) is a plasma protein which plays an important role in lipid and lipoprotein metabolism. In humans, there are three major APOE isoforms, designated APOE2, APOE3, and APOE4. Of these three isoforms, APOE3 is most common while APOE4 was shown to be associated with age-related diseases, including cardiovascular and Alzheimer’s disease, and therefore an increased mortality risk with advanced age. Evidence accumulates, showing that oxidative stress and, correspondingly, mitochondrial function is affected in an APOE isoform-dependent manner. Accordingly, several stress response pathways implicated in the aging process, including the endoplasmic reticulum stress response and immune function, appear to be influenced by the APOE genotype. The investigation and development of treatment strategies targeting APOE4 have not resolved any therapeutic yet that could be entirely recommended. This mini-review provides an overview on the state of research concerning the impact of the APOE genotype on stress response-related processes, emphasizing the strong interconnection between mitochondrial function, endoplasmic reticulum stress and the immune response. Furthermore, this review addresses potential treatment strategies and associated pitfalls as well as lifestyle interventions that could benefit people with an at risk APOE4 genotype.
Collapse
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany. .,Institute of Clinical Molecular Biology, Kiel University, Schittenhelmstr. 12, D-24105, Kiel, Germany.
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Schittenhelmstr. 12, D-24105, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, Hermann-Rodewald-Str. 6, D-24118, Kiel, Germany
| |
Collapse
|
27
|
FDG-PET Contributions to the Pathophysiology of Memory Impairment. Neuropsychol Rev 2015; 25:326-55. [PMID: 26319237 DOI: 10.1007/s11065-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
28
|
Yao Z, Hu B, Zheng J, Zheng W, Chen X, Gao X, Xie Y, Fang L. A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers. PLoS One 2015; 10:e0132300. [PMID: 26161964 PMCID: PMC4498596 DOI: 10.1371/journal.pone.0132300] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/11/2015] [Indexed: 01/21/2023] Open
Abstract
Recently, some studies have applied the graph theory in brain network analysis in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). However, relatively little research has specifically explored the properties of the metabolic network in apolipoprotein E (APOE) ε4 allele carriers. In our study, all the subjects, including ADs, MCIs and NCs (normal controls) were divided into 165 APOE ε4 carriers and 165 APOE ε4 noncarriers. To establish the metabolic network for all brain regions except the cerebellum, cerebral glucose metabolism data obtained from FDG-PET (18F-fluorodeoxyglu-cose positron emission tomography) were segmented into 90 areas with automated anatomical labeling (AAL) template. Then, the properties of the networks were computed to explore the between-group differences. Our results suggested that both APOE ε4 carriers and noncarriers showed the small-world properties. Besides, compared with APOE ε4 noncarriers, the carriers showed a lower clustering coefficient. In addition, significant changes in 6 hub brain regions were found in between-group nodal centrality. Namely, compared with APOE ε4 noncarriers, significant decreases of the nodal centrality were found in left insula, right insula, right anterior cingulate, right paracingulate gyri, left cuneus, as well as significant increases in left paracentral lobule and left heschl gyrus in APOE ε4 carriers. Increased local short distance interregional correlations and disrupted long distance interregional correlations were found, which may support the point that the APOE ε4 carriers were more similar with AD or MCI in FDG uptake. In summary, the organization of metabolic network in APOE ε4 carriers indicated a less optimal pattern and APOE ε4 might be a risk factor for AD.
Collapse
Affiliation(s)
- Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- * E-mail:
| | - Jiaxiang Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xuejiao Chen
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yuanwei Xie
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Lei Fang
- PET/CT Center, Affiliated Lanzhou General Hospital of Lanzhou Military Area Command, 333 South Binhe Road, Lanzhou, China
| | | |
Collapse
|
29
|
Didic M, Felician O, Gour N, Bernard R, Pécheux C, Mundler O, Ceccaldi M, Guedj E. Rhinal hypometabolism on FDG PET in healthy APO-E4 carriers: impact on memory function and metabolic networks. Eur J Nucl Med Mol Imaging 2015; 42:1512-21. [PMID: 25900275 DOI: 10.1007/s00259-015-3057-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. METHODS Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. RESULTS APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. CONCLUSION Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of genetic factors on cerebral metabolism at both the local and network levels leading to phenotypical variations of the healthy brain and selective vulnerability.
Collapse
Affiliation(s)
- Mira Didic
- Service de Neurologie and Neuropsychologie, Pôle de Neurosciences Cliniques, Centre Hospitalo-Universitaire de la Timone, AP-HM, Marseille, France,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 2014; 72 Pt A:3-12. [PMID: 25173806 PMCID: PMC4253862 DOI: 10.1016/j.nbd.2014.08.025] [Citation(s) in RCA: 477] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Apolipoprotein (apo) E is a multifunctional protein with central roles in lipid metabolism, neurobiology, and neurodegenerative diseases. It has three major isoforms (apoE2, apoE3, and apoE4) with different effects on lipid and neuronal homeostasis. A major function of apoE is to mediate the binding of lipoproteins or lipid complexes in the plasma or interstitial fluids to specific cell-surface receptors. These receptors internalize apoE-containing lipoprotein particles; thus, apoE participates in the distribution/redistribution of lipids among various tissues and cells of the body. In addition, intracellular apoE may modulate various cellular processes physiologically or pathophysiologically, including cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function. Elucidation of the functional domains within this protein and of the three-dimensional structure of the major isoforms of apoE has contributed significantly to our understanding of its physiological and pathophysiological roles at a molecular level. It is likely that apoE, with its multiple cellular origins and multiple structural and biophysical properties, is involved widely in processes of lipid metabolism and neurobiology, possibly encompassing a variety of disorders of neuronal repair, remodeling, and degeneration by interacting with different factors through various pathways.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94158, USA; Department of Neurology, University of California, San Francisco 94158, USA; Department of Pathology, University of California, San Francisco 94158, USA.
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94158, USA; Department of Pathology, University of California, San Francisco 94158, USA; Department of Medicine, University of California, San Francisco 94158, USA
| |
Collapse
|
31
|
Pagani M, De Carli F, Morbelli S, Öberg J, Chincarini A, Frisoni GB, Galluzzi S, Perneczky R, Drzezga A, van Berckel BNM, Ossenkoppele R, Didic M, Guedj E, Brugnolo A, Picco A, Arnaldi D, Ferrara M, Buschiazzo A, Sambuceti G, Nobili F. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's Disease Consortium (EADC) study. NEUROIMAGE-CLINICAL 2014; 7:34-42. [PMID: 25610765 PMCID: PMC4299956 DOI: 10.1016/j.nicl.2014.11.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/14/2014] [Accepted: 11/11/2014] [Indexed: 01/18/2023]
Abstract
An emerging issue in neuroimaging is to assess the diagnostic reliability of PET and its application in clinical practice. We aimed at assessing the accuracy of brain FDG-PET in discriminating patients with MCI due to Alzheimer's disease and healthy controls. Sixty-two patients with amnestic MCI and 109 healthy subjects recruited in five centers of the European AD Consortium were enrolled. Group analysis was performed by SPM8 to confirm metabolic differences. Discriminant analyses were then carried out using the mean FDG uptake values normalized to the cerebellum computed in 45 anatomical volumes of interest (VOIs) in each hemisphere (90 VOIs) as defined in the Automated Anatomical Labeling (AAL) Atlas and on 12 meta-VOIs, bilaterally, obtained merging VOIs with similar anatomo-functional characteristics. Further, asymmetry indexes were calculated for both datasets. Accuracy of discrimination by a Support Vector Machine (SVM) and the AAL VOIs was tested against a validated method (PALZ). At the voxel level SMP8 showed a relative hypometabolism in the bilateral precuneus, and posterior cingulate, temporo-parietal and frontal cortices. Discriminant analysis classified subjects with an accuracy ranging between .91 and .83 as a function of data organization. The best values were obtained from a subset of 6 meta-VOIs plus 6 asymmetry values reaching an area under the ROC curve of .947, significantly larger than the one obtained by the PALZ score. High accuracy in discriminating MCI converters from healthy controls was reached by a non-linear classifier based on SVM applied on predefined anatomo-functional regions and inter-hemispheric asymmetries. Data pre-processing was automated and simplified by an in-house created Matlab-based script encouraging its routine clinical use. Further validation toward nonconverter MCI patients with adequately long follow-up is needed. 18F-FDG-PET/CT analysis of metabolic differences between MCI converting to AD and HC Large and very well controlled cohorts from EADC-Consortium were investigated. Data were analyzed by a friendly-to-use Matlab-based script and Support Vector Machine. Excellent discrimination between MCI and HC (sensitivity 92%; specificity 91%) Highest accuracy reported so far in MCI and promising implementation in clinical routine
Collapse
Affiliation(s)
- M Pagani
- Institute of Cognitive Sciences and Technologies, Rome, Italy ; Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| | - F De Carli
- Institute of Bioimaging and Molecular Physiology, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - S Morbelli
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J Öberg
- Department of Hospital Physics, Karolinska Hospital, Stockholm, Sweden
| | - A Chincarini
- National Institute for Nuclear Physics (INFN), Genoa, Italy
| | - G B Frisoni
- LENITEM Laboratory of Epidemiology and Neuroimaging, IRCCS S. Giovanni di Dio-FBF, Brescia, Italy ; University Hospitals and University of Geneva, Geneva, Switzerland
| | - S Galluzzi
- LENITEM Laboratory of Epidemiology and Neuroimaging, IRCCS S. Giovanni di Dio-FBF, Brescia, Italy
| | - R Perneczky
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College London of Science, Technology and Medicine, London, UK ; West London Cognitive Disorders Treatment and Research Unit, London, UK ; Department of Psychiatry and Psychotherapy, Technische Universität, Munich, Germany
| | - A Drzezga
- Department of Nuclear Medicine, Technische Universität, Munich, Germany
| | - B N M van Berckel
- Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands
| | - R Ossenkoppele
- Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands
| | - M Didic
- APHM, CHU Timone, Service de Neurologie et Neuropsychologie, Aix-Marseille University, INSERM U 1106, Marseille, France
| | - E Guedj
- APHM, CHU Timone, Service de Médecine Nucléaire, CERIMED, INT CNRS UMR7289 , Aix-Marseille University, Marseille 13005, France
| | - A Brugnolo
- Clinical Neurology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health (DINOGMI), University of Genoa, IRCCS AOU, San Martino-IST, Genoa, Italy
| | - A Picco
- Clinical Neurology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health (DINOGMI), University of Genoa, IRCCS AOU, San Martino-IST, Genoa, Italy
| | - D Arnaldi
- Clinical Neurology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health (DINOGMI), University of Genoa, IRCCS AOU, San Martino-IST, Genoa, Italy
| | - M Ferrara
- Clinical Neurology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health (DINOGMI), University of Genoa, IRCCS AOU, San Martino-IST, Genoa, Italy
| | - A Buschiazzo
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - G Sambuceti
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - F Nobili
- Clinical Neurology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child health (DINOGMI), University of Genoa, IRCCS AOU, San Martino-IST, Genoa, Italy
| |
Collapse
|
32
|
Maarouf CL, Kokjohn TA, Walker DG, Whiteside CM, Kalback WM, Whetzel A, Sue LI, Serrano G, Jacobson SA, Sabbagh MN, Reiman EM, Beach TG, Roher AE. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS One 2014; 9:e105784. [PMID: 25166759 PMCID: PMC4148328 DOI: 10.1371/journal.pone.0105784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022] Open
Abstract
Defining the biochemical alterations that occur in the brain during “normal” aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1) young adult individuals, average age 26 years (n = 9); 2) middle-aged subjects, average age 59 years (n = 5); 3) oldest-old individuals, average age 93 years (n = 6). Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer’s disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Walter M. Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alexis Whetzel
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Geidy Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- * E-mail:
| |
Collapse
|
33
|
|
34
|
Ferrari C, Nacmias B, Bagnoli S, Piaceri I, Lombardi G, Pradella S, Tedde A, Sorbi S. Imaging and Cognitive Reserve Studies Predict Dementia in Presymptomatic Alzheimer's Disease Subjects. NEURODEGENER DIS 2013; 13:157-9. [DOI: 10.1159/000353690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
|
35
|
|
36
|
Protas HD, Chen K, Langbaum JBS, Fleisher AS, Alexander GE, Lee W, Bandy D, de Leon MJ, Mosconi L, Buckley S, Truran-Sacrey D, Schuff N, Weiner MW, Caselli RJ, Reiman EM. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol 2013; 70:320-5. [PMID: 23599929 DOI: 10.1001/2013.jamaneurol.286] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. DESIGN Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. SETTING Academic medical center. PARTICIPANTS A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. MAIN OUTCOME MEASURES The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. RESULTS Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P = .60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P = .001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P < .05, determined by use of pairwise Fisher z tests). CONCLUSIONS Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease.
Collapse
Affiliation(s)
- Hillary D Protas
- Banner Alzheimer's Institute, 901 E Willetta St, Phoenix, AZ 85006, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morbelli S, Drzezga A, Perneczky R, Frisoni GB, Caroli A, van Berckel BNM, Ossenkoppele R, Guedj E, Didic M, Brugnolo A, Sambuceti G, Pagani M, Salmon E, Nobili F. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer Disease Consortium (EADC) project. Neurobiol Aging 2012; 33:2533-50. [PMID: 22365486 DOI: 10.1016/j.neurobiolaging.2012.01.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 02/06/2023]
Abstract
We explored resting-state metabolic connectivity in prodromal Alzheimer's disease (pAD) patients and in healthy controls (CTR), through a voxel-wise interregional correlation analysis of 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) by means of statistical parametric mapping. Baseline 18F-fluorodeoxyglucose-positron emission tomography of 36 patients with amnestic mild cognitive impairment who converted to Alzheimer's disease (AD) dementia after an average time of 2 years (pAD) and of 105 CTR were processed. The area of hypometabolism in pAD showed less metabolic connectivity in patients than in CTR (autocorrelation and correlation with large temporal and frontal areas, respectively). pAD patients showed limited correlation even in selected nonhypometabolic areas, including the hippocampi and the dorsolateral prefrontal cortex (DLFC). On the contrary, in CTR group correlation was highlighted between hippocampi and precuneus/posterior cingulate and frontal cortex, and between dorsolateral prefrontal cortex and caudate nuclei and parietal cortex. The reduced metabolic connections both in hypometabolic and nonhypometabolic areas in pAD patients suggest that metabolic disconnection (reflecting early diaschisis) may antedate remote hypometabolism (early sign of synaptic degeneration).
Collapse
Affiliation(s)
- Silvia Morbelli
- Nuclear Medicine Unit, Department of Internal Medicine, San Martino University Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Redel P, Bublak P, Sorg C, Kurz A, Förstl H, Müller H, Schneider W, Perneczky R, Finke K. Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2012; 33:195.e27-42. [DOI: 10.1016/j.neurobiolaging.2010.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/29/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
|
39
|
Roles of apolipoprotein E4 (ApoE4) in the pathogenesis of Alzheimer's disease: lessons from ApoE mouse models. Biochem Soc Trans 2011; 39:924-32. [DOI: 10.1042/bst0390924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65–80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide insights into recent advances in mechanisms linking apolipoprotein (apo) E isoforms to cardiovascular and neurological diseases. RECENT FINDINGS Human apoE has three common isoforms (apoE2, apoE3, and apoE4) with different structural and biophysical properties and different effects on lipid and neuronal homeostasis. ApoE is a protein constituent of different plasma lipoproteins and serves as a high-affinity ligand for several receptors. By interacting with its receptors, apoE mediates the clearance of different lipoproteins from the circulation. Absence or structural mutations of apoE cause significant disorders in lipid metabolism and cardiovascular disease. ApoE also has significant roles in neurobiology. ApoE4 is the major known genetic risk factor for Alzheimer's disease. It increases the occurrence and lowers the age of onset of Alzheimer's disease. ApoE4 carriers account for 65-80% of all Alzheimer's disease cases, highlighting the importance of apoE4 in Alzheimer's disease pathogenesis. ApoE4 has both amyloid beta-dependent and amyloid beta-independent roles in Alzheimer's disease pathogenesis. SUMMARY Emerging data suggest that apoE isoforms, with their multiple cellular origins and multiple structural and biophysical properties, contribute to cardiovascular and neurological diseases by interacting with different factors through various pathways.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
41
|
Riederer P, Bartl J, Laux G, Grünblatt E. Diabetes Type II: A Risk Factor for Depression–Parkinson–Alzheimer? Neurotox Res 2010; 19:253-65. [DOI: 10.1007/s12640-010-9203-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/25/2010] [Accepted: 05/31/2010] [Indexed: 12/29/2022]
|
42
|
Abstract
Many neurodegenerative dementias produce significant alterations in the brain that are often not detectable by neurologic tests or with structural imaging. PET is ideally suited for monitoring cell/molecular events early in the course of a disease as well as during pharmacologic therapy. During the past 2 decades, molecular neuroimaging using PET and magnetic resonance (MR) has advanced elegantly and steadily gained importance in the clinical and research arenas. Software- and hardware-based multimodality brain imaging allowing the correlation between anatomic and molecular information has revolutionized clinical diagnosis and now offers unique capabilities for the clinical neuroimaging community and neuroscience researchers at large.
Collapse
|
43
|
Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol Med 2010; 16:287-94. [PMID: 20537952 DOI: 10.1016/j.molmed.2010.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/11/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Human apolipoprotein (APO) E has three common isoforms that differentially affect lipid and neuronal homeostasis. APOE4, the major known genetic risk factor for Alzheimer's disease (AD), increases the occurrence and lowers the age of onset of AD. APOE4 carriers account for 65-80% of all AD cases, highlighting the importance of APOE4 in AD pathogenesis. Emerging data suggest that APOE4 contributes to AD through various pathways, some of which are dependent on amyloid-beta (Abeta). Although these Abeta-dependent roles of APOE4 have been widely studied, APOE4 has detrimental effects on neurons independent of Abeta: aberrant proteolysis of APOE4 generates neurotoxic fragments, stimulates Tau phosphorylation, which disrupts the cytoskeleton, and impairs mitochondrial function.
Collapse
|
44
|
Bookheimer S, Burggren A. APOE-4 genotype and neurophysiological vulnerability to Alzheimer's and cognitive aging. Annu Rev Clin Psychol 2009; 5:343-62. [PMID: 19327032 DOI: 10.1146/annurev.clinpsy.032408.153625] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many years before receiving a clinical diagnosis of Alzheimer's disease (AD), patients experience evidence of cognitive decline. Recent studies using a variety of brain imaging technologies have detected subtle changes in brain structure and function in normal adults with a genetic risk for AD; these brain changes have similar pathological features as AD, and some appear to be predictive of future cognitive decline. This review examines the most recent data on brain changes in genetic risk for AD and discusses the benefits and potential risks of detecting individuals at risk.
Collapse
Affiliation(s)
- Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA.
| | | |
Collapse
|
45
|
Costantini LC, Barr LJ, Vogel JL, Henderson ST. Hypometabolism as a therapeutic target in Alzheimer's disease. BMC Neurosci 2008; 9 Suppl 2:S16. [PMID: 19090989 PMCID: PMC2604900 DOI: 10.1186/1471-2202-9-s2-s16] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The pathology of Alzheimer's disease (AD) is characterized by cerebral atrophy in frontal, temporal, and parietal regions, with senile plaques, dystrophic neurites, and neurofibrillar tangles within defined areas of the brain. Another characteristic of AD is regional hypometabolism in the brain. This decline in cerebral glucose metabolism occurs before pathology and symptoms manifest, continues as symptoms progress, and is more severe than that of normal aging. Ketone bodies are an efficient alternative fuel for cells that are unable to metabolize glucose or are 'starved' of glucose. AC-1202 is designed to elevate serum ketone levels safely. We previously showed that treatment with AC-1202 in patients with mild-to-moderate AD improves memory and cognition. Treatment outcomes were influenced by apolipoprotein E genotype status. These data suggest that AC-1202 may be an effective treatment for cognitive dysfunction by providing an alternative substrate for use by glucose-compromised neurons.
Collapse
|
46
|
Choice of reference area in studies of Alzheimer's disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Res 2008; 164:143-53. [PMID: 18930634 DOI: 10.1016/j.pscychresns.2007.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 08/01/2007] [Accepted: 11/12/2007] [Indexed: 11/22/2022]
Abstract
At present, there is still no consensus on the choice of the reference area in positron emission tomography (PET) studies of Alzheimer's disease (AD). In this study, PET scans with fluorodeoxyglucose-F18 were carried out in the following groups of subjects: 47 patients with probable AD, 8 patients with mild cognitive impairment, and 15 age-similar healthy subjects. Scans normalized to the cerebral global mean (CGM), cerebellum (CBL), and the primary sensorimotor cortex (SMC). We evaluated the effect of the different count normalization procedures on the accuracy of (18)F-FDG PET to detect AD-specific metabolic abnormalities (voxel-based group comparison) and to differentiate between patients and healthy subjects (ROI-based discriminant analysis) with regard to the degree of clinical deterioration. Metabolic reductions in groups of very mildly, mildly and moderate-to-severely affected patients appeared, respectively, 2.2, 2.6, and 2.7 times greater in spatial extent when tracer uptake was normalized to SMC rather than to CGM. The overall accuracy of discrimination was 94%, 91%, and 80% after normalization to SMC, CBL, and CGM, respectively. In general, normalization to SMC was somewhat superior to cerebellar normalization, allowing the detection of more pronounced metabolic deficits and the more accurate discrimination of patients from non-patients. Normalization to CGM should be used with great caution not only in advanced stages of dementia, but also in very mild AD cases.
Collapse
|
47
|
Pupi A, Mosconi L, Nobili FM, Sorbi S. Toward the validation of functional neuroimaging as a potential biomarker for Alzheimer's disease: implications for drug development. Mol Imaging Biol 2008; 7:59-68. [PMID: 15912277 DOI: 10.1007/s11307-005-0953-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite investments carried out in the research since Alzheimer's disease (AD) was firstly defined as an isolated clinical entity, there is still a lack of appropriate cure and effective therapies to halt or slow the disease progression. While fundamental research has provided a better characterization of AD, much remains to be done for the development of new biological treatment strategies. It is now being debated whether functional neuroimaging (FNI) could help improve diagnostic accuracy and become a possible biomarker of AD. The primary purpose of this review was to determine whether data already published in the literature meet formal technology assessment standards for using regional cerebral blood flow (rCBF) or glucose metabolism (rCMRGlu) as a biomarker for AD. The secondary purpose was to identify any remaining gaps that might need to be systematically addressed before drug developers and regulators accept FNI as a biomarker for AD. The present paper reviews the literature regarding metabolic positron emission tomography (PET) and perfusion single photon emission computed tomography (SPECT) studies in AD. There is evidence that treatment with acetylcholinesterase inhibitors (AChEI) leads to changes in brain physiology within the brain regions critical to AD pathology, i.e. the temporal, parietal and frontal association cortex. However, a thorough analysis combining functional and neuropsychological data has not yet been attempted, and much research is needed to validate the role of FNI as a surrogate endpoint for AD clinical trials.
Collapse
Affiliation(s)
- Alberto Pupi
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Viale Morgagni 85, 50134, Florence, Italy.
| | | | | | | |
Collapse
|
48
|
Braskie MN, Small GW, Bookheimer SY. Vascular health risks and fMRI activation during a memory task in older adults. Neurobiol Aging 2008; 31:1532-42. [PMID: 18829134 DOI: 10.1016/j.neurobiolaging.2008.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/19/2008] [Accepted: 08/24/2008] [Indexed: 11/17/2022]
Abstract
Vascular problems increase Alzheimer's disease (AD) risk, but the nature of this relationship remains unclear. Older adults having genetic risk for AD show regionally increased functional magnetic resonance imaging (fMRI) activity during memory, possibly representing compensation for a genetically induced neural deficit. We investigated whether vascular health risks, which similarly could lead to neuropsychological deficits, also showed increased fMRI activity during a memory task performed by 30 cognitively intact, primarily normotensive older adults (mean age=61). Vascular risk measures included systolic blood pressure (sBP), body mass index (BMI), and total cholesterol. Higher sBP and BMI (but not total cholesterol) were significantly correlated with increased activation in posterior cingulate cortex and frontal, temporal, and parietal regions. In posterior cingulate and parietal cortices, these relationships were evident even within sBP and BMI ranges considered normal, and were independent of hippocampal volume. Our results are similar to those in prior AD risk research, and suggest that fMRI reveals an abnormal response to cognitive processes in cognitively intact older adults with increased vascular risk.
Collapse
Affiliation(s)
- Meredith N Braskie
- Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
49
|
Abstract
An early feature of Alzheimer's disease (AD) is region-specific declines in brain glucose metabolism. Unlike other tissues in the body, the brain does not efficiently metabolize fats; hence the adult human brain relies almost exclusively on glucose as an energy substrate. Therefore, inhibition of glucose metabolism can have profound effects on brain function. The hypometabolism seen in AD has recently attracted attention as a possible target for intervention in the disease process. One promising approach is to supplement the normal glucose supply of the brain with ketone bodies (KB), which include acetoacetate, beta-hydroxybutyrate, and acetone. KB are normally produced from fat stores when glucose supplies are limited, such as during prolonged fasting. KB have been induced both by direct infusion and by the administration of a high-fat, low-carbohydrate, low-protein, ketogenic diets. Both approaches have demonstrated efficacy in animal models of neurodegenerative disorders and in human clinical trials, including AD trials. Much of the benefit of KB can be attributed to their ability to increase mitochondrial efficiency and supplement the brain's normal reliance on glucose. Research into the therapeutic potential of KB and ketosis represents a promising new area of AD research.
Collapse
|
50
|
Cherbuin N, Leach LS, Christensen H, Anstey KJ. Neuroimaging and APOE genotype: a systematic qualitative review. Dement Geriatr Cogn Disord 2008; 24:348-62. [PMID: 17911980 DOI: 10.1159/000109150] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2007] [Indexed: 12/26/2022] Open
Abstract
Apolipoprotein E (APOE) is the major genetic risk factor for late-onset Alzheimer's disease (AD) and has also been implicated in cardiovascular disease, cognitive decline and cognitive changes in healthy ageing. The aim of this paper is to systematically review and critically assess the association between the APOE genotype and structural/functional cerebral changes as evidenced by brain imaging studies. A second aim is to determine whether these observed associations between APOE and the brain reflect changes which are consistent with the progression of AD neurodegenerative changes described in Braak stages. A search of Pubmed, Psycinfo, and Web of Science databases identified 64 articles available for qualitative review. The review found that presence of the APOE epsilon4 allele is associated with (1) hippocampal, amygdalar and entorhinal cortex atrophy, (2) increased brain atrophy, (3) increased white matter hyperintensity volumes and (4) altered cerebral blood flow and glucose metabolism patterns. It is possible that there are critical age ranges when these effects are evident and that the APOE epsilon2 genotype might present a risk. We conclude that structural brain change is associated with the APOE genotype and that it is more salient in younger ageing individuals.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Mental Health Research, Australian National University, Canberra, Australia.
| | | | | | | |
Collapse
|