1
|
Oku T, Furuya S, Lee A, Altenmüller E. Video-based diagnosis support system for pianists with Musician's dystonia. Front Neurol 2024; 15:1409962. [PMID: 39015318 PMCID: PMC11250081 DOI: 10.3389/fneur.2024.1409962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Background Musician's dystonia is a task-specific movement disorder that deteriorates fine motor control of skilled movements in musical performance. Although this disorder threatens professional careers, its diagnosis is challenging for clinicians who have no specialized knowledge of musical performance. Objectives To support diagnostic evaluation, the present study proposes a novel approach using a machine learning-based algorithm to identify the symptomatic movements of Musician's dystonia. Methods We propose an algorithm that identifies the dystonic movements using the anomaly detection method with an autoencoder trained with the hand kinematics of healthy pianists. A unique feature of the algorithm is that it requires only the video image of the hand, which can be derived by a commercially available camera. We also measured the hand biomechanical functions to assess the contribution of peripheral factors and improve the identification of dystonic symptoms. Results The proposed algorithm successfully identified Musician's dystonia with an accuracy and specificity of 90% based only on video footages of the hands. In addition, we identified the degradation of biomechanical functions involved in controlling multiple fingers, which is not specific to musical performance. By contrast, there were no dystonia-specific malfunctions of hand biomechanics, including the strength and agility of individual digits. Conclusion These findings demonstrate the effectiveness of the present technique in aiding in the accurate diagnosis of Musician's dystonia.
Collapse
Affiliation(s)
- Takanori Oku
- College of Engineering and Design, Shibaura Institute of Technology, Tokyo, Japan
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
- Institute of Music Physiology and Musicians’ Medicine, University of Music, Drama and Media, Hanover, Germany
| | - André Lee
- Institute of Music Physiology and Musicians’ Medicine, University of Music, Drama and Media, Hanover, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians’ Medicine, University of Music, Drama and Media, Hanover, Germany
| |
Collapse
|
2
|
Bailey GA, Rawlings A, Torabi F, Pickrell WO, Peall KJ. Prevalence and temporal relationship of clinical co-morbidities in idiopathic dystonia: a UK linkage-based study. J Neurol 2024; 271:3398-3408. [PMID: 38512523 PMCID: PMC11136734 DOI: 10.1007/s00415-024-12284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
While motor and psychiatric phenotypes in idiopathic dystonia are increasingly well understood, a few studies have examined the rate, type, and temporal pattern of other clinical co-morbidities in dystonia. Here, we determine the rates of clinical diagnoses across 13 broad systems-based diagnostic groups, comparing an overall idiopathic dystonia cohort, and sub-cohorts of cervical dystonia, blepharospasm, and dystonic tremor, to a matched-control cohort. Using the SAIL databank, we undertook a longitudinal population-based cohort study (January 1st 1994-December 31st 2017) using anonymised electronic healthcare records for individuals living in Wales (UK), identifying those diagnosed with dystonia through use of a previously validated algorithm. Clinical co-morbid diagnoses were identified from primary health care records, with a 10% prevalence threshold required for onward analysis. Using this approach, 54,166 dystonia cases were identified together with 216,574 matched controls. Within this cohort, ten of the main ICD-10 diagnostic codes exceeded the 10% prevalence threshold over the 20-year period (infection, neurological, respiratory, gastrointestinal, genitourinary, dermatological, musculoskeletal, circulatory, neoplastic, and endocrinological). In the overall dystonia cohort, musculoskeletal (aOR: 1.89, aHR: 1.74), respiratory (aOR: 1.84; aHR: 1.65), and gastrointestinal (aOR: 1.72; aHR: 1.6) disorders had the strongest associations both pre- and post-dystonia diagnosis. However, variation in the rate of association of individual clinical co-morbidities was observed across the cervical, blepharospasm, and tremor dystonia groups. This study suggests an increased rate of specific co-morbid clinical disorders both pre- and post-dystonia diagnosis which should be considered during clinical assessment of those with dystonia to enable optimum symptomatic management.
Collapse
Affiliation(s)
- Grace A Bailey
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Anna Rawlings
- Swansea University Medical School, Singleton Park, Swansea, UK
| | - Fatemeh Torabi
- Swansea University Medical School, Singleton Park, Swansea, UK
- Health Data Research UK, Swansea, UK
| | - W Owen Pickrell
- Swansea University Medical School, Singleton Park, Swansea, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
3
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
4
|
Young VN, Kidane J, Gochman GE, Bracken DJ, Ma Y, Rosen CA. Abnormal Laryngopharyngeal Sensation in Adductor Laryngeal Dystonia Compared to Healthy Controls. Laryngoscope 2023; 133:2271-2278. [PMID: 36271910 DOI: 10.1002/lary.30462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Laryngeal sensory abnormality has been implicated as a component of adductor laryngeal dystonia (AdLD). The study objective was to assess laryngopharyngeal sensation in AdLD utilizing a calibrated, tactile aesthesiometer to deliver differential stimuli to lateral pyriform sinus (LPS), aryepiglottic fold (AEF), and false vocal fold (FVF). METHODS Patients with known Botox-responsive AdLD underwent sensory testing using a previously-validated methodology involving calibrated tactile stimuli (6-0, 5-0, 4.5-0, 4-0 nylon monofilaments). Laryngeal adductor reflex (LAR) and participant-rated perceptual strength of stimulI were evaluated. Responses were compared to normative controls (n = 33). Two-samples, Mann-Whitney and Fisher exact tests compared mean strength ratings and LAR between AdLD and control groups. Mixed-effects logistic regression and linear models assessed association of filament size, stimulus site, age, sex, and LD status on LAR and perceptual strength rating respectively. RESULTS Thirteen AdLD patients (nine women, mean age 60+/-15 years) completed testing. Average LAR response rates were higher amongst all filament sizes in AdLD versus controls at LPS (56.3% vs. 35.7%) and AEF (96.1% vs. 70.2%) with comparable rates at FVF (90.2% vs. 91.7%). AdLD had 3.3 times the odds of observed LAR compared to controls (p = 0.005), but differences in subjective detection of stimuli, perceptual strength ratings, and cough/gag rates were insignificant on multivariate modeling (p > 0.05). CONCLUSIONS This is the first study to objectively assess laryngopharyngeal sensation in AdLD. Findings demonstrated increased laryngopharyngeal sensation in AdLD compared to controls. The identification of increased laryngeal hypersensitivity in these patients may improve understanding of AdLD pathophysiology and identify future targets for intervention. LEVEL OF EVIDENCE 2 Laryngoscope, 133:2271-2278, 2023.
Collapse
Affiliation(s)
- VyVy N Young
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Joseph Kidane
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Grant E Gochman
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - David J Bracken
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yue Ma
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Clark A Rosen
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Silkiss RZ, Koppinger J, Truong T, Gibson D, Tyler C. Cannabidiol as an Adjunct to Botulinum Toxin in Blepharospasm - A Randomized Pilot Study. Transl Vis Sci Technol 2023; 12:17. [PMID: 37606606 PMCID: PMC10461691 DOI: 10.1167/tvst.12.8.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the safety and efficacy of low dose cannabidiol (CBD; Epidiolex) as adjunctive therapy for idiopathic adult-onset blepharospasm (BPS), as well as develop a novel objective assessment methodology to gauge response. Methods Prospective, randomized, double-masked, placebo-controlled crossover design of 6 months duration of 12 patients with BPS undergoing routine maximal botulinum toxin (BTX) therapy and experiencing breakthrough symptoms. Participants received their standard BTX every 3 months and were randomized to group A = CBD daily in cycle 1, followed by placebo in cycle 2 or group B = placebo followed by CBD. Videos recorded at days 0, 45, and 90 of each cycle were analyzed to quantify eyelid kinematics. The Jankovic Rating Scale (JRS) was used to provide a clinical rating. Results All 12 patients completed the study without adverse events. CBD decreased median eyelid closure amplitude by 19.1% (-1.66 mm, confidence interval [CI] = -3.19 to -0.14 mm, P = 0.03), decreased median eyelid closure duration by 15.8% (-18.35 ms, CI = -29.37 to -7.32 ms, P = 0.001), and increased the maximum eyelid closure velocity by 34.8% (-13.26 mm/ms, CI = -20.93 to -5.58 mm/ms, P = 0.001). The JRS showed a 0.5 reduction in severity and frequency, which was not statistically significant. Conclusions Low dose CBD was safely tolerated and improved several BPS kinematic parameters. The clinical scale suggested a direction of effect but may have been underpowered. Further studies are needed to better quantify the clinical relevance. Translational Relevance This work describes a novel assessment methodology and therapeutic approach to bBPS.
Collapse
Affiliation(s)
| | | | - Timothy Truong
- The Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA
| | - David Gibson
- University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Manzo N, Ginatempo F, Belvisi D, Arcara G, Parrotta I, Leodori G, Deriu F, Celletti C, Camerota F, Conte A. Investigating the Effects of a Focal Muscle Vibration Protocol on Sensorimotor Integration in Healthy Subjects. Brain Sci 2023; 13:brainsci13040664. [PMID: 37190629 DOI: 10.3390/brainsci13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Background: The ability to perceive two tactile stimuli as asynchronous can be measured using the somatosensory temporal discrimination threshold (STDT). In healthy humans, the execution of a voluntary movement determines an increase in STDT values, while the integration of STDT and movement execution is abnormal in patients with basal ganglia disorders. Sensorimotor integration can be modulated using focal muscle vibration (fMV), a neurophysiological approach that selectively activates proprioceptive afferents from the vibrated muscle. Method: In this study, we investigated whether fMV was able to modulate STDT or STDT-movement integration in healthy subjects by measuring them before, during and after fMV applied over the first dorsalis interosseous, abductor pollicis brevis and flexor radialis carpi muscles. Results: The results showed that fMV modulated STDT-movement integration only when applied over the first dorsalis interosseous, namely, the muscle performing the motor task involved in STDT-movement integration. These changes occurred during and up to 10 min after fMV. Differently, fMV did not influence STDT at rest. We suggest that that fMV interferes with the STDT-movement task processing, possibly disrupting the physiological processing of sensory information. Conclusions: This study showed that FMV is able to modulate STDT-movement integration when applied over the muscle involved in the motor task. This result provides further information on the mechanisms underlying fMV, and has potential future implications in basal ganglia disorders characterized by altered sensorimotor integration.
Collapse
Affiliation(s)
- Nicoletta Manzo
- IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy
| | - Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43c, 07100 Sassari, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy
| | - Ilaria Parrotta
- IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy
- Movement Contral and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43c, 07100 Sassari, Italy
- Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, 07100 Sassari, Italy
| | - Claudia Celletti
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital of Rome, 00185 Rome, Italy
| | - Filippo Camerota
- Physical Medicine and Rehabilitation Division, Umberto I University Hospital of Rome, 00185 Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
7
|
Odorfer TM, Yabe M, Hiew S, Volkmann J, Zeller D. Topological differences and confounders of mental rotation in cervical dystonia and blepharospasm. Sci Rep 2023; 13:6026. [PMID: 37055560 PMCID: PMC10102235 DOI: 10.1038/s41598-023-33262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia.
Collapse
Affiliation(s)
- Thorsten M Odorfer
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany.
| | - Marie Yabe
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Shawn Hiew
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
8
|
Frankford SA, O'Flynn LC, Simonyan K. Sensory processing in the auditory and olfactory domains is normal in laryngeal dystonia. J Neurol 2023; 270:2184-2190. [PMID: 36640203 DOI: 10.1007/s00415-023-11562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Abnormal sensory discriminatory processing has been implicated as an endophenotypic marker of isolated dystonia. However, the extent of alterations across the different sensory domains and their commonality in different forms of dystonia are unclear. Based on the previous findings of abnormal temporal but not spatial discrimination in patients with laryngeal dystonia, we investigated sensory processing in the auditory and olfactory domains as potentially additional contributors to the disorder pathophysiology. We tested auditory temporal discrimination and olfactory function, including odor identification, threshold, and discrimination, in 102 laryngeal dystonia patients and 44 healthy controls, using dichotically presented pure tones and the extended Sniffin' Sticks smell test protocol, respectively. Statistical significance was assessed using analysis of variance with non-parametric bootstrapping. Patients had a lower mean auditory temporal discrimination threshold, with abnormal values found in three patients. Hyposmia was found in 64 patients and anosmia in 2 patients. However, there were no statistically significant differences in either auditory temporal discrimination threshold or olfactory identification, threshold, and discrimination between the groups. A significant positive relationship was found between olfactory threshold and disorder severity based on the Burke-Fahn-Marsden dystonia rating scale. Our findings demonstrate that, contrary to altered visual temporal discrimination, auditory temporal discrimination and olfactory function are likely not candidate endophenotypic markers of laryngeal dystonia.
Collapse
Affiliation(s)
- Saul A Frankford
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA
| | - Lena C O'Flynn
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA
- Program in Speech Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA, 02115, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA.
- Program in Speech Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
10
|
Söke F, Ataoğlu NEE, Öztekin MF, Koçer B, Karakoç S, Gülşen Ç, Çomoğlu SS, Bora HA. Impaired trunk control and its relationship with balance, functional mobility, and disease severity in patients with cervical dystonia. Turk J Med Sci 2023; 53:405-412. [PMID: 36945943 PMCID: PMC10388090 DOI: 10.55730/1300-0144.5597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/30/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Impaired trunk control is common in neurological disorders; however, trunk control has not been examined in patients with cervical dystonia (CD). Therefore, the primary aim was to compare trunk control between patients with CD and healthy people. The secondary aim was to investigate the relationship between trunk control and balance, functional mobility, and disease severity in patients with CD. METHODS ]This cross-sectional study included 32 patients with CD and 32 healthy people. Trunk control was compared using the trunk impairment scale (TIS) that consists of three subscales: static sitting balance, dynamic sitting balance, and trunk coordination between two groups. Balance was assessed using Berg Balance Scale, four square step test, and one-leg stance test. The Timed Up and Go Test was measured to determine functional mobility. Toronto Western Spasmodic Torticollis Rating Scale was used to evaluate disease severity.]></AbstractText> <AbstractText Label="RESULTS"><![CDATA[ Patients with CD demonstrated worse performance on the TIS-total with TIS-dynamic sitting subscale and TIS-trunk coordination subscale (p < 0.001, p < 0.001, and p < 0.001), except for TIS-static sitting subscale (p = 0.078) compared to healthy people. TIS-total scores had moderate to strong correlations with balance, functional mobility, and disease severity (range r between 0.786 and 0.536, p < 0.05 for all). There was no correlation between TIS-total scores and disease severity (p = 0.102). DISCUSSION Patients with CD had impaired trunk control, especially in dynamic sitting balance and trunk coordination. Impaired trunk control was also associated with balance and functional mobility but not disease severity. These findings suggest that trunk control deficits should receive attention in the assessment and treatment of patients with CD.
Collapse
Affiliation(s)
- Fatih Söke
- Department of Physiotherapy and Rehabilitation, Gülhane Faculty of Physiotherapy and Rehabilitation, University of Health Sciences, Ankara, Turkey
| | | | - Mehmet Fevzi Öztekin
- Department of Neurology, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bilge Koçer
- Department of Neurology, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Selda Karakoç
- Department of Physiotherapy and Rehabilitation, Gülhane Institute of Health Science, University of Health Sciences, Ankara, Turkey
| | - Çağrı Gülşen
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Selim Selçuk Çomoğlu
- Department of Neurology, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Hatice Ayşe Bora
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Interoceptive accuracy and bias in somatic symptom disorder, illness anxiety disorder, and functional syndromes: A systematic review and meta-analysis. PLoS One 2022; 17:e0271717. [PMID: 35980959 PMCID: PMC9387777 DOI: 10.1371/journal.pone.0271717] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Somatic symptom disorder, illness anxiety disorder, and functional syndromes are characterized by burdensome preoccupation with somatic symptoms. Etiological models propose either increased interoceptive accuracy through hypervigilance to the body, or decreased and biased interoception through top-down predictions about sensory events. This systematic review and meta-analysis summarizes findings of 68 studies examining interoceptive accuracy and 8 studies examining response biases in clinical or non-clinical groups. Analyses yielded a medium population effect size for decreased interoceptive accuracy in functional syndromes, but no observable effect in somatic symptom disorder and illness anxiety disorder. The overall effect size was highly heterogeneous. Regarding response bias, there was a small significant effect in somatic symptom disorder and illness anxiety disorder. Our findings strengthen the notion of top-down factors that result in biased rather than accurate perception of body signals in somatic symptom disorder and illness anxiety disorder.
Collapse
|
12
|
Park S, Jeong H, Chung YA, Kang I, Kim S, Song IU, Huh R. Changes of regional cerebral blood flow after deep brain stimulation in cervical dystonia. EJNMMI Res 2022; 12:47. [PMID: 35943616 PMCID: PMC9363547 DOI: 10.1186/s13550-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Cervical dystonia is considered as a network disorder affecting various brain regions in recent days. Presumably, deep brain stimulation (DBS) of the internal segment of globus pallidus (GPi) may exert therapeutic effects for cervical dystonia through modulation of the aberrant brain networks. In the present study, we investigated postoperative regional cerebral blood flow (rCBF) changes after GPi DBS using single-photon emission computed tomography (SPECT) to identify significant activity changes in several relevant brain areas of cervical dystonia patients. Methods A total of 9 patients with idiopathic cervical dystonia were recruited, and SPECT scans were conducted at baseline and 3 months after the bilateral GPi DBS. Voxel-wise changes of rCBF were analyzed using Statistical Parametric Mapping. Symptom severity of dystonia was measured using Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) at the baseline, and 1 week, and 3 months after GPi DBS. Results At the 3-month follow-up after DBS, rCBF was increased in the left pons and right postcentral gyrus and decreased in the left middle frontal gyrus, left cerebellum, right putamen and pallidum, and left thalamus (p < 0.001). Severity of cervical dystonia assessed by TWSTRS was significantly decreased at 1-week and 3-month follow-up (p = 0.004). Conclusions Clinical improvement of cervical dystonia after GPi DBS may be accompanied by rCBF changes in several brain areas of the cortico-basal ganglia-cerebellar network which are important for sensorimotor integration.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-An Chung
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Seunghee Kim
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Ryoong Huh
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
13
|
Bologna M, Valls-Solè J, Kamble N, Pal PK, Conte A, Guerra A, Belvisi D, Berardelli A. Dystonia, chorea, hemiballismus and other dyskinesias. Clin Neurophysiol 2022; 140:110-125. [PMID: 35785630 DOI: 10.1016/j.clinph.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Hyperkinesias are heterogeneous involuntary movements that significantly differ in terms of clinical and semeiological manifestations, including rhythm, regularity, speed, duration, and other factors that determine their appearance or suppression. Hyperkinesias are due to complex, variable, and largely undefined pathophysiological mechanisms that may involve different brain areas. In this chapter, we specifically focus on dystonia, chorea and hemiballismus, and other dyskinesias, specifically, levodopa-induced, tardive, and cranial dyskinesia. We address the role of neurophysiological studies aimed at explaining the pathophysiology of these conditions. We mainly refer to human studies using surface and invasive in-depth recordings, as well as spinal, brainstem, and transcortical reflexology and non-invasive brain stimulation techniques. We discuss the extent to which the neurophysiological abnormalities observed in hyperkinesias may be explained by pathophysiological models. We highlight the most relevant issues that deserve future research efforts. The potential role of neurophysiological assessment in the clinical context of hyperkinesia is also discussed.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Josep Valls-Solè
- Institut d'Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
14
|
Henrich MC, Frahm KS, Andersen OK. Tempo-spatial integration of nociceptive stimuli assessed via the nociceptive withdrawal reflex in healthy humans. J Neurophysiol 2021; 126:373-382. [PMID: 34191609 DOI: 10.1152/jn.00155.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spatial information of nociceptive stimuli applied in the skin of healthy humans is integrated in the spinal cord to determine the appropriate withdrawal reflex response. Double-simultaneous stimulus applied in different skin sites are integrated, eliciting a larger reflex response. The temporal characteristics of the stimuli also modulate the reflex, e.g., by temporal summation. The primary aim of this study was to investigate how the combined tempo-spatial aspects of two stimuli are integrated in the nociceptive system. This was investigated by delivering single- and double-simultaneous stimulation and sequential stimulation with different interstimulus intervals (ISIs ranging 30-500 ms) to the sole of the foot of 15 healthy subjects. The primary outcome measure was the size of the nociceptive withdrawal reflex (NWR) recorded from the tibialis anterior (TA) and biceps femoris (BF) muscles. Pain intensity was measured using a numerical rating scale (NRS) scale. Results showed spatial summation in both TA and BF when delivering simultaneous stimulation. Simultaneous stimulation provoked larger reflexes than sequential stimulation in TA, but not in BF. Larger ISIs elicited significantly larger reflexes in TA, whereas the opposite pattern occurred in BF. This differential modulation between proximal and distal muscles suggests the presence of spinal circuits eliciting a functional reflex response based on the specific tempo-spatial characteristics of a noxious stimulus. No modulation was observed in pain intensity ratings across ISIs. Absence of modulation in the pain intensity ratings argues for an integrative mechanism located within the spinal cord governed by a need for efficient withdrawal from a potentially harmful stimulus.NEW & NOTEWORTHY Tempo-spatial integration of electrical noxious stimuli was studied using the nociceptive withdrawal reflex and a perceived intensity. Tibialis anterior and biceps femoris muscles were differentially modulated by the temporal characteristics of the stimuli and stimulated sites. These findings suggest that spinal neurons are playing an important role in the tempo-spatial integration of nociceptive information, leading to a reflex response that is distributed across multiple spinal cord segments and governed by an efficient defensive withdrawal strategy.
Collapse
Affiliation(s)
- Mauricio Carlos Henrich
- Integrative Neuroscience, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ken Steffen Frahm
- Integrative Neuroscience, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kæseler Andersen
- Integrative Neuroscience, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Paparella G, Fasano A, Hallett M, Berardelli A, Bologna M. Emerging concepts on bradykinesia in non-parkinsonian conditions. Eur J Neurol 2021; 28:2403-2422. [PMID: 33793037 DOI: 10.1111/ene.14851] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease. However, clinical and experimental studies indicate that bradykinesia may also be observed in various neurological diseases not primarily characterized by parkinsonism. These conditions include hyperkinetic movement disorders, such as dystonia, chorea, and essential tremor. Bradykinesia may also be observed in patients with neurological conditions that are not seen as "movement disorders," including those characterized by the involvement of the cerebellum and corticospinal system, dementia, multiple sclerosis, and psychiatric disorders. METHODS We reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings. RESULTS Bradykinesia is a common motor abnormality in non-parkinsonian conditions. From a pathophysiological standpoint, bradykinesia in neurological conditions not primarily characterized by parkinsonism may be explained by brain network dysfunction. CONCLUSION In addition to the pathophysiological implications, the present paper highlights important terminological issues and the need for a new, more accurate, and more widely used definition of bradykinesia in the context of movement disorders and other neurological conditions.
Collapse
Affiliation(s)
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Rafee S, O'Riordan S, Reilly R, Hutchinson M. We Must Talk about Sex and Focal Dystonia. Mov Disord 2021; 36:604-608. [PMID: 33503303 DOI: 10.1002/mds.28454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023] Open
Abstract
In a recent workshop on "Defining research priorities in dystonia,", there was absolutely no reference to sex as a factor in disease pathogenesis. In this viewpoint paper, we argue that the most distinctive aspects of adult onset isolated focal dystonia are the marked sex-related differences demonstrated by epidemiological, clinical, and laboratory studies in patients with adult onset dystonia, particularly in cervical dystonia, the most common presentation. We propose that the future focus of research should be on neurobiological mechanisms underlying the profound sexual dimorphism in this disorder. Targeting research into gamma aminobutyric acid (GABA)ergic function, which also shows similar sexual dimorphism, would be most productive in elucidating the pathogenesis of adult onset dystonia. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shameer Rafee
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Richard Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Latorre A, Cocco A, Bhatia KP, Erro R, Antelmi E, Conte A, Rothwell JC, Rocchi L. Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Mov Disord 2020; 36:1015-1021. [PMID: 33332649 DOI: 10.1002/mds.28427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dystonia may have different neuroanatomical substrates and pathophysiology. This is supported by studies on the motor system showing, for instance, that plasticity is abnormal in idiopathic dystonia, but not in dystonia secondary to basal ganglia lesions. OBJECTIVE The aim of this study was to test whether somatosensory inhibition and plasticity abnormalities reported in patients with idiopathic dystonia also occur in patients with dystonia caused by basal ganglia damage. METHODS Ten patients with acquired dystonia as a result of basal ganglia lesions and 12 healthy control subjects were recruited. They underwent electrophysiological testing at baseline and after a single 45-minute session of high-frequency repetitive somatosensory stimulation. Electrophysiological testing consisted of somatosensory temporal discrimination, somatosensory-evoked potentials (including measurement of early and late high-frequency oscillations and the spatial inhibition ratio of N20/25 and P14 components), the recovery cycle of paired-pulse somatosensory-evoked potentials, and primary motor cortex short-interval intracortical inhibition. RESULTS Unlike previous reports of patients with idiopathic dystonia, patients with acquired dystonia did not differ from healthy control subjects in any of the electrophysiological measures either before or after high-frequency repetitive somatosensory stimulation, except for short-interval intracortical inhibition, which was reduced at baseline in patients compared to control subjects. CONCLUSIONS The data show that reduced somatosensory inhibition and enhanced cortical plasticity are not required for the clinical expression of dystonia, and that the abnormalities reported in idiopathic dystonia are not necessarily linked to basal ganglia damage. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Neuroscience, Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Yoshida N, Suzuki T, Ogahara K, Higashi T, Sugawara K. Somatosensory temporal discrimination threshold changes during motor learning. Somatosens Mot Res 2020; 37:313-319. [PMID: 33064045 DOI: 10.1080/08990220.2020.1830755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Mechanisms underlying the somatosensory temporal discrimination threshold and its relationship with motor control have been reported; however, little is known regarding the change in temporal processing of tactile information during motor learning. We investigated the somatosensory temporal discrimination threshold changes during motor learning in a feedback-control task. MATERIALS AND METHODS We included 15 healthy individuals. The somatosensory temporal discrimination threshold was measured on the index finger. A 10-session coin rotation task was performed, with 2 min' training per session. The coin rotation scores were determined through tests (continuous coin rotation at 180° at maximum speed for 10 s). The coin rotation test score and the somatosensory temporal discrimination threshold were determined at baseline and after 5 and 10 sets of training, as follows: pre-test; training5set (1 set × 5); post-test5block; training5set (1 set × 5); and post-test10block. The coin rotation score and the somatosensory temporal discrimination threshold were compared between the tests. The latter was also compared between the right (the within-subject control) and left fingers. RESULTS The coin rotation score showed significant differences among all tests. In the somatosensory temporal discrimination threshold, there was a significant difference between the pre-test and post-test5block values, pre-test and post-test10block values of the left side and between the right and left sides in the post-test5block and the post-test10block values. CONCLUSIONS The somatosensory temporal discrimination threshold decreased along with task-performance progress following motor learning during a feedback-control task.
Collapse
Affiliation(s)
- Naoshin Yoshida
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Tomotaka Suzuki
- Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| | - Kakuya Ogahara
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenichi Sugawara
- Faculty of Health and Social Work School of Rehabilitation, Kanagawa University of Human Services, Yokosuka, Japan
| |
Collapse
|
19
|
Suppa A, Asci F, Saggio G, Marsili L, Casali D, Zarezadeh Z, Ruoppolo G, Berardelli A, Costantini G. Voice analysis in adductor spasmodic dysphonia: Objective diagnosis and response to botulinum toxin. Parkinsonism Relat Disord 2020; 73:23-30. [DOI: 10.1016/j.parkreldis.2020.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|
20
|
Does the network model fits neurophysiological abnormalities in blepharospasm? Neurol Sci 2020; 41:2067-2079. [DOI: 10.1007/s10072-020-04347-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|
21
|
Khosravani S, Buchanan J, Johnson MD, Konczak J. Effect of Neck Botulinum Neurotoxin Injection on Proprioception and Somatosensory-Motor Cortical Processing in Cervical Dystonia. Neurorehabil Neural Repair 2020; 34:309-320. [DOI: 10.1177/1545968320905799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Cervical dystonia (CD) is a neurological movement disorder characterized by involuntary contractions of the cervical musculature and is known to be associated with proprioceptive dysfunction in dystonic/nondystonic limbs. Objectives. We examined how neck botulinum neurotoxin (BoNT) injection affects wrist proprioception and the corresponding sensorimotor cortical activity in CD. Method. Wrist position sense acuity of the dominant (right) hand was evaluated in 15 CD and 15 control participants. Acuity measures were a psychophysical position sense discrimination threshold (DT; based on passive joint displacement) and joint position matching error (based on active movement). Cortical activity during the motor preparation period of the active joint position matching was examined using electroencephalography. Results. In their symptomatic state, patients demonstrated a significantly higher wrist proprioceptive DT, indicating an abnormal passive wrist position sense. Yet BoNT injections had no significant effect on this threshold. During active joint position matching, errors were significantly larger in patients, but this difference vanished after the administration of BoNT. Motor preparation of active wrist position matching was associated with a significantly higher rise of β-band (13-30 Hz) power over contralateral somatosensory-motor cortical areas in patients. This excessive cortical activity significantly declined post-BoNT. Conclusion. Wrist proprioceptive perception during passive/active movements is abnormal in CD. An excessive rise of premotor/motor cortical β-oscillations during motor planning is associated with this proprioceptive dysfunction. Neck BoNT injections normalized the cortical processing of proprioceptive information from nonsymptomatic limbs, indicating that local injections may affect the central mechanisms of proprioceptive function in CD.
Collapse
Affiliation(s)
- Sanaz Khosravani
- School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Buchanan
- School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jürgen Konczak
- School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Conte A, Defazio G, Mascia M, Belvisi D, Pantano P, Berardelli A. Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence. F1000Res 2020; 9. [PMID: 32047617 PMCID: PMC6993830 DOI: 10.12688/f1000research.21029.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Marcello Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
23
|
Avanzino L, Cherif A, Crisafulli O, Carbone F, Zenzeri J, Morasso P, Abbruzzese G, Pelosin E, Konczak J. Tactile and proprioceptive dysfunction differentiates cervical dystonia with and without tremor. Neurology 2020; 94:e639-e650. [DOI: 10.1212/wnl.0000000000008916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
ObjectiveTo determine whether different phenotypes of cervical dystonia (CD) express different types and levels of somatosensory impairment.MethodsWe assessed somatosensory function in patients with CD with and without tremor (n = 12 each) and in healthy age-matched controls (n = 22) by measuring tactile temporal discrimination thresholds of the nondystonic forearm and proprioceptive acuity in both the dystonic (head/neck) and nondystonic body segments (forearm/hand) using a joint position‐matching task. The head or the wrist was passively displaced along different axes to distinct joint positions by the experimenter or through a robotic exoskeleton. Participants actively reproduced the experienced joint position, and the absolute joint position‐matching error between the target and the reproduced positions served as a marker of proprioceptive acuity.ResultsTactile temporal discrimination thresholds were significantly elevated in both CD subgroups compared to controls. Proprioceptive acuity of both the dystonic and nondystonic body segments was elevated in patients with CD and tremor with respect to both healthy controls and patients with CD without tremor. That is, tactile abnormalities were a shared dysfunction of both CD phenotypes, while proprioceptive dysfunction was observed in patients with CD with tremor.ConclusionsOur findings suggest that the pathophysiology in CD can be characterized by 2 abnormal neural processes: a dysfunctional somatosensory gating mechanism involving the basal ganglia that triggers involuntary muscle spasms and abnormal processing of proprioceptive information within a defective corticocerebellar loop, likely affecting the feedback and feedforward control of head positioning. This dysfunction is expressed mainly in CD with tremor.
Collapse
|
24
|
Abstract
In a range of neurological conditions, including movement disorders, sex-related differences are emerging not only in brain anatomy and function, but also in pathogenesis, clinical features and response to treatment. In Parkinson disease (PD), for example, oestrogens can influence the severity of motor symptoms, whereas elevation of androgens can exacerbate tic disorders. Nevertheless, the real impact of sex differences in movement disorders remains under-recognized. In this article, we provide an up-to-date review of sex-related differences in PD and the most common hyperkinetic movement disorders, namely, essential tremor, dystonia, Huntington disease and other chorea syndromes, and Tourette syndrome and other chronic tic disorders. We highlight the most relevant clinical aspects of movement disorders that differ between men and women. Increased recognition of these differences and their impact on patient care could aid the development of tailored approaches to the management of movement disorders and enable the optimization of preclinical research and clinical studies.
Collapse
|
25
|
Gövert F, Becktepe J, Balint B, Rocchi L, Brugger F, Garrido A, Walter T, Hannah R, Rothwell J, Elble R, Deuschl G, Bhatia K. Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb tremor. Mov Disord 2019; 35:306-315. [PMID: 31724777 DOI: 10.1002/mds.27880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Unilateral or very asymmetric upper limb tremors with a jerky appearance are poorly investigated. Their clinical classification is an unsolved problem because their classification as essential tremor versus dystonic tremor is uncertain. To avoid misclassification as essential tremor or premature classification as dystonic tremor, the term indeterminate tremor was suggested. OBJECTIVES The aim of this study was to characterize this tremor subgroup electrophysiologically and evaluate whether diagnostically meaningful electrophysiological differences exist compared to patients with essential tremor and dystonic tremor. METHODS We enrolled 29 healthy subjects and 64 patients with tremor: 26 with dystonic tremor, 23 with essential tremor, and 15 patients with upper limb tremor resembling essential tremor but was unusually asymmetric and jerky (indeterminate tremor). We investigated the somatosensory temporal discrimination threshold, the short-interval intracortical inhibition, and the cortical plasticity by paired associative stimulation. RESULTS Somatosensory temporal discrimination threshold was significantly increased in patients with dystonic tremor and indeterminate tremor, but it was normal in the essential tremor patients and healthy controls. Significant differences in short-interval intracortical inhibition and paired associative stimulation were not found among the three patient groups and controls. CONCLUSION These results indicate that indeterminate tremor, as defined in this study, shares electrophysiological similarities with dystonic tremor rather than essential tremor. Therefore, we propose that indeterminate tremor should be considered as a separate clinical entity from essential tremor and that it might be dystonic in nature. Somatosensory temporal discrimination appears to be a useful tool in tremor classification. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Felix Gövert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.,Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jos Becktepe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Florian Brugger
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alicia Garrido
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Movement Disorders Unit, Neurology Service, Hospital Clínic, Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Tim Walter
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Ricci Hannah
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Junker J, Paulus T, Brandt V, Weissbach A, Tunc S, Loens S, Reilly RB, Hutchinson M, Baumer T. Temporal discrimination threshold and blink reflex recovery cycle in cervical dystonia - two sides of the same coin? Parkinsonism Relat Disord 2019; 68:4-7. [PMID: 31621616 DOI: 10.1016/j.parkreldis.2019.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/25/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Elevated temporal discrimination thresholds (TDT) have been found in cervical dystonia (CD) and unaffected first-degree relatives, indicating autosomal dominant inheritance with reduced penetrance, serving as an endophenotype and being indicative of abnormal inhibitory processing within the brainstem-basal ganglia circuits. The blink reflex R2 recovery cycle (BRRC) is also a measure of excitability of brainstem-basal ganglia circuits, and inconsistent findings are reported in CD. The aim was to investigate TDT and BRRC in CD and evaluate its reliability as an endophenotype. METHODS 29 patients with isolated cervical dystonia (mean age: 56.1 ± 14.3, female n = 18) and 29 age- and gender-matched healthy controls (mean age: 56.0 ± 14.2, female n = 18) were evaluated using a TDT-paradigm, performed as previously described by testing visual, tactile and visual-tactile temporal discrimination thresholds, and the BRRC, investigated with electrical and air puff stimulation. RESULTS Mean visual-tactile (p = 0.001) and visual TDTs (p = 0.015) differed between CD and controls; tactile TDTs revealed no group differences (p = 0.232). No between group differences were found for BRRC using either electrical or air puff stimulation (p = 0.117). There was no correlation between the elevation of TDTs and the degree of BRRC-inhibition in CD. CONCLUSION Our findings support the hypothesis that the TDT is an endophenotype in CD. BRRC testing did not demonstrate disinhibition of brainstem-basal ganglia circuits in CD. In contrast to TDT, the BRRC seems not to represent an endophenotype in cervical dystonia.
Collapse
Affiliation(s)
- Johanna Junker
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Theresa Paulus
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Valerie Brandt
- Department of Psychology, Centre for Innovation in Mental Health, University of Southampton, UK
| | - Anne Weissbach
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Sinem Tunc
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Sebastian Loens
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Richard B Reilly
- Department of Biomedical Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | | | - Tobias Baumer
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
27
|
Conte A, Rocchi L, Latorre A, Belvisi D, Rothwell JC, Berardelli A. Ten‐Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Mov Disord 2019; 34:1616-1628. [DOI: 10.1002/mds.27859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Anna Latorre
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | | | - John C. Rothwell
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Alfredo Berardelli
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| |
Collapse
|
28
|
Mulroy E, Balint B, Latorre A, Schreglmann S, Menozzi E, Bhatia KP. Syringomyelia‐Associated Dystonia: Case Series, Literature Review, and Novel Insights. Mov Disord Clin Pract 2019; 6:387-392. [DOI: 10.1002/mdc3.12772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology London United Kingdom
| | - Bettina Balint
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology London United Kingdom
- Department of NeurologyUniversity Hospital Heidelberg Germany
| | - Anna Latorre
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology London United Kingdom
| | - Sebastian Schreglmann
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology London United Kingdom
| | - Elisa Menozzi
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology London United Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology London United Kingdom
| |
Collapse
|
29
|
Froeschke LLO. The Influence of Linguistic Demand on Symptom Expression in Adductor Spasmodic Dysphonia. J Voice 2019; 34:807.e11-807.e21. [PMID: 31047737 DOI: 10.1016/j.jvoice.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Adductor Spasmodic Dysphonia (ADSD), a form of focal dystonia, has been defined as a neurogenic, task-specific disorder characterized by abrupt spasms of intrinsic laryngeal muscles that result in phonatory breaks. Voice breaks are typically isolated to propositional speech, and reported to increase in severity as speaking demand or complexity increases. Research to date has focused on variations in phonologic contexts and their influence on voice breaks. The influences of variables at lexical and syntactic levels of analysis have been less well-researched and yet may provide insight into observed variability of symptom manifestation in this rare voice disorder. OBJECTIVES This study investigated frequency of voice breaks over 20 standard sentences in 38 individuals with ADSD according to linguistic complexity measures including lexical density and a four-level lexical frequency and type paradigm. Two research questions about linguistic influences and ADSD symptom manifestation were posed: (1) does the frequency of voice breaks vary according to the lexical density of a string? and (2) does the frequency of voice breaks vary according to a measure of lexical frequency/type? RESULTS Results revealed a nonsignificant relationship between string length and voice break frequency, whereas a significant relationship was found between lexical density and voice break frequency (P = 0.029, r = 0.488). Lexical analysis results revealed a significant relationship between lexical frequency and voice breaks, with words within technical/academic classes relating to the highest rates of voice break across 38 subjects with ADSD. CONCLUSIONS Results from this secondary analysis provide support for the hypothesis that variation in linguistic demand may modulate symptom expression in SD. Specifically, lexical density and lexical frequency modulated the frequency of symptom expression in classic forms of SD in this purposive sample.
Collapse
Affiliation(s)
- Laura L O Froeschke
- Department of Communication Sciences and Disorders, Elmhurst College, Elmhurst, Illinois.
| |
Collapse
|
30
|
Marciniec M, Szczepańska-Szerej A, Kulczyński M, Sapko K, Popek-Marciniec S, Rejdak K. Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known? Rev Neurosci 2019; 30:771-779. [DOI: 10.1515/revneuro-2018-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Pain is the most common and disabling non-motor symptom in cervical dystonia (CD). Up to 88.9% of patients report pain at some point in the course of the disease. It is still a matter of debate whether CD-related pain originates only from prolonged muscle contraction. Recent data suggest that the alterations of transmission and processing of nociceptive stimuli play a crucial role in pain development. Botulinum toxin (BT) is the first-line therapy for CD. Despite fully elucidated muscle relaxant action, the antinociceptive effect of BT remains unclear and probably exceeds a simple decompression of the nerve fibers due to the reduction in muscle tone. The proposed mechanisms of the antinociceptive action of BT include inhibition of pain mediator release, inhibition of membrane sodium channels, retrograde axonal transport and impact on the other pain pathways. This article summarizes the current knowledge about the antinociceptive properties of BT and the clinical analgesic efficacy in the treatment of CD patients.
Collapse
Affiliation(s)
- Michał Marciniec
- Chair and Department of Neurology , Medical University of Lublin , Independent Public Clinical Hospital , No. 4, ul. Jaczewskiego 8 , 20-954 Lublin , Poland
| | | | - Marcin Kulczyński
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Klaudia Sapko
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| | - Sylwia Popek-Marciniec
- Department of Cancer Genetics with Cytogenetics Laboratory , Medical University of Lublin , Lublin , Poland
| | - Konrad Rejdak
- Chair and Department of Neurology , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
31
|
Salouchina NI, Nodel MR, Tolmacheva VA. [Non-motor disorders in patients with muscular dystonia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:98-105. [PMID: 30335080 DOI: 10.17116/jnevro201811809198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-motor disturbances represented by sensory, affective, obsessive-compulsive disorders, cognitive dysfunction, sleep disturbances are often found in patients with dystonia and have a negative impact on their quality of life. The prevalence of sensory and affective disorders and sleep disturbances is above 50% in patients with cervical dystonia and is 25% in patients with blepharospasm, writing spasm; cognitive dysfunction is found in more than 25% of patients with focal dystonia. The relationship of non-motor, in particular psychiatric disorders, with the impairment of social and everyday life and worsening of quality of life in whole was shown. Common pathophysiological mechanisms of non-motor disorders as well as approaches to treatment of these disorders are discussed. The authors present the results on the positive effect of botulinum toxin therapy that reduces cognitive dysfunction, sensory disorders and depressive syndrome. Non-medication treatment of non-motor disorders in patients with dystonia is considered.
Collapse
Affiliation(s)
| | - M R Nodel
- Sechenov First Moscow State Medical University, Moscow, Russia; Pirogov Russian National Research Medical University ,Research and Clinical Center of Gerontology, Moscow, Russia
| | - V A Tolmacheva
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
32
|
|
33
|
Conte A, Belvisi D, De Bartolo MI, Manzo N, Cortese FN, Tartaglia M, Ferrazzano G, Fabbrini G, Berardelli A. Abnormal sensory gating in patients with different types of focal dystonias. Mov Disord 2018; 33:1910-1917. [DOI: 10.1002/mds.27530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| | | | | | - Nicoletta Manzo
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
| | | | - Matteo Tartaglia
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
| | | | - Giovanni Fabbrini
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| |
Collapse
|
34
|
Erro R, Rocchi L, Antelmi E, Liguori R, Tinazzi M, Berardelli A, Rothwell J, Bhatia KP. High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Mov Disord 2018; 33:1902-1909. [PMID: 30376603 DOI: 10.1002/mds.27470] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Apart from motor symptoms, multiple deficits of sensory processing have been demonstrated in dystonia. The most consistent behavioural measure of this is abnormal somatosensory temporal discrimination threshold, which has recently been associated with physiological measures of reduced inhibition within the primary somatosensory area. High-frequency repetitive sensory stimulation is a patterned electric stimulation applied to the skin through surface electrodes that has been recently reported to shorten somatosensory temporal discrimination in healthy subjects and to increase the resting level of excitability in several different types of inhibitory interaction in the somatosensory and even motor areas. OBJECTIVES We tested whether high-frequency repetitive sensory stimulation could augment cortical inhibition and, in turn, ameliorate somatosensory temporal discrimination in cervical dystonia. METHODS Somatosensory temporal discrimination and a number of electrophysiological measures of sensorimotor inhibition and facilitation were measured before and after 45 minutes of high-frequency repetitive sensory stimulation. RESULTS As compared with a group of healthy volunteers of similar age, in whom high-frequency repetitive sensory stimulation increased inhibition and shortened somatosensory temporal discrimination, patients with cervical dystonia showed a consistent, paradoxical response: they had reduced suppression of paired-pulse somatosensory evoked potentials, as well as reduced high-frequency oscillations, lateral inhibition, and short interval intracortical inhibition. Somatosensory temporal discrimination deteriorated after the stimulation protocol, and correlated with reduced measures of inhibition within the primary somatosensory cortex. CONCLUSIONS We suggest that patients with dystonia have abnormal homeostatic inhibitory plasticity within the sensorimotor cortex and that this is responsible for their paradoxical response to high-frequency repetitive sensory stimulation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Center for Neurodegenerative Diseases, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana,", University of Salerno, Baronissi (Salerno), Italy
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy
| | - Elena Antelmi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Institute, Via Atinense, Pozzilli, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
35
|
Somatosensory temporal discrimination in Parkinson’s disease, dystonia and essential tremor: Pathophysiological and clinical implications. Clin Neurophysiol 2018; 129:1849-1853. [DOI: 10.1016/j.clinph.2018.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
|
36
|
Fiorio M, Emadi Andani M, Recchia S, Tinazzi M. The somatosensory temporal discrimination threshold changes after a placebo procedure. Exp Brain Res 2018; 236:2983-2990. [DOI: 10.1007/s00221-018-5357-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
|
37
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
38
|
Avanzino L, Fiorio M, Conte A. Actual and Illusory Perception in Parkinson's Disease and Dystonia: A Narrative Review. Front Neurol 2018; 9:584. [PMID: 30079051 PMCID: PMC6062595 DOI: 10.3389/fneur.2018.00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sensory information is continuously processed so as to allow behavior to be adjusted according to environmental changes. Before sensory information reaches the cortex, a number of subcortical neural structures select the relevant information to send to be consciously processed. In recent decades, several studies have shown that the pathophysiological mechanisms underlying movement disorders such as Parkinson's disease (PD) and dystonia involve sensory processing abnormalities related to proprioceptive and tactile information. These abnormalities emerge from psychophysical testing, mainly temporal discrimination, as well as from experimental paradigms based on bodily illusions. Although the link between proprioception and movement may be unequivocal, how temporal tactile information abnormalities and bodily illusions relate to motor disturbances in PD and dystonia is still a matter of debate. This review considers the role of altered sensory processing in the pathophysiology of movement disorders, focusing on how sensory alteration patterns differ between PD and dystonia. We also discuss the evidence available and the potential for developing new therapeutic strategies based on the manipulation of multi-sensory information and bodily illusions in patients with these movement disorders.
Collapse
Affiliation(s)
- Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
39
|
Gating of Sensory Input at Subcortical and Cortical Levels during Grasping in Humans. J Neurosci 2018; 38:7237-7247. [PMID: 29976624 DOI: 10.1523/jneurosci.0545-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 01/27/2023] Open
Abstract
Afferent input from the periphery to the cortex contributes to the control of grasping. How sensory input is gated along the ascending sensory pathway and its functional role during gross and fine grasping in humans remain largely unknown. To address this question, we assessed somatosensory-evoked potential components reflecting activation at subcortical and cortical levels and psychophysical tests at rest, during index finger abduction, precision, and power grip. We found that sensory gating at subcortical level and in the primary somatosensory cortex (S1), as well as intracortical inhibition in the S1, increased during power grip compared with the other tasks. To probe the functional relevance of gating in the S1, we examined somatosensory temporal discrimination threshold by measuring the shortest time interval to perceive a pair of electrical stimuli. Somatosensory temporal discrimination threshold increased during power grip, and higher threshold was associated with increased intracortical inhibition in the S1. These novel findings indicate that humans gate sensory input at subcortical level and in the S1 largely during gross compared with fine grasping. Inhibitory processes in the S1 may increase discrimination threshold to allow better performance during power grip.SIGNIFICANCE STATEMENT Most of our daily life actions involve grasping. Here, we demonstrate that gating of afferent input increases at subcortical level and in the primary somatosensory cortex (S1) during gross compared with fine grasping in intact humans. The precise timing of sensory information is critical for human perception and behavior. Notably, we found that the ability to perceive a pair of electrical stimuli, as measured by the somatosensory temporal discrimination threshold, increased during power grip compared with the other tasks. We propose that reduced afferent input to the S1 during gross grasping behaviors diminishes temporal discrimination of sensory processes related, at least in part, to increased inhibitory processes within the S1.
Collapse
|
40
|
Morgante F, Matinella A, Andrenelli E, Ricciardi L, Allegra C, Terranova C, Girlanda P, Tinazzi M. Pain processing in functional and idiopathic dystonia: An exploratory study. Mov Disord 2018; 33:1340-1348. [PMID: 29737565 DOI: 10.1002/mds.27402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pain is often experienced by patients with functional dystonia and idiopathic cervical dystonia and is likely to be determined by different neural mechanisms. OBJECTIVE In this exploratory study, we tested the sensory-discriminative and cognitive-emotional component of pain in patients with functional and idiopathic dystonia. METHODS Ten patients with idiopathic cervical dystonia, 12 patients with functional dystonia, and 16 age- and sex-matched healthy controls underwent psychophysical testing of tactile and pain thresholds and pain tolerance. We delivered electrical pulses of increasing intensity to the index finger of each hand and the halluces of each foot. Pain threshold and pain tolerance were respectively defined as the (1) intensity at which sensation changed from unpainful to faintly painful and (2) intensity at which painful sensation was intolerable. RESULTS No differences were found between the three groups for tactile and pain thresholds assessed in hands and feet. Pain tolerance was significantly increased in all body regions only in functional dystonia. Patients with continuous functional dystonia had higher pain tolerance compared to subjects with paroxysmal functional dystonia and idiopathic cervical dystonia. There was no correlation between pain tolerance and pain scores, depression, anxiety, disease duration, and motor disability in both groups. CONCLUSIONS Patients with functional dystonia have a dissociation between the sensory-discriminative and cognitive-emotional components of pain, as revealed by normal pain thresholds and increased pain tolerance. Abnormal connectivity between the motor and limbic systems might account for abnormal pain processing in functional dystonia. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Francesca Morgante
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Angela Matinella
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Cosimo Allegra
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Lee MS, Lee MJ, Conte A, Berardelli A. Abnormal somatosensory temporal discrimination in Parkinson’s disease: Pathophysiological correlates and role in motor control deficits. Clin Neurophysiol 2018; 129:442-447. [DOI: 10.1016/j.clinph.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
|
42
|
Cortical inhibitory function in cervical dystonia. Clin Neurophysiol 2018; 129:466-472. [DOI: 10.1016/j.clinph.2017.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/18/2017] [Accepted: 11/18/2017] [Indexed: 11/23/2022]
|
43
|
Beck RB, McGovern EM, Butler JS, Birsanu D, Quinlivan B, Beiser I, Narasimham S, O'Riordan S, Hutchinson M, Reilly RB. Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia. J Vis Exp 2018. [PMID: 29443021 DOI: 10.3791/56310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed.
Collapse
Affiliation(s)
- Rebecca B Beck
- School of Engineering, Trinity College Dublin, The University of Dublin;
| | - Eavan M McGovern
- School of Engineering, Trinity College Dublin, The University of Dublin; Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - John S Butler
- School of Mathematical Sciences, Dublin Institute of Technology
| | - Dorina Birsanu
- School of Engineering, Trinity College Dublin, The University of Dublin
| | - Brendan Quinlivan
- School of Engineering, Trinity College Dublin, The University of Dublin
| | - Ines Beiser
- School of Engineering, Trinity College Dublin, The University of Dublin; Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - Shruti Narasimham
- School of Engineering, Trinity College Dublin, The University of Dublin
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital; School of Medicine and Medical Sciences, University College Dublin
| | - Richard B Reilly
- School of Engineering, Trinity College Dublin, The University of Dublin; School of Medicine Trinity College Dublin, The University of Dublin
| |
Collapse
|
44
|
Chen R. Spatial versus temporal inhibition in dystonia. Clin Neurophysiol 2018; 129:458-459. [PMID: 29305207 DOI: 10.1016/j.clinph.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, University Health Network, 7McL409, 399 Bathurst St, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
45
|
Conte A, McGovern EM, Narasimham S, Beck R, Killian O, O'Riordan S, Reilly RB, Hutchinson M. Temporal Discrimination: Mechanisms and Relevance to Adult-Onset Dystonia. Front Neurol 2017; 8:625. [PMID: 29234300 PMCID: PMC5712317 DOI: 10.3389/fneur.2017.00625] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/07/2017] [Indexed: 12/05/2022] Open
Abstract
Temporal discrimination is the ability to determine that two sequential sensory stimuli are separated in time. For any individual, the temporal discrimination threshold (TDT) is the minimum interval at which paired sequential stimuli are perceived as being asynchronous; this can be assessed, with high test–retest and inter-rater reliability, using a simple psychophysical test. Temporal discrimination is disordered in a number of basal ganglia diseases including adult-onset dystonia, of which the two most common phenotypes are cervical dystonia and blepharospasm. The causes of adult-onset focal dystonia are unknown; genetic, epigenetic, and environmental factors are relevant. Abnormal TDTs in adult-onset dystonia are associated with structural and neurophysiological changes considered to reflect defective inhibitory interneuronal processing within a network which includes the superior colliculus, basal ganglia, and primary somatosensory cortex. It is hypothesized that abnormal temporal discrimination is a mediational endophenotype and, when present in unaffected relatives of patients with adult-onset dystonia, indicates non-manifesting gene carriage. Using the mediational endophenotype concept, etiological factors in adult-onset dystonia may be examined including (i) the role of environmental exposures in disease penetrance and expression; (ii) sexual dimorphism in sex ratios at age of onset; (iii) the pathogenesis of non-motor symptoms of adult-onset dystonia; and (iv) subcortical mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Neurology and Psychiatry, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Eavan M McGovern
- Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shruti Narasimham
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Rebecca Beck
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Owen Killian
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Sean O'Riordan
- Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital Dublin, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Killian O, McGovern EM, Beck R, Beiser I, Narasimham S, Quinlivan B, O'Riordan S, Simonyan K, Hutchinson M, Reilly RB. Practice does not make perfect: Temporal discrimination in musicians with and without dystonia. Mov Disord 2017; 32:1791-1792. [PMID: 29076564 DOI: 10.1002/mds.27185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Owen Killian
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Eavan M McGovern
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,Department of Neurology, St Vincent's University Hospital Dublin, Ireland.,School of Medicine & Medical Science, University College Dublin, Ireland
| | - Rebecca Beck
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Ines Beiser
- Department of Neurology, St Vincent's University Hospital Dublin, Ireland.,School of Medicine & Medical Science, University College Dublin, Ireland
| | - Shruti Narasimham
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Brendan Quinlivan
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| | - Sean O'Riordan
- Department of Neurology, St Vincent's University Hospital Dublin, Ireland.,School of Medicine & Medical Science, University College Dublin, Ireland
| | | | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital Dublin, Ireland.,School of Medicine & Medical Science, University College Dublin, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland.,School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.,School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Does the Somatosensory Temporal Discrimination Threshold Change over Time in Focal Dystonia? Neural Plast 2017; 2017:9848070. [PMID: 29062576 PMCID: PMC5618781 DOI: 10.1155/2017/9848070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background The somatosensory temporal discrimination threshold (STDT) is defined as the shortest interval at which an individual recognizes two stimuli as asynchronous. Some evidence suggests that STDT depends on cortical inhibitory interneurons in the basal ganglia and in primary somatosensory cortex. Several studies have reported that the STDT in patients with dystonia is abnormal. No longitudinal studies have yet investigated whether STDT values in different forms of focal dystonia change during the course of the disease. Methods We designed a follow-up study on 25 patients with dystonia (15 with blepharospasm and 10 with cervical dystonia) who were tested twice: upon enrolment and 8 years later. STDT values from dystonic patients at the baseline were also compared with those from a group of 30 age-matched healthy subjects. Results Our findings show that the abnormally high STDT values observed in patients with focal dystonia remained unchanged at the 8-year follow-up assessment whereas disease severity worsened. Conclusions Our observation that STDT abnormalities in dystonia remain unmodified during the course of the disease suggests that the altered activity of inhibitory interneurons—either at cortical or at subcortical level—responsible for the increased STDT does not deteriorate as the disease progresses.
Collapse
|
48
|
Paracka L, Wegner F, Blahak C, Abdallat M, Saryyeva A, Dressler D, Karst M, Krauss JK. Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis. Front Neurol 2017; 8:553. [PMID: 29089923 PMCID: PMC5650962 DOI: 10.3389/fneur.2017.00553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/28/2017] [Indexed: 02/04/2023] Open
Abstract
Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.
Collapse
Affiliation(s)
- Lejla Paracka
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Christian Blahak
- Faculty of Medicine Mannheim, Department of Neurology, University of Heidelberg, Mannheim, Germany
| | - Mahmoud Abdallat
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Dirk Dressler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Matthias Karst
- Department of Anesthesiology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Center for Systems Neuroscience, Hannover, Germany.,Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
49
|
Conte A, Belvisi D, Manzo N, Bologna M, Barone F, Tartaglia M, Upadhyay N, Berardelli A. Understanding the link between somatosensory temporal discrimination and movement execution in healthy subjects. Physiol Rep 2017; 4:4/18/e12899. [PMID: 27650249 PMCID: PMC5037912 DOI: 10.14814/phy2.12899] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023] Open
Abstract
The somatosensory temporal discrimination threshold (STDT) is the shortest interval at which an individual recognizes paired stimuli as separate in time. We investigated whether and how voluntary movement modulates STDT in healthy subjects. In 17 healthy participants, we tested STDT during voluntary index‐finger abductions at several time‐points after movement onset and during motor preparation. We then tested whether voluntary movement‐induced STDT changes were specific for the body segment moved, depended on movement kinematics, on the type of movement or on the intensity for delivering paired electrical stimuli for STDT. To understand the mechanisms underlying STDT modulation, we also tested STDT during motor imagery and after delivering repetitive transcranial magnetic stimulation to elicit excitability changes in the primary somatosensory cortex (S1). When tested on the moving hand at movement onset and up to 200 msec thereafter, STDT values increased from baseline, but during motor preparation remained unchanged. STDT values changed significantly during fast and slow index‐finger movements and also, though less, during passive index‐finger abductions, whereas during tonic index‐finger abductions they remained unchanged. STDT also remained unchanged when tested in body parts other than those engaged in movement and during imagined movement. Nor did testing STDT at increased intensity influence movement‐induced STDT changes. The cTBS‐induced S1 cortical changes left movement‐induced STDT changes unaffected. Our findings suggest that movement execution in healthy subjects may alter STDT processing.
Collapse
Affiliation(s)
| | | | - Nicoletta Manzo
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | | | - Francesca Barone
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | - Matteo Tartaglia
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | - Neeraj Upadhyay
- Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy Department of Neurology and Psychiatry, Sapienza University Rome, Rome, Italy
| |
Collapse
|
50
|
Leodori G, Formica A, Zhu X, Conte A, Belvisi D, Cruccu G, Hallett M, Berardelli A. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex. J Neurophysiol 2017; 118:2311-2317. [PMID: 28747470 DOI: 10.1152/jn.00947.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination.NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the task. The ThirdDT is a new method to measure somatosensory temporal discrimination and a possible index of inhibitory activity at the S1 level.
Collapse
Affiliation(s)
- Giorgio Leodori
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy.,Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | - Xiaoying Zhu
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and
| | - Antonella Conte
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Giorgio Cruccu
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy; .,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|