1
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Nikhil Chivukula
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Shreyes Rajan Madgaonkar
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kundhanathan Ramesh
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | | | - Krishna Venkatarama Sharma
- Ministry of Earth Sciences, National Centre for Coastal Research, Government of India, Pallikaranai, Chennai, 600100, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
2
|
Sreelatha I, Choi GY, Lee IS, Inturu O, Lee HS, Park YN, Lee CW, Yang I, Maeng S, Park JH. Neuroprotective Properties of Rutin Hydrate against Scopolamine-Induced Deficits in BDNF/TrkB/ERK/CREB/Bcl2 Pathways. Neurol Int 2024; 16:1094-1111. [PMID: 39452684 PMCID: PMC11510686 DOI: 10.3390/neurolint16050082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is an age-related degenerative brain disorder characterized by a progressive decline in cognitive function and memory. This study aimed to evaluate whether rutin hydrate (RH) has neuroprotective effects in an AD-like learning and memory impairment rat model induced by scopolamine (SCO). Methods: The rats were administered with RH (100 mg/kg) and SCO (1.5 mg/kg) and underwent behavioral tests, including the Morris water maze test, Y-maze test, and passive avoidance test, to evaluate their learning and memory abilities. Additionally, long-term potentiation (LTP) was induced to observe changes in the field excitatory postsynaptic potential (fEPSP) activity. Results: RH treatment attenuated the SCO-induced shortening of step-through latency in the passive avoidance (PA) test, increased the percentage of alternation in the Y-maze, and increased the time spent in the target zone in the Morris water maze (MWM). Moreover, RH increased the total activity of fEPSP following theta burst stimulation and attenuated the SCO-induced blockade of fEPSP. RH also ameliorated the SCO-induced decrease in the expression levels of the BDNF, TrkB, ERK, CREB, and Bcl-2 proteins and the increase in the Bax protein level in the rat hippocampus. This demonstrates that RH has beneficial neuroprotective effects in the brain, improving learning, memory, and synaptic plasticity in rats. Conclusions: Our results highlight the molecular and cellular mechanisms through which RH exerts its neuroprotective effects in the prevention and treatment of learning and memory deficit disorders. RH could potentially be used as a therapeutic strategy for the restoration of learning and memory function and the prevention of the progression of AD.
Collapse
Affiliation(s)
- Inturu Sreelatha
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (I.S.); (I.-S.L.); (S.M.)
| | - Ga-Young Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea;
| | - In-Seo Lee
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (I.S.); (I.-S.L.); (S.M.)
| | - Omkaram Inturu
- Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Hyun-Sook Lee
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (H.-S.L.); (Y.-N.P.); (I.Y.)
| | - Yea-Na Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (H.-S.L.); (Y.-N.P.); (I.Y.)
| | - Cheol-Won Lee
- Convergence Healthcare Research Institute, Myong Ji University, Yongin 17058, Republic of Korea;
| | - Inkyou Yang
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (H.-S.L.); (Y.-N.P.); (I.Y.)
| | - Sungho Maeng
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (I.S.); (I.-S.L.); (S.M.)
| | - Ji-Ho Park
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea; (I.S.); (I.-S.L.); (S.M.)
| |
Collapse
|
3
|
Huang HC, Shi YJ, Vo TLT, Hsu TH, Song TY. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. J Fungi (Basel) 2024; 10:523. [PMID: 39194849 DOI: 10.3390/jof10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The pharmacological effects of the fruiting body of Ophiocordyceps sinensis (O. sinensis) such as antioxidant, anti-virus, and immunomodulatory activities have already been described, whereas the anti-inflammatory effects and active components of the submerged culture of O. sinesis (SCOS) still need to be further verified. This study aimed to investigate the active compounds in the fermented liquid (FLOS), hot water (WEOS), and 50-95% (EEOS-50, EEOS-95) ethanol extracts of SCOS and their anti-inflammatory effects and potential mechanisms in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. The results demonstrated that all of the SCOS extracts could inhibit NO production in BV2 cells. EEOS-95 exhibited the strongest inhibitory effects (71% inhibitory ability at 500 µg/mL), and its ergosterol, γ-aminobutyric acid (GABA), total phenolic, and total flavonoid contents were significantly higher than those of the other extracts (18.60, 18.60, 2.28, and 2.14 mg/g, p < 0.05, respectively). EEOS-95 also has a strong inhibitory ability against IL-6, IL-1β, and TNF-α with an IC50 of 617, 277, and 507 µg/mL, respectively, which is higher than that of 1 mM melatonin. The anti-inflammatory mechanism of EEOS-95 seems to be associated with the up-regulation of PPAR-γ/Nrf-2/HO-1 antioxidant-related expression and the down-regulation of NF-κB/COX-2/iNOS pro-inflammatory expression signaling. In summary, we demonstrated that EEOS-95 exhibits neuroinflammation-mediated neurodegenerative disorder activities in LPS-induced inflammation in brain microglial cells.
Collapse
Affiliation(s)
- Hsien-Chi Huang
- PhD Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Yu-Juan Shi
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Thuy-Lan-Thi Vo
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
4
|
Vun DSY, Bowers R, McGarry A. Vision-based motion capture for the gait analysis of neurodegenerative diseases: A review. Gait Posture 2024; 112:95-107. [PMID: 38754258 DOI: 10.1016/j.gaitpost.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Developments in vision-based systems and human pose estimation algorithms have the potential to detect, monitor and intervene early on neurodegenerative diseases through gait analysis. However, the gap between the technology available and actual clinical practice is evident as most clinicians still rely on subjective observational gait analysis or objective marker-based analysis that is time-consuming. RESEARCH QUESTION This paper aims to examine the main developments of vision-based motion capture and how such advances may be integrated into clinical practice. METHODS The literature review was conducted in six online databases using Boolean search terms. A commercial system search was also included. A predetermined methodological criterion was then used to assess the quality of the selected articles. RESULTS A total of seventeen studies were evaluated, with thirteen studies focusing on gait classification systems and four studies on gait measurement systems. Of the gait classification systems, nine studies utilized artificial intelligence-assisted techniques, while four studies employed statistical techniques. The results revealed high correlations of gait features identified by classifier models with existing clinical rating scales. These systems demonstrated generally high classification accuracies and were effective in diagnosing disease severity levels. Gait measurement systems that extract spatiotemporal and kinematic joint information from video data generally found accurate measurements of gait parameters with low mean absolute errors, high intra- and inter-rater reliability. SIGNIFICANCE Low cost, portable vision-based systems can provide proof of concept for the quantification of gait, expansion of gait assessment tools, remote gait analysis of neurodegenerative diseases and a point of care system for orthotic evaluation. However, certain challenges, including small sample sizes, occlusion risks, and selection bias in training models, need to be addressed. Nevertheless, these systems can serve as complementary tools, equipping clinicians with essential gait information to objectively assess disease severity and tailor personalized treatment for enhanced patient care.
Collapse
Affiliation(s)
- David Sing Yee Vun
- National Centre for Prosthetics and Orthotics, Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Robert Bowers
- National Centre for Prosthetics and Orthotics, Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Anthony McGarry
- National Centre for Prosthetics and Orthotics, Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
5
|
Osama L, Handal HT, El-Sayed SAM, Elzayat EM, Mabrouk M. Fabrication and Optimisation of Alumina Nanoporous Membranes for Drug Delivery Applications: A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1078. [PMID: 38998683 PMCID: PMC11243695 DOI: 10.3390/nano14131078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood-brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve this problem. Two electrolytes (0.3 M oxalic acid and 0.3 M sulphuric acid) were used to anodise Al2O3 nanoporous membranes, followed by a third anodisation in concentrated H2SO4 to separate the through-hole membranes from the aluminium substrate. FTIR, AFM, and SEM/EDX were used to characterise the membranes' structure and morphology. The effects of the anodisation time and electrolyte type on the AAO layer pore density, diameter, interpore distance, and thickness were examined. As a model drug for neurodegenerative disorders, donepezil hydrochloride (DHC) was loaded onto thin alumina nanoporous membranes. The DHC release profiles were characterised at two concentrations using a UV-Vis spectrophotometer. Oxalic acid membranes demonstrated an average pore diameter of 39.6-32.5 nm, which was two times larger than sulphuric acid membranes (22.6-19.7 nm). After increasing the anodisation time from 3 to 5 h, all of the membranes showed a reduction in pore diameter that was stable regardless of the electrolyte type or period. Drug release from oxalic acid-fabricated membranes was controlled and sustained for over 2 weeks. Thus, nanoporous membranes as implantable drug delivery systems could improve neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Lamyaa Osama
- Refractories, Ceramics and Building Materials Department, National Research Center, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Hala T Handal
- Inorganic Chemistry Department, National Research Center, Cairo P.O. Box 12622, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Center, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Giza P.O. Box 12613, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Center, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
- Academy of Scientific Research and Technology (ASRT), Cairo P.O. Box 11516, Egypt
| |
Collapse
|
6
|
Srivastava P, Yadav D, Singh SK, Kim SH, Singh S, Katiyar S, Song M. Investigating Bacopa monnieri L. Therapeutic Potential for the Treatment of Neurological Diseases. Curr Pharm Des 2024; 30:1016-1030. [PMID: 38500283 DOI: 10.2174/0113816128288698240305094945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
The popular perennial creeping plant known as Bacopa monnieri (also known as Brahmi) is being utilized in the Indian Ayurvedic medicine practice. It has a variety of bioactive phytoconstituents that have been used therapeutically to treat a number of serious illnesses. Ancient Vedic scholars used this herb because of its pharmacological effects, particularly as a nerve booster and nootropic supporter. However, it is vital to comprehend the active phytochemical components of Bacopa monnieri extract (BME) and their molecular mechanisms in order to better grasp the effect of BME on neurological illnesses and diseases. Understanding its active phytochemical constituents and their molecular processes is essential. Numerous clinical investigations indicated that BME may have neuroprotective benefits, so it is worthwhile to re-evaluate this wellknown plant. Here, we focused on neurological problems as we examined the pharmacological and phytochemical characteristics of BME. For their effective usage in neuroprotection and cognition, many clinical concerns and the synergistic potential of Bacopa extract have been investigated. Alzheimer's disease is a neurological condition caused by the production of reactive oxygen species, which also causes amyloid-beta (Aβ) and tau protein aggregation and increases neuro-inflammation and neurotoxicity. Our review offers a more indepth molecular understanding of the neuroprotective functions of BME, which can also be connected to its therapeutic management of neurological illnesses and cognitive-improving effects.
Collapse
Affiliation(s)
- Pratima Srivastava
- Department of Biotechnology, Arka Jain University, Seraikela Kharsawan, Jharkhand 832108, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, Korea
| | - Santosh Kumar Singh
- Department of Biotechnology, Arka Jain University, Seraikela Kharsawan, Jharkhand 832108, India
| | - Sung Hae Kim
- Department of Pharmacology, College of Medicine, University of Ulsan, Ulsan, South Korea
| | - Shivendra Singh
- Department of Basic Sciences, Amity School of Engineering and Technology (ASET), Amity University, Indore, Madhya Pradesh, India
| | - Shweta Katiyar
- Department of Botany, SBN Government PG College, Barwani (M.P), India
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
7
|
Lindsay HG, Hendrix CJ, Gonzalez Murcia JD, Haynie C, Weber KS. The Role of Atypical Chemokine Receptors in Neuroinflammation and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:16493. [PMID: 38003682 PMCID: PMC10671188 DOI: 10.3390/ijms242216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Neuroinflammation is associated with several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation provides protection in acute situations but results in significant damage to the nervous system if chronic. Overexpression of chemokines within the brain results in the recruitment and activation of glial and peripheral immune cells which can propagate a cascading inflammatory response, resulting in neurodegeneration and the onset of neurodegenerative disorders. Recent work has identified the role of atypical chemokine receptors (ACKRs) in neurodegenerative conditions. ACKRs are seven-transmembrane domain receptors that do not follow canonical G protein signaling, but regulate inflammatory responses by modulating chemokine abundance, location, and availability. This review summarizes what is known about the four ACKRs and three putative ACKRs within the brain, highlighting their known expression and discussing the current understanding of each ACKR in the context of neurodegeneration. The ability of ACKRs to alter levels of chemokines makes them an appealing therapeutic target for neurodegenerative conditions. However, further work is necessary to understand the expression of several ACKRs within the neuroimmune system and the effectiveness of targeted drug therapies in the prevention and treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Hunter G. Lindsay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Colby J. Hendrix
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Christopher Haynie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Rahimi S, Towhidkhah F, Baghdadi G, Forogh B, Saadat P, Soleimani G, Habibi SA. Modeling of cerebellar transcranial electrical stimulation effects on hand tremor in Parkinson's disease. Front Aging Neurosci 2023; 15:1187157. [PMID: 38020756 PMCID: PMC10679529 DOI: 10.3389/fnagi.2023.1187157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a neurodegenerative disorder with different motor and neurocognitive symptoms. Tremor is a well-known symptom of this disease. Increasing evidence suggested that the cerebellum may substantially contribute to tremors as a clinical symptom of PD. However, the theoretical foundations behind these observations are not yet fully understood. Methods In this study, a computational model is proposed to consider the role of the cerebellum and to show the effectiveness of cerebellar transcranial alternating current stimulation (tACS) on the rest tremor in participants with PD. The proposed model consists of the cortex, cerebellum, spinal circuit-muscular system (SC-MS), and basal ganglia blocks as the most critical parts of the brain, which are involved in generating rest tremors. The cortex, cerebellum, and SC-MS blocks were modeled using Van der Pol oscillators that interacted through synchronization procedures. Basal ganglia are considered as a regulator of the coupling weights defined between oscillators. In order to evaluate the global behavior of the model, we applied tACS on the cerebellum of fifteen PD patients for 15 min at each patient's peak frequency of their rest tremors. A tri-axial accelerometer recorded rest tremors before, during, and after the tACS. Results and Discussion The simulation of the model provides a suggestion for the possible role of the cerebellum on rest tremors and how cerebellar tACS can affect these tremors. Results of human experiments also showed that the online and offline effects of cerebellar tACS could lead to the reduction of rest tremors significantly by about %76 and %68, respectively. Our findings suggest that the cerebellar tACS could serve as a reliable, therapeutic technique to suppress the PD tremor.
Collapse
Affiliation(s)
- Soraya Rahimi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Golnaz Baghdadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Bijan Forogh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyed Amirhassan Habibi
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Pecheu CN, Tchieda VK, Tajeu KY, Jiokeng SLZ, Lesch A, Tonle IK, Ngameni E, Janiak C. Electrochemical Determination of Epinephrine in Pharmaceutical Preparation Using Laponite Clay-Modified Graphene Inkjet-Printed Electrode. Molecules 2023; 28:5487. [PMID: 37513359 PMCID: PMC10386127 DOI: 10.3390/molecules28145487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 μM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 μM and 0.26 μM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.
Collapse
Affiliation(s)
- Chancellin Nkepdep Pecheu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kougoum Tchieda
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Kevin Yemele Tajeu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Sherman Lesly Zambou Jiokeng
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Faculty of Science, The University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
10
|
Zhao F, Behnisch T. The Enigmatic CA2: Exploring the Understudied Region of the Hippocampus and Its Involvement in Parkinson's Disease. Biomedicines 2023; 11:1996. [PMID: 37509636 PMCID: PMC10377725 DOI: 10.3390/biomedicines11071996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects both motor and non-motor functions. Although motor impairment is a prominent clinical sign of PD, additional neurological symptoms may also occur, particularly in the preclinical and prodromal stages. Among these symptoms, social cognitive impairment is common and detrimental. This article aims to review non-motor symptoms in PD patients, focusing on social cognitive deficits. It also examines the specific characteristics of the CA2 region and its involvement in social behavior, highlighting recent advances and perspectives. Additionally, this review provides critical insights into and analysis of research conducted in rodents and humans, which may help improve the understanding of the current status of putative therapeutic strategies for social cognitive dysfunction in PD and potential avenues related to the function of the hippocampal CA2 region.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Zhang N, Yang Y, Li C, Zhang K, GAO X, Shen J, Wang Y, Cheng D, Lv J, Sun J. Based on 1H NMR and LC-MS metabolomics reveals biomarkers with neuroprotective effects in multi-parts ginseng powder. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
12
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
13
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int J Mol Sci 2022; 23:ijms23031851. [PMID: 35163773 PMCID: PMC8837071 DOI: 10.3390/ijms23031851] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss. The most common neurodegenerative disorders include Alzheimer’s and Parkinson’s disease. Although there are several medicines currently approved for managing neurodegenerative disorders, a large majority of them only help with associated symptoms. This lack of pathogenesis-targeting therapies is primarily due to the restrictive effects of the blood–brain barrier (BBB), which keeps close to 99% of all “foreign substances” out of the brain. Since their discovery, nanoparticles have been successfully used for targeted delivery into many organs, including the brain. This review briefly describes the pathophysiology of Alzheimer’s, Parkinson’s disease, and amyotrophic lateral sclerosis, and their current management approaches. We then highlight the major challenges of brain-drug delivery, followed by the role of nanotherapeutics for the diagnosis and treatment of various neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | - Buddhadev Layek
- Correspondence: (B.L.); (J.S.); Tel.: +1-701-231-7906 (B.L.); +1-701-231-7943 (J.S.); Fax: +1-701-231-8333 (B.L. & J.S.)
| | - Jagdish Singh
- Correspondence: (B.L.); (J.S.); Tel.: +1-701-231-7906 (B.L.); +1-701-231-7943 (J.S.); Fax: +1-701-231-8333 (B.L. & J.S.)
| |
Collapse
|
15
|
Plasma Metabolite Signature Classifies Male LRRK2 Parkinson’s Disease Patients. Metabolites 2022; 12:metabo12020149. [PMID: 35208223 PMCID: PMC8876175 DOI: 10.3390/metabo12020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease, causing loss of motor and nonmotor function. Diagnosis is based on clinical symptoms that do not develop until late in the disease progression, at which point the majority of the patients’ dopaminergic neurons are already destroyed. While many PD cases are idiopathic, hereditable genetic risks have been identified, including mutations in the gene for LRRK2, a multidomain kinase with roles in autophagy, mitochondrial function, transcription, molecular structural integrity, the endo-lysosomal system, and the immune response. A definitive PD diagnosis can only be made post-mortem, and no noninvasive or blood-based disease biomarkers are currently available. Alterations in metabolites have been identified in PD patients, suggesting that metabolomics may hold promise for PD diagnostic tools. In this study, we sought to identify metabolic markers of PD in plasma. Using a 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) NMR spectroscopy metabolomics platform coupled with machine learning (ML), we measured plasma metabolites from approximately age/sex-matched PD patients with G2019S LRRK2 mutations and non-PD controls. Based on the differential level of known and unknown metabolites, we were able to build a ML model and develop a Biomarker of Response (BoR) score, which classified male LRRK2 PD patients with 79.7% accuracy, 81.3% sensitivity, and 78.6% specificity. The high accuracy of the BoR score suggests that the metabolomics/ML workflow described here could be further utilized in the development of a confirmatory diagnostic for PD in larger patient cohorts. A diagnostic assay for PD will aid clinicians and their patients to quickly move toward a definitive diagnosis, and ultimately empower future clinical trials and treatment options.
Collapse
|
16
|
Albillos SM, Montero O, Calvo S, Solano-Vila B, Trejo JM, Cubo E. Plasma acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol in Parkinson's disease and essential tremor. A case control biomarker study. Parkinsonism Relat Disord 2021; 91:167-172. [PMID: 34649109 DOI: 10.1016/j.parkreldis.2021.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Given the overlapping clinical manifestations and pathology, the differentiation between essential tremor (ET) and Parkinson's disease (PD) is difficult. Our aims were to examine the plasma metabolomics profiling and their association with motor and non-motor symptoms (NMS) in patients with PD, and to determine differences between de novo PD compared to moderate-advanced PD vs. controls and patients with ET. METHODS Plasma samples were collected from 137 subjects including 35 age matched controls, 29 NOVO-PD, 35 PD and 38 ET patients. PD severity, motor and NMS including cognitive function were assessed using the UPDRS, NMS and PD cognitive rating scales, respectively. Metabolomics analysis was performed by UPLC-ESI-QToF-MS followed by unsupervised multivariate statistics. The area under the curve of the biomarkers according to distribution of their concentrations and the diagnosis of PD (NOVO-PD, advanced PD) vs ET and healthy controls was used as a measurement of diagnostic ability. RESULTS Several acyl-carnitines, bilirubin, tyramine and tetrahydro-21-deoxycortisol (THS) presented good predictive accuracy (AUC higher than 0.8) for differentiating de novo PD and advanced PD from controls and ET, suggesting an alteration in the lipid oxidation pathway. In multivariate regression analysis, metabolite levels were not significantly associated with motor and NMS severity in PD. CONCLUSIONS Diverse acyl-carnitines, bilirubin, tyramine and some adrenal gland derived metabolites are suggested as potential biomarkers able to distinguish between PD from controls and ET.
Collapse
Affiliation(s)
- Silvia M Albillos
- University of Burgos, Area of Biochemistry and Molecular Biology, Spain
| | - Olimpio Montero
- Institute of Biology and Molecular Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Sara Calvo
- University Hospital of Burgos, Research Unit, Spain
| | | | - José M Trejo
- University Hospital of Burgos, Department of Neurology, Spain
| | - Esther Cubo
- University Hospital of Burgos, Department of Neurology, Spain.
| |
Collapse
|
17
|
Velvet Antler Methanol Extracts Ameliorate Parkinson's Disease by Inhibiting Oxidative Stress and Neuroinflammation: From C. elegans to Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8864395. [PMID: 33505591 PMCID: PMC7811427 DOI: 10.1155/2021/8864395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023]
Abstract
Velvet antler is the traditional tonic food or medicine used in East Asia for treating aging-related diseases. Herein, we try to dissect the pharmacology of methanol extracts (MEs) of velvet antler on Parkinson's disease (PD). Caenorhabditis elegans studies showed that MEs decreased the aggregation of α-synuclein and protected oxidative stress-induced DAergic neuron degeneration. In vitro cellular data indicated that MEs suppressed the LPS-induced MAPKs and NF-κB activation, therefore inhibiting overproduction of reactive oxygen species, nitric oxide, tumor necrosis factor-α, and interleukin-6; blocking microglia activation; and protecting DAergic neurons from the microglia-mediated neurotoxicity. In vivo MPTP-induced PD mouse investigations found that MEs prevented MPTP-induced neuron loss in the substantia nigra and improved the behavioral rotating rod performance in MPTP-treated mice by increasing the expression level of tyrosine hydroxylase (TH) and downregulating α-synuclein protein expression. In all, these results demonstrate that MEs ameliorate PD by inhibiting oxidative stress and neuroinflammation.
Collapse
|
18
|
Lin R, Rao S, Li Y, Zhang L, Xu L, He Y, Liu Z, Chen H. Conjugation of tacrine with genipin derivative not only enhances effects on AChE but also leads to autophagy against Alzheimer's disease. Eur J Med Chem 2020; 211:113067. [PMID: 33338868 DOI: 10.1016/j.ejmech.2020.113067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 01/22/2023]
Abstract
Seven tacrine/CHR21 conjugates have been designed and synthesized. Compound 8-7 was confirmed as the most active AChE inhibitor with IC50 value of 5.8 ± 1.4 nM, which was 7.72-fold stronger than tacrine. It was also shown as a strong BuChE inhibitor (IC50 value of 3.7 ± 1.3 nM). 8-7 was clearly highlighted not only as an excellent ChEs inhibitor, but also as a good modulator on protein expression of AChE, p53, Bax, Bcl-2, LC3, p62, and ULK, indicating its functions against programmed cell apoptosis and decrease of autophagy. 8-7 significantly reversed the glutamate-induced dysfunctions including excessive calcium influx and release from internal organelles, overproduction of nitric oxide (NO) and Aβ high molecular weight oligomer. This compound can penetrate blood-brain barrier (BBB). The in vivo hepatotoxicity assay indicated that 8-7 was much less toxic than tacrine. Altogether, these data strongly support that 8-7 is a potential multitarget-directed ligand (MTDL) for treating Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rongtian Lin
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shuwen Rao
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanbing Li
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Lei Zhang
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Liyu Xu
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yepu He
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhijun Liu
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Product, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
19
|
Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem 2020; 210:112957. [PMID: 33160760 DOI: 10.1016/j.ejmech.2020.112957] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
The marine environment with its vast biological diversity encompasses many organisms that produce bioactive natural products. Marine microorganisms are rich sources of compounds from many structural classes with a multitude of biological activities. The biosynthesis of microbial natural products depends on a variety of biotic and abiotic factors in the marine environment, including temperature, nutrients, salinity and interaction with other microorganisms. Terpenoids, as one of the most important groups of natural products in terrestrial microorganisms are important metabolites for marine microorganisms. Here, we have reviewed the chemistry, biosynthesis and pharmacological activities of terpenoids, extracted from marine microbes, and then survey their potential applications in drug development. We also discussed the different habitats in which marine microorganisms are found including sediments, the flora, such as seaweeds, sea grasses, and mangroves as well as the fauna like sponges and corals. Amongst these habitats, marine sediments are the major source for terpenoids producing microorganisms. The marine bacteria produce mostly meroterpenoids, while the fungi are well known for production of isoprenoids. Interestingly, marine-derived microbial terpenoids have some structural characteristics such as halogenation, which are catalyzed by specific enzymes with distinct substrate specificity. These compounds have anticancer, antibacterial, antifungal, antimalarial and anti-inflammatory properties. The information collected here might provide useful clues for developing new medications.
Collapse
Affiliation(s)
- Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
| | - Maryam Alborz
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, PR China
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Kern DS, Uy D, Rhoades R, Ojemann S, Abosch A, Thompson JA. Discrete changes in brain volume after deep brain stimulation in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 2020; 91:928-937. [PMID: 32651244 DOI: 10.1136/jnnp-2019-322688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/06/2020] [Accepted: 06/09/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS), targeting the subthalamic nucleus (STN) and globus pallidus interna, is a surgical therapy with class 1 evidence for Parkinson's disease (PD). Bilateral DBS electrodes may be implanted within a single operation or in separate staged surgeries with an interval of time that varies patient by patient. In this study, we used the variation in the timing of implantation from the first to the second implantation allowing for examination of potential volumetric changes of the basal ganglia in patients with PD who underwent staged STN DBS. METHODS Thirty-two patients with a mean time interval between implantations of 141.8 (±209.1; range: 7-700) days and mean duration of unilateral stimulation of 244.7 (±227.7; range: 20-672) days were included in this study. Using volumetric analysis of whole hemisphere and subcortical structures, we observed whether implantation or stimulation affected structural volume. RESULTS We observed that DBS implantation, but not the duration of stimulation, induced a significant reduction of volume in the caudate, pallidum, putamen and thalamus ipsilateral to the implanted hemisphere. These findings were not dependent on the trajectory of the implanted electrode nor on first surgery pneumocephalus (0.07%: %Δ for intracranial volume between first and second surgery). In addition, unique regional atrophy differences were evident in each of the structures. CONCLUSION Our results demonstrate that DBS implantation surgery may affect hemisphere volume at the level of subcortical structures connected to the surgical target.
Collapse
Affiliation(s)
- Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Uy
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Modern Human Anatomy Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Remy Rhoades
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA .,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Modern Human Anatomy Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
21
|
Klus NJ, Kapadia K, McDonald P, Roy A, Frankowski KJ, Muma NA, Aubé J. Discovery of sultam-containing small-molecule disruptors of the huntingtin-calmodulin protein-protein interaction. Med Chem Res 2020; 29:1187-1198. [PMID: 33642842 PMCID: PMC7906539 DOI: 10.1007/s00044-020-02583-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 11/26/2022]
Abstract
The aberrant protein-protein interaction between calmodulin and mutant huntingtin protein in Huntington's disease patients has been found to contribute to Huntington's disease progression. A high-throughput screen for small molecules capable of disrupting this interaction revealed a sultam series as potent small-molecule disruptors. Diversification of the sultam scaffold afforded a set of 24 analogs or further evaluation. Several structure-activity trends within the analog set were found, most notably a negligible effect of absolute stereochemistry and a strong beneficial correlation with electron-withdrawing aromatic substituents. The most promising analogs were profiled for off-target effects at relevant kinases and, ultimately, one candidate molecule was evaluated for neuroprotection in a neuronal cell model of Huntington's disease.
Collapse
Affiliation(s)
- Nicholas J. Klus
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Khushboo Kapadia
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Peter McDonald
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Anuradha Roy
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Kevin J. Frankowski
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Katsaiti I, Nixon J. Are There Benefits in Adding Catechol-O Methyltransferase Inhibitors in the Pharmacotherapy of Parkinson's Disease Patients? A Systematic Review. JOURNAL OF PARKINSONS DISEASE 2019; 8:217-231. [PMID: 29614697 DOI: 10.3233/jpd-171225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND A qualified consensus suggests that a combination of levodopa with a peripherally acting dopa decarboxylase inhibitor continues to present the gold standard treatment of Parkinson's disease (PD). However, as the disease progresses the therapeutic window of levodopa becomes narrowed. Pharmacological strategies for motor fluctuations are focused on providing less pulsatile and more continuous dopaminergic stimulation. Peripheral catechol-O-methyltransferase (COMT) inhibition improves the bioavailability of levodopa and results in a prolonged response. OBJECTIVE The primary aim of this study was to investigate the efficacy and safety of the two available COMT inhibitors; entacapone and tolcapone and the recently introduced opicapone. METHODS Electronic databases were systematically searched for original studies published within the last 37 years. In addition, lists of identified studies, reviews and their references were examined. RESULTS Twelve studies fulfilled the inclusion criteria. 3701 patients with PD were included in this systematic review. CONCLUSIONS Adjuvant treatment of PD patients experiencing motor fluctuations with entacapone resulted in improvement of motor function and was well tolerated. Therefore, entacapone presented an acceptable benefit to risk ratio. Tolcapone appeared to result in a greater therapeutic effect. However, this was not consistent across all motor variables and studies, and thus would not support its use, given the current onerous monitoring that is required. Opicapone was not associated with adverse reactions in a phase III trial but did not present a greater efficacy than entacapone, and thus further studies are required in order to illustrate its cost effectiveness.
Collapse
Affiliation(s)
- Irene Katsaiti
- Current Medical Student, Lancaster Medical School, Lancaster, UK
| | - John Nixon
- Consultant Neurologist, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| |
Collapse
|
23
|
Skill NJ, Elliott CM, Ceballos B, Saxena R, Pepin R, Bettcher L, Ellensberg M, Raftery D, Malucio MA, Ekser B, Mangus RS, Kubal CA. Metabolomic Characterization of Human Model of Liver Rejection Identifies Aberrancies Linked to Cyclooxygenase (COX) and Nitric Oxide Synthase (NOS). Ann Transplant 2019; 24:341-349. [PMID: 31182705 PMCID: PMC6582681 DOI: 10.12659/aot.913800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare payers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolution, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression used in our institute provided a model to characterize metabolomic profiles in human ALR. MATERIAL AND METHODS Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppression were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection (n=5), and 3) biopsies with histological evidence of mild rejection (n=8). RESULTS There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable importance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection using partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as progressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, γ-linolenic acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality. CONCLUSIONS Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur contemporaneous with ALR. Additional studies are required to better characterize the role of these metabolic pathways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR.
Collapse
Affiliation(s)
- Nicholas J Skill
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Campbell M Elliott
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Brian Ceballos
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Romil Saxena
- Department of Pathology, Indiana University Medical School, Indianapolis, IN, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Lisa Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Matthew Ellensberg
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Mary A Malucio
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Richard S Mangus
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | | |
Collapse
|
24
|
Gaeckle M, Domahs F, Kartmann A, Tomandl B, Frank U. Predictors of Penetration-Aspiration in Parkinson’s Disease Patients With Dysphagia: A Retrospective Analysis. Ann Otol Rhinol Laryngol 2019; 128:728-735. [DOI: 10.1177/0003489419841398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective:Penetration-aspiration is considered the most severe sign of dysphagia, with aspiration pneumonia as one of its consequences. More than half of Parkinson’s disease (PD) patients suffer from dysphagia, and aspiration pneumonia is among the primary causes of mortality in PD patients. However, the identification of predictors of penetration-aspiration in PD patients remains an understudied topic. The purpose of this study was to identify predictors of penetration-aspiration in patients with PD.Methods:The data of 89 PD patients with dysphagia who underwent routinely conducted videofluoroscopic studies of swallowing (VFSS) were included in this retrospective study. The occurrence of penetration-aspiration was defined as scores ≥3 on the Penetration-Aspiration Scale (PAS). Four commonly reported signs of dysphagia in PD patients were evaluated as possible predictors. Furthermore, the relationships between the occurrence of penetration-aspiration and liquid bolus volume as well as clinical severity of PD (modified Hoehn and Yahr scale) were examined.Results:Logistic regression showed that a delayed initiation of the pharyngeal swallow (odds ratio [OR] = 7.47, P = .008) and a reduced hyolaryngeal excursion (OR = 5.13, P = .012) were predictors of penetration-aspiration. Moreover, there was a strong, positive correlation between increasing liquid bolus volume and penetration-aspiration (γ = 0.71, P < .001). No correlation was found between severity of PD and penetration-aspiration (γ = 0.077, P = .783).Conclusion:Results of the present study allow for a better understanding of penetration-aspiration risk in PD patients. They are useful for treatment planning in order to improve safe oral intake and adequate nutrition.
Collapse
Affiliation(s)
- Maren Gaeckle
- Institute for German Linguistics, University of Marburg, Marburg, Germany
- Department of Geriatric Rehabilitation and Physical Medicine, Speech-Language Therapy, Christophsbad Medical Center, Göppingen, Germany
| | - Frank Domahs
- Institute for German Linguistics, University of Marburg, Marburg, Germany
| | - Angelika Kartmann
- Department of Geriatric Rehabilitation and Physical Medicine, Speech-Language Therapy, Christophsbad Medical Center, Göppingen, Germany
| | - Bernd Tomandl
- Department of Radiology and Neuroradiology, Christophsbad Medical Center, Göppingen, Germany
| | - Ulrike Frank
- Department of Cognitive Neurolinguistics, Swallowing Research Lab, University of Potsdam, Potsdam, Germany
| |
Collapse
|
25
|
Yoon HH, Min J, Jeon SR. Optogenetics to restore neural circuit function in Parkinson’s disease. JOURNAL OF NEURORESTORATOLOGY 2018. [DOI: 10.26599/jnr.2018.9040007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Mortezaei Z, Cazier JB, Mehrabi AA, Cheng C, Masoudi-Nejad A. Novel putative drugs and key initiating genes for neurodegenerative disease determined using network-based genetic integrative analysis. J Cell Biochem 2018; 120:5459-5471. [PMID: 30302804 DOI: 10.1002/jcb.27825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022]
Abstract
Understanding the genetic causes of neurodegenerative disease (ND) can be useful for their prevention and treatment. Among the genetic variations responsible for ND, heritable germline variants have been discovered in genome-wide association studies (GWAS), and nonheritable somatic mutations have been discovered in sequencing projects. Distinguishing the important initiating genes in ND and comparing the importance of heritable and nonheritable genetic variants for treating ND are important challenges. In this study, we analysed GWAS results, somatic mutations and drug targets of ND from large databanks by performing directed network-based analysis considering a randomised network hypothesis testing procedure. A disease-associated biological network was created in the context of the functional interactome, and the nonrandom topological characteristics of directed-edge classes were interpreted. Hierarchical network analysis indicated that drug targets tend to lie upstream of somatic mutations and germline variants. Furthermore, using directed path length information and biological explanations, we provide information on the most important genes in these created node classes and their associated drugs. Finally, we identified nine germline variants overlapping with drug targets for ND, seven somatic mutations close to drug targets from the hierarchical network analysis and six crucial genes in controlling other genes from the network analysis. Based on these findings, some drugs have been proposed for treating ND via drug repurposing. Our results provide new insights into the therapeutic actionability of GWAS results and somatic mutations for ND. The interesting properties of each node class and the existing relationships between them can broaden our knowledge of ND.
Collapse
Affiliation(s)
- Zahra Mortezaei
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Haworth Building, University of Birmingham, Birmingham, UK
| | - Ali Ashraf Mehrabi
- Department of Biometry and Plant Genetics, University of Ilam, Ilam, Iran
| | - Chao Cheng
- Department of Biomedical Data Sciences, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Srinivas C, Sudharsan M, Reddy GRK, Kumar PS, Amali AJ, Suresh D. Co/Co-N@Nanoporous Carbon Derived from ZIF-67: A Highly Sensitive and Selective Electrochemical Dopamine Sensor. ELECTROANAL 2018. [DOI: 10.1002/elan.201800391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chandrasekaran Srinivas
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - Murugesan Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - G. Rajendra Kumar Reddy
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - P. Suresh Kumar
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - Arlin Jose Amali
- Centre for Green Chemistry Processes; Madurai Kamaraj University; Madurai 625 021 India
| | - D. Suresh
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| |
Collapse
|
28
|
Pang CCC, Kiecker C, O'Brien JT, Noble W, Chang RCC. Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration. Neuroscientist 2018; 25:167-180. [PMID: 29865938 DOI: 10.1177/1073858418778747] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.
Collapse
Affiliation(s)
- Cindy Chi-Ching Pang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clemens Kiecker
- 3 Department of Developmental Neurobiology, King's College London, London, UK
| | - John T O'Brien
- 4 Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Wendy Noble
- 2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Raymond Chuen-Chung Chang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,5 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
29
|
Adams SD, Kouzani AZ, Tye SJ, Bennet KE, Berk M. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. J Neuroeng Rehabil 2018; 15:8. [PMID: 29439744 PMCID: PMC5811973 DOI: 10.1186/s12984-018-0349-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Collapse
Affiliation(s)
- Scott D. Adams
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Susannah J. Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Berk
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
30
|
Roach P, Kose Dunn M, Fricker R. Tissue engineered organoids for neural network modelling. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/atroa.2017.03.00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Motamedi S, Karimi I, Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metab Brain Dis 2017; 32:651-665. [PMID: 28361262 DOI: 10.1007/s11011-017-9997-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is involved in metabolic syndrome (MetS) and neurodegenerative diseases (NDD) like Alzheimer's disease, Huntington's disease, Parkinson's disease and depression. If one factor plays an essential role in the pathogenesis of two diseases, it can be concluded that there might be a common root in these two diseases, as well. This review was aimed to highlight the crucial roles of BDNF in the pathogenesis of MetS and NDD and to introduce sole prophylactic or therapeutic applications, BDNF gene therapy and BDFN administration, in controlling MetS and NDD.
Collapse
Affiliation(s)
- Shima Motamedi
- Graduate of Doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Fariba Jafari
- Young Researchers and Elite Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
32
|
Lakkappa N, Krishnamurthy PT, Hammock BD, Velmurugan D, Bharath MMS. Possible role of Epoxyeicosatrienoic acid in prevention of oxidative stress mediated neuroinflammation in Parkinson disorders. Med Hypotheses 2016; 93:161-5. [PMID: 27372879 PMCID: PMC4985172 DOI: 10.1016/j.mehy.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/24/2016] [Accepted: 06/04/2016] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disease involving oxidative stress, neuroinflammation and apoptosis. Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites and they play a role in cytoprotection by modulating various cell signaling pathways. This cytoprotective role of EETs are well established in cerebral stroke, cardiac failure, and hypertension, and it is due to their ability to attenuate oxidative stress, endoplasmic reticulum stress, inflammation, caspase activation and apoptosis. The actions of EETs in brain closely parallel the effects which is observed in the peripheral tissues. Since many of these effects could potentially contribute to neuroprotection, EETs are, therefore, one of the potential therapeutic candidates in PD. Therefore, by increasing the half life of endogenous EETs in vivo via inhibition of sEH, its metabolizing enzyme can, therefore, constitutes an important therapeutic strategy in PD.
Collapse
Affiliation(s)
- Navya Lakkappa
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Ootacamund, Tamilnadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Ootacamund, Tamilnadu, India.
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Research Center, University of California, Davis, CA, USA
| | - D Velmurugan
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences, Bangalore, India
| |
Collapse
|
33
|
Burd I, Welling J, Kannan G, Johnston MV. Excitotoxicity as a Common Mechanism for Fetal Neuronal Injury with Hypoxia and Intrauterine Inflammation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:85-101. [PMID: 27288075 DOI: 10.1016/bs.apha.2016.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Excitotoxicity is a mechanism of neuronal injury, implicated in the pathogenesis of many acute and chronic neurologic disorders, including perinatal brain injury associated with hypoxia-ischemia and exposure to intrauterine inflammation. Glutamate, the primary excitatory neurotransmitter, signals through N-methyl-d-aspartic acid (NMDA)/α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. Proper functioning of both of these receptors, in conjunction with glutamate signaling, is crucial for normal development. However, even a small imbalance can result in perinatal neuronal injury. Therefore, a mechanistic understanding of the role of excitotoxicity and the NMDA/AMPA receptor functions is critical to establishing the pathogenesis of hypoxic-ischemic encephalopathy (HIE) and perinatal brain injury due to exposure to intrauterine inflammation. Evidence from experimental animal models and clinical studies indicates that both oxygen and glucose deficiencies play a major role in fetal neuronal injury. However, the connection between these deficiencies, excitotoxicity, and HIE is not well established. The excitotoxic mechanisms in animal models and humans have many parallels, suggesting that detailed animal studies can elicit clinically relevant discoveries. While current therapies for HIE include hypothermia and other neuroprotective measures, emphasizing prevention of acute injuries, increase of therapeutic time window, and increased neural repair, there are no effective widely used treatment modalities for fetuses and neonates exposed to intrauterine inflammation. Further studies of HIE and intrauterine inflammation (as in cases of preterm birth and chorioamnionitis) will provide a better insight into development of effective therapeutic interventions for these conditions.
Collapse
Affiliation(s)
- I Burd
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J Welling
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - G Kannan
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M V Johnston
- Kennedy Krieger Institute for Disabilities, Baltimore, MD, United States.
| |
Collapse
|
34
|
Yoon HH, Min J, Hwang E, Lee CJ, Suh JKF, Hwang O, Jeon SR. Optogenetic Inhibition of the Subthalamic Nucleus Reduces Levodopa-Induced Dyskinesias in a Rat Model of Parkinson's Disease. Stereotact Funct Neurosurg 2016; 94:41-53. [PMID: 26962855 DOI: 10.1159/000442891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The inhibition of neuronal activity by electrical deep brain stimulation is one of the mechanisms explaining the amelioration of levodopa-induced dyskinesia. However, electrical deep brain stimulation cannot specifically activate or inactivate selected types of neurons. OBJECTIVES We applied optogenetics as an alternative treatment to deep brain stimulation for levodopa-induced dyskinesia, and also to confirm that the mechanism of levodopa-induced dyskinesia amelioration by subthalamic nucleus deep brain stimulation is mediated through neuronal inhibition. METHODS 6-hydroxydopamine-induced hemiparkinsonian rats received injections of hSynapsin1-NpHR-YFP adeno-associated virus (AAV) or hSynapsin1-YFP AAV. Two weeks after viral injections, all rats were treated with daily injections of levodopa. Then, the optic fiber was implanted into the ipsilateral subthalamic nucleus. We performed various behavioral tests to evaluate the changes in levodopa-induced dyskinesias after optogenetic expression and illumination in the subthalamic nucleus. RESULTS The behavioral tests revealed that optical inhibition of the subthalamic nucleus significantly ameliorated levodopa-induced dyskinesia by reducing the duration of the dyskinesias as well as the severity of axial dyskinesia. CONCLUSIONS These findings will provide a useful foundation for the future development of optogenetic modulation systems that could be considered as an approach to dyskinesia therapy.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats. Neurotoxicology 2015; 50:157-69. [PMID: 26342684 DOI: 10.1016/j.neuro.2015.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023]
Abstract
The citrus flavonoid hesperidin exerts neuroprotective effects and could cross the blood-brain barrier. Given the involvement of glutamate neurotoxicity in the pathogenesis of neurodegenerative disorders, this study was conducted to evaluate the potential role of hesperidin in glutamate release and glutamate neurotoxicity in the hippocampus of rats. In rat hippocampal nerve terminals (synaptosomes), hesperidin inhibited the release of glutamate and elevation of cytosolic free Ca(2+) concentration evoked by 4-aminopyridine (4-AP), but did not alter 4-AP-mediated depolarization. The inhibitory effect of hesperidin on evoked glutamate release was prevented by chelating the extracellular Ca(2+) ions and blocking the activity of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels or protein kinase C. In hippocampal slice preparations, whole-cell patch clamp experiments showed that hesperidin reduced the frequency of spontaneous excitatory postsynaptic currents without affecting their amplitude, indicating the involvement of a presynaptic mechanism. In addition, intraperitoneal (i.p.) injection of kainic acid (KA, 15 mg/kg) elevated the extracellular glutamate levels and caused considerable neuronal loss in the hippocampal CA3 area. These KA-induced alterations were attenuated by pretreatment with hesperidin (10 or 50 mg/kg, i.p.) before administering the KA. These results demonstrate that hesperidin inhibits evoked glutamate release in vitro and attenuates in vivo KA-induced neuronal death in the hippocampus. Our findings indicate that hesperidin may be a promising candidate for preventing or treating glutamate excitotoxicity related brain disorders such as neurodegenerative diseases.
Collapse
|
36
|
Psychological Benefits of Nonpharmacological Methods Aimed for Improving Balance in Parkinson's Disease: A Systematic Review. Behav Neurol 2015; 2015:620674. [PMID: 26236107 PMCID: PMC4508472 DOI: 10.1155/2015/620674] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a serious condition with a major negative impact on patient's physical and mental health. Postural instability is one of the cardinal difficulties reported by patients to deal with. Neuroanatomical, animal, and clinical studies on nonparkinsonian and parkinsonian subjects suggest an important correlation between the presence of balance dysfunction and multiple mood disorders, such as anxiety, depression, and apathy. Considering that balance dysfunction is a very common symptom in PD, we can presume that by its management we could positively influence patient's state of mind too. This review is an analysis of nonpharmacological methods shown to be effective and successful for improving balance in patients suffering from PD. Strategies such as general exercise, robotic assisted training, Tai Chi, Qi Gong, Yoga, dance (such as tango or ballet), box, virtual reality-based, or neurofeedback-based techniques and so forth can significantly improve the stability in these patients. Beside this physical outcome, many methods have also shown effect on quality of life, depression level, enjoyment, and motivation to continue in practicing the method independently. The purpose of this review is to provide information about practical and creative methods designed to improve balance in PD and highlight their positive impact on patient's psychology.
Collapse
|
37
|
Trastornos del movimiento (I): Conceptos generales, clasificación de los síndromes parkinsonianos y enfermedad de Parkinson. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.med.2015.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Surasi DS, Peller PJ, Szabo Z, Mercier G, Subramaniam RM. Dopamine Transporter SPECT Imaging in Parkinson Disease and Dementia. PET Clin 2013; 8:459-67. [PMID: 27156473 DOI: 10.1016/j.cpet.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The clinical diagnosis of Parkinson disease (PD) is difficult, as several other neurodegenerative and basal ganglia disorders have similar clinical presentations. Dopamine transporter single-photon emission computed tomography has been proposed as possible diagnostic tool to help differentiate idiopathic PD from essential tremor and other disorders that present with parkinsonian symptoms. In addition, it is valuable in the diagnosis of dementia with Lewy bodies, differentiating it from other causes of dementia such as Alzheimer disease.
Collapse
Affiliation(s)
| | | | - Zsolt Szabo
- Russel H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Gustavo Mercier
- Department of Radiology, Boston University, Boston, MA-02118, USA
| | - Rathan M Subramaniam
- Russel H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
39
|
Assmus J, Kleffe J, Schmitt AO, Brockmann GA. Equivalent indels--ambiguous functional classes and redundancy in databases. PLoS One 2013; 8:e62803. [PMID: 23658777 PMCID: PMC3642179 DOI: 10.1371/journal.pone.0062803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/26/2013] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in studying sequenced variations. However, while the positions of substitutions are uniquely identifiable by sequence alignment, the location of insertions and deletions still poses problems. Each insertion and deletion causes a change of sequence. Yet, due to low complexity or repetitive sequence structures, the same indel can sometimes be annotated in different ways. Two indels which differ in allele sequence and position can be one and the same, i.e. the alternative sequence of the whole chromosome is identical in both cases and, therefore, the two deletions are biologically equivalent. In such a case, it is impossible to identify the exact position of an indel merely based on sequence alignment. Thus, variation entries in a mutation database are not necessarily uniquely defined. We prove the existence of a contiguous region around an indel in which all deletions of the same length are biologically identical. Databases often show only one of several possible locations for a given variation. Furthermore, different data base entries can represent equivalent variation events. We identified 1,045,590 such problematic entries of insertions and deletions out of 5,860,408 indel entries in the current human database of Ensembl. Equivalent indels are found in sequence regions of different functions like exons, introns or 5' and 3' UTRs. One and the same variation can be assigned to several different functional classifications of which only one is correct. We implemented an algorithm that determines for each indel database entry its complete set of equivalent indels which is uniquely characterized by the indel itself and a given interval of the reference sequence.
Collapse
Affiliation(s)
- Jens Assmus
- Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Kleffe
- Institut für Molekularbiologie und Bioinformatik, Charité Berlin, Berlin, Germany
| | - Armin O. Schmitt
- Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gudrun A. Brockmann
- Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin 2012; 33:578-87. [PMID: 22447225 DOI: 10.1038/aps.2012.3] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate whether asiatic acid (AA), a pentacyclic triterpene in Centella asiatica, exerted neuroprotective effects in vitro and in vivo, and to determine the underlying mechanisms. METHODS Human neuroblastoma SH-SY5Y cells were used for in vitro study. Cell viability was determined with the MTT assay. Hoechst 33342 staining and flow cytometry were used to examine the apoptosis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured using fluorescent dye. PGC-1α and Sirt1 levels were examined using Western blotting. Neonatal mice were given monosodium glutamate (2.5 mg/g) subcutaneously at the neck from postnatal day (PD) 7 to 13, and orally administered with AA on PD 14 daily for 30 d. The learning and memory of the mice were evaluated with the Morris water maze test. HE staining was used to analyze the pyramidal layer structure in the CA1 and CA3 regions. RESULTS Pretreatment of SH-SY5Y cells with AA (0.1-100 nmol/L) attenuated toxicity induced by 10 mmol/L glutamate in a concentration-dependent manner. AA 10 nmol/L significantly decreased apoptotic cell death and reduced reactive oxygen species (ROS), stabilized the mitochondrial membrane potential (MMP), and promoted the expression of PGC-1α and Sirt1. In the mice models, oral administration of AA (100 mg/kg) significantly attenuated cognitive deficits in the Morris water maze test, and restored lipid peroxidation and glutathione and the activity of SOD in the hippocampus and cortex to the control levels. AA (50 and 100 mg/kg) also attenuated neuronal damage of the pyramidal layer in the CA1 and CA3 regions. CONCLUSION AA attenuates glutamate-induced cognitive deficits of mice and protects SH-SY5Y cells against glutamate-induced apoptosis in vitro.
Collapse
|
42
|
Habibi E, Masoudi-Nejad A, Abdolmaleky HM, Haggarty SJ. Emerging roles of epigenetic mechanisms in Parkinson’s disease. Funct Integr Genomics 2011; 11:523-37. [DOI: 10.1007/s10142-011-0246-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 02/02/2023]
|
43
|
Das S, Mukhopadhyay D. Intrinsically unstructured proteins and neurodegenerative diseases: Conformational promiscuity at its best. IUBMB Life 2011; 63:478-88. [DOI: 10.1002/iub.498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Wang D, Liu F, Wang L, Huang S, Yu J. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. Biol Direct 2011; 6:13. [PMID: 21342519 PMCID: PMC3055854 DOI: 10.1186/1745-6150-6-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/22/2011] [Indexed: 12/30/2022] Open
Abstract
Background Mammalian genome sequence data are being acquired in large quantities and at enormous speeds. We now have a tremendous opportunity to better understand which genes are the most variable or conserved, and what their particular functions and evolutionary dynamics are, through comparative genomics. Results We chose human and eleven other high-coverage mammalian genome data–as well as an avian genome as an outgroup–to analyze orthologous protein-coding genes using nonsynonymous (Ka) and synonymous (Ks) substitution rates. After evaluating eight commonly-used methods of Ka and Ks calculation, we observed that these methods yielded a nearly uniform result when estimating Ka, but not Ks (or Ka/Ks). When sorting genes based on Ka, we noticed that fast-evolving and slow-evolving genes often belonged to different functional classes, with respect to species-specificity and lineage-specificity. In particular, we identified two functional classes of genes in the acquired immune system. Fast-evolving genes coded for signal-transducing proteins, such as receptors, ligands, cytokines, and CDs (cluster of differentiation, mostly surface proteins), whereas the slow-evolving genes were for function-modulating proteins, such as kinases and adaptor proteins. In addition, among slow-evolving genes that had functions related to the central nervous system, neurodegenerative disease-related pathways were enriched significantly in most mammalian species. We also confirmed that gene expression was negatively correlated with evolution rate, i.e. slow-evolving genes were expressed at higher levels than fast-evolving genes. Our results indicated that the functional specializations of the three major mammalian clades were: sensory perception and oncogenesis in primates, reproduction and hormone regulation in large mammals, and immunity and angiotensin in rodents. Conclusion Our study suggests that Ka calculation, which is less biased compared to Ks and Ka/Ks, can be used as a parameter to sort genes by evolution rate and can also provide a way to categorize common protein functions and define their interaction networks, either pair-wise or in defined lineages or subgroups. Evaluating gene evolution based on Ka and Ks calculations can be done with large datasets, such as mammalian genomes. Reviewers This article has been reviewed by Drs. Anamaria Necsulea (nominated by Nicolas Galtier), Subhajyoti De (nominated by Sarah Teichmann) and Claus O. Wilke.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, PR China
| | | | | | | | | |
Collapse
|
45
|
Torre ER, Gutekunst CA, Gross RE. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci 2010; 44:135-53. [PMID: 20298787 DOI: 10.1016/j.mcn.2010.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022] Open
Abstract
Here we explore the role of semaphorin 3A and 3F (Sema3A, Sema3F) in the formation of the mesotelencephalic pathway. We show that Sema3A and 3F are expressed in the ventral mesencephalon (VM) of E13.5 rat embryos; the receptors Neuropilin 1 and Neuropilin 2, and co-receptors L1CAM, NrCAM, and Plexins A1 and A3 but not A4 are expressed by VM dopaminergic neurons; these neurons bind Sema3A and 3F in vitro which induces collapse of their growth cones and elicits, with different potencies, a repulsive response; and this response is absent in axons from Nrp1 and Nrp2 null embryos. Despite these in vitro effects, only very mild anatomical defects were detected in the organization of the mesotelencephalic pathway in embryonic and adult Nrp1 or Nrp2 null mice. However, the dopaminergic meso-habenular pathway and catecholaminergic neurons in the parafascicular and paraventricular nuclei of the thalamus were significantly affected in Nrp2 null mice. These data are consistent with a model whereby Sema3A and 3F, in combination with other guidance molecules, contributes to the navigation of DA axons to their final synaptic targets.
Collapse
Affiliation(s)
- Enrique R Torre
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
46
|
Radiopharmaceuticals for positron emission tomography investigations of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2009; 37:1575-93. [DOI: 10.1007/s00259-009-1301-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 10/09/2009] [Indexed: 12/11/2022]
|
47
|
López-Gresa MP, Cabedo N, González-Mas MC, Ciavatta ML, Avila C, Primo J. Terretonins E and F, inhibitors of the mitochondrial respiratory chain from the marine-derived fungus Aspergillus insuetus (#). JOURNAL OF NATURAL PRODUCTS 2009; 72:1348-1351. [PMID: 19719247 DOI: 10.1021/np900085n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two new meroterpenoids, terretonins E and F (1, 2), together with three known compounds, aurantiamine (3), linoleic acid, and uridine, were isolated as fermentation products of the marine-derived fungus Aspergillus insuetus, which was associated with the sponge Petrosia ficiformis. Structures of all isolates were elucidated employing spectroscopic methods, mainly by two-dimensional NMR techniques. Compounds 1-3 showed activity as inhibitors of the mammalian mitochondrial respiratory chain.
Collapse
Affiliation(s)
- M Pilar López-Gresa
- Instituto de Biologia Molecular y Celular de Plantas, Ciudad Politecnica de la Innovacion, 46022 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30:379-87. [PMID: 19343058 DOI: 10.1038/aps.2009.24] [Citation(s) in RCA: 789] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A pivotal role for excitotoxicity in neurodegenerative diseases is gaining increasingly more acceptance, but the underlying mechanisms through which it participates in neurodegeneration still need further investigation. Excessive activation of glutamate receptors by excitatory amino acids leads to a number of deleterious consequences, including impairment of calcium buffering, generation of free radicals, activation of the mitochondrial permeability transition and secondary excitotoxicity. Recent studies implicate excitotoxicity in a variety of neuropathological conditions, suggesting that neurodegenerative diseases with distinct genetic etiologies may share excitotoxicity as a common pathogenic pathway. Thus, understanding the pathways involved in excitotoxicity is of critical importance for the future clinical treatment of many neurodegenerative diseases. This review discusses the current understanding of excitotoxic mechanisms and how they are involved in the pathogenesis of neurodegenerative diseases.
Collapse
|
49
|
Ruf RAS, Lutz EA, Zigoneanu IG, Pielak GJ. Alpha-Synuclein conformation affects its tyrosine-dependent oxidative aggregation. Biochemistry 2009; 47:13604-9. [PMID: 19049426 DOI: 10.1021/bi801884z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress and aggregation of the protein alpha-synuclein are thought to be key factors in Parkinson's disease. Previous work shows that cytochrome c with H(2)O(2) causes tyrosine-dependent in vitro peroxidative aggregation of proteins, including alpha-synuclein. Here, we examine the role of each of alpha-synuclein's four tyrosine residues and how the protein's conformation affects covalent oxidative aggregation. When alpha-synuclein adopts a collapsed conformation, tyrosine 39 is essential for wild-type-like covalent aggregation. This lone N-terminal tyrosine, however, is not required for wild-type-like covalent aggregation in the presence of a denaturant or when alpha-synuclein is present in noncovalent fibrils. We also show that preformed oxidative aggregates are not incorporated into noncovalent fibrils. These data provide insight into how dityrosine may be formed in Lewy bodies seen in Parkinson's disease.
Collapse
Affiliation(s)
- Rebecca A S Ruf
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
50
|
Abstract
This overview of Parkinson's disease is designed to serve as a background to the discussion elsewhere in this supplement on the pharmacotherapy used in its management. Parkinson's disease is a common progressive neurodegenerative condition associated with significant disability and negative impact on quality of life. Although the cause of Parkinson's disease is unknown, the pathologic manifestation involves the loss or dysfunction of dopaminergic neurons in the substantia nigra pars compacta. Characteristic clinical manifestations include difficulty with coordinated movement such as asymmetric resting tremor, rigidity, and bradykinesia. These symptoms and their response to levodopa constitute the basis for a clinical diagnosis of Parkinson's disease. Postural instability and gait abnormalities occur in more advanced disease. Although there is no cure for Parkinson's disease, a number of pharmacologic treatments are available for managing the motor and nonmotor symptoms. Research is under way to assess the disease-modifying ability of both standard and newer treatments.
Collapse
Affiliation(s)
- Mark Lew
- Division of Movement Disorders, Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|