1
|
Zhao XY, Xu DE, Wu ML, Liu JC, Shi ZL, Ma QH. Regulation and function of endoplasmic reticulum autophagy in neurodegenerative diseases. Neural Regen Res 2025; 20:6-20. [PMID: 38767472 PMCID: PMC11246128 DOI: 10.4103/nrr.nrr-d-23-00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 05/22/2024] Open
Abstract
The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - De-En Xu
- Department of Neurology, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Kajiho H, Sakisaka T. Degradation of STIM1 through FAM134B-mediated ER-phagy is potentially involved in cell proliferation. J Biol Chem 2024; 300:107674. [PMID: 39128711 PMCID: PMC11414581 DOI: 10.1016/j.jbc.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder, and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Fernandez-Fuente G, Farrugia MA, Peng Y, Schneider A, Svaren J, Puglielli L. Spatial selectivity of ATase inhibition in mouse models of Charcot-Marie-Tooth disease. Brain Commun 2024; 6:fcae232. [PMID: 39035418 PMCID: PMC11258571 DOI: 10.1093/braincomms/fcae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The endoplasmic reticulum acetylation machinery has emerged as a new branch of the larger endoplasmic reticulum quality control system. It regulates the selection of correctly folded polypeptides as well as reticulophagy-mediated removal of toxic protein aggregates with the former being a particularly important aspect of the proteostatic functions of endoplasmic reticulum acetylation. Essential to this function is the Nε-lysine acetyltransferase activity of acetyltransferase 1 and acetyltransferase 2, which regulates the induction of endoplasmic reticulum-specific autophagy through the acetylation of the autophagy-related protein 9A. Here, we used three mouse models of Charcot-Marie-Tooth disease, peripheral myelin protein 22/Tr-J, C3-peripheral myelin protein 22 and myelin protein zero/ttrr, to study spatial and translational selectivity of endoplasmic reticulum acetyltransferase inhibitors. The results show that inhibition of the endoplasmic reticulum acetyltransferases selectively targets misfolding/pro-aggregating events occurring in the lumen of the organelle. Therefore, they establish acetyltransferase 1 and acetyltransferase 2 as the first proven targets for disease-causing proteotoxic states that initiate within the lumen of the endoplasmic reticulum/secretory pathway.
Collapse
Affiliation(s)
- Gonzalo Fernandez-Fuente
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark A Farrugia
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yajing Peng
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Luigi Puglielli
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA
| |
Collapse
|
4
|
Wu MY, Li ZW, Lu JH. Molecular Modulators and Receptors of Selective Autophagy: Disease Implication and Identification Strategies. Int J Biol Sci 2024; 20:751-764. [PMID: 38169614 PMCID: PMC10758101 DOI: 10.7150/ijbs.83205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/31/2023] [Indexed: 01/05/2024] Open
Abstract
Autophagy is a highly conserved physiological process that maintains cellular homeostasis by recycling cellular contents. Selective autophagy is based on the specificity of cargo recognition and has been implicated in various human diseases, including neurodegenerative diseases and cancer. Selective autophagy receptors and modulators play key roles in this process. Identifying these receptors and modulators and their roles is critical for understanding the machinery and physiological function of selective autophagy and providing therapeutic value for diseases. Using modern researching tools and novel screening technologies, an increasing number of selective autophagy receptors and modulators have been identified. A variety of Strategies and approaches, including protein-protein interactions (PPIs)-based identification and genome-wide screening, have been used to identify selective autophagy receptors and modulators. Understanding the strengths and challenges of these approaches not only promotes the discovery of even more such receptors and modulators but also provides a useful reference for the identification of regulatory proteins or genes involved in other cellular mechanisms. In this review, we summarize the functions, disease association, and identification strategies of selective autophagy receptors and modulators.
Collapse
Affiliation(s)
| | | | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
5
|
Hill MA, Sykes AM, Mellick GD. ER-phagy in neurodegeneration. J Neurosci Res 2023; 101:1611-1623. [PMID: 37334842 DOI: 10.1002/jnr.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
There are many cellular mechanisms implicated in the initiation and progression of neurodegenerative disorders. However, age and the accumulation of unwanted cellular products are a common theme underlying many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Niemann-Pick type C. Autophagy has been studied extensively in these diseases and various genetic risk factors have implicated disruption in autophagy homoeostasis as a major pathogenic mechanism. Autophagy is essential in the maintenance of neuronal homeostasis, as their postmitotic nature makes them particularly susceptible to the damage caused by accumulation of defective or misfolded proteins, disease-prone aggregates, and damaged organelles. Recently, autophagy of the endoplasmic reticulum (ER-phagy) has been identified as a novel cellular mechanism for regulating ER morphology and response to cellular stress. As neurodegenerative diseases are generally precipitated by cellular stressors such as protein accumulation and environmental toxin exposure the role of ER-phagy has begun to be investigated. In this review we discuss the current research in ER-phagy and its involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Melissa A Hill
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alex M Sykes
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
6
|
Çakar A, Bagırova G, Durmuş H, Uyguner O, Parman Y. Phenotypic features of RETREG1-related hereditary sensory autonomic neuropathy. J Peripher Nerv Syst 2023; 28:351-358. [PMID: 37448294 DOI: 10.1111/jns.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND AND AIMS Homozygous loss-of-function mutations in the RETREG1 gene result in Hereditary Sensory Autonomic Neuropathy Type 2B. Clinical features include pain loss, autonomic disturbances, and upper motor neuron features. METHODS We evaluated the clinical and genetic features of seven patients from four families with RETREG1 variants. RESULTS Five patients were male. The median age of disease onset was 7.00 ± 2.81 (between 2 and 10 years). A combination of painless wounds, trophic changes, and foot ulcerations was the presenting symptom in five patients and walking difficulties in two. Motor symptoms were present in five patients. In a median disease duration of 30.00 ± 12.88 years, five patients had osteomyelitis, and three had toe amputations. A history of renal disease was present in one family. In another family, three affected siblings had short stature and a history of delayed puberty. Although sensory signs predominated the clinical findings, various degrees of motor signs such as muscle weakness, spasticity, and brisk tendon reflexes were noted in all patients. Nerve conduction studies showed axonal sensory-motor neuropathy in five patients and sensory neuropathy in two. Three pathogenic variants were identified in the RETREG1 gene. Two unrelated patients had a homozygous c.433C > T/p.(Gln145*), one a homozygous c.826delA/p.(Ser276Valfs*8), and the last had a novel homozygous c.102delC/p.(Ala35Glnfs*349) variants. INTERPRETATION In our study, all patients showed signs and symptoms consistent with pain insensitivity. Although shadowed by sensory symptoms, motor signs were noted in our patients. Further studies are necessary to clarify the causal relationship between extra-neurological features and RETREG1 mutations.
Collapse
Affiliation(s)
- Arman Çakar
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulandam Bagırova
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hacer Durmuş
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yeşim Parman
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Nashiry MA, Sumi SS, Alyami SA, Moni MA. Systems biology approach discovers comorbidity interaction of Parkinson's disease with psychiatric disorders utilizing brain transcriptome. Front Mol Neurosci 2023; 16:1232805. [PMID: 37654790 PMCID: PMC10466791 DOI: 10.3389/fnmol.2023.1232805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
Several studies found that most patients with Parkinson's disorder (PD) appear to have psychiatric symptoms such as depression, anxiety, hallucination, delusion, and cognitive dysfunction. Therefore, recognizing these psychiatrically symptoms of PD patients is crucial for both symptomatic therapy and better knowledge of the pathophysiology of PD. In order to address this issue, we created a bioinformatics framework to determine the effects of PD mRNA expression on understanding its relationship with psychiatric symptoms in PD patients. We have discovered a significant overlap between the sets of differentially expressed genes from PD exposed tissue and psychiatric disordered tissues using RNA-seq datasets. We have chosen Bipolar disorder and Schizophrenia as psychiatric disorders in our study. A number of significant correlations between PD and the occurrence of psychiatric diseases were also found by gene set enrichment analysis, investigations of the protein-protein interaction network, gene regulatory network, and protein-chemical agent interaction network. We anticipate that the results of this pathogenetic study will provide crucial information for understanding the intricate relationship between PD and psychiatric diseases.
Collapse
Affiliation(s)
- Md Asif Nashiry
- Data Analytics, Northern Alberta Institute of Technology, Edmonton, AB, Canada
| | - Shauli Sarmin Sumi
- Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Salem A. Alyami
- Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Data Science, Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Saint Lucia, QLD, Australia
- Artificial Intelligence and Cyber Futures Institute, Charles Stuart University, Bathurst, NSW, Australia
| |
Collapse
|
8
|
Chen B, Hu X, Chen M, Chen Y, Yan L, Zeng G, Wang C, Liu L, Yang C, Song W. Identification of sensory dysfunction and nervous structure changes in Fam134b knockout mice. Neurol Res 2023; 45:41-48. [PMID: 36302074 DOI: 10.1080/01616412.2022.2117947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Mutation in human FAM134B gene has been implicated in hereditary sensory and autonomic neuropathy type IIB. We aimed to knock out Fam134b in mice and explored its phenotypes to determine whether the genetic impairments and behavioral changes can mirror manifestations noted in humans. METHODS We used CRISPR/Cas9 technology to knockout the Fam134b gene in the C57BL/6 J mouse. After confirming the knockout was successful by Sanger sequencing and Western blot, sensory function was measured using the hot plate test and the 50% paw withdrawal threshold test. In addition, standard microscopy and transmission electron microscopy were performed to observe the structural changes of the dorsal root ganglion sensory neuron and the sciatic nerve. RESULTS DNA sequencing and Western blot analysis confirmed the mutation in the Fam134b mutation gene and the loss of expression of its products. Fam134b knockout mice exhibited heat pain insensitivity and mechanical hyperalgesia. Interestingly, limb damage was found in some homozygotes. Demyelination in the sciatic nerve was common. Golgi bodies were turgid in dorsal root ganglion neuron. CONCLUSIONS These findings indicate that peripheral neuropathy is common in Fam134b KO mice. We believe this novel animal model is likely to have significant future potential as a reliable model for the evaluation of peripheral neuropathy and its complications.
Collapse
Affiliation(s)
- Binghao Chen
- The Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingyun Hu
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meiling Chen
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuying Chen
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Yan
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Zeng
- The Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan Wang
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lixuan Liu
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan Yang
- The department of endocrinology and Metabolism, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weidong Song
- The Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Intracellular Citrate/acetyl-CoA flux and endoplasmic reticulum acetylation: Connectivity is the answer. Mol Metab 2022; 67:101653. [PMID: 36513219 PMCID: PMC9792894 DOI: 10.1016/j.molmet.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Key cellular metabolites reflecting the immediate activity of metabolic enzymes as well as the functional metabolic state of intracellular organelles can act as powerful signal regulators to ensure the activation of homeostatic responses. The citrate/acetyl-CoA pathway, initially recognized for its role in intermediate metabolism, has emerged as a fundamental branch of this nutrient-sensing homeostatic response. Emerging studies indicate that fluctuations in acetyl-CoA availability within different cellular organelles and compartments provides substrate-level regulation of many biological functions. A fundamental aspect of these regulatory functions involves Nε-lysine acetylation. SCOPE OF REVIEW Here, we will examine the emerging regulatory functions of the citrate/acetyl-CoA pathway and the specific role of the endoplasmic reticulum (ER) acetylation machinery in the maintenance of intracellular crosstalk and homeostasis. These functions will be analyzed in the context of associated human diseases and specific mouse models of dysfunctional ER acetylation and citrate/acetyl-CoA flux. A primary objective of this review is to highlight the complex yet integrated response of compartment- and organelle-specific Nε-lysine acetylation to the intracellular availability and flux of acetyl-CoA, linking this important post-translational modification to cellular metabolism. MAJOR CONCLUSIONS The ER acetylation machinery regulates the proteostatic functions of the organelle as well as the metabolic crosstalk between different intracellular organelles and compartments. This crosstalk enables the cell to impart adaptive responses within the ER and the secretory pathway. However, it also enables the ER to impart adaptive responses within different cellular organelles and compartments. Defects in the homeostatic balance of acetyl-CoA flux and ER acetylation reflect different but converging disease states in humans as well as converging phenotypes in relevant mouse models. In conclusion, citrate and acetyl-CoA should not only be seen as metabolic substrates of intermediate metabolism but also as signaling molecules that direct functional adaptation of the cell to both intracellular and extracellular messages. Future discoveries in CoA biology and acetylation are likely to yield novel therapeutic approaches.
Collapse
|
10
|
Chen W, Mao H, Chen L, Li L. The pivotal role of FAM134B in selective ER-phagy and diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119277. [PMID: 35477002 DOI: 10.1016/j.bbamcr.2022.119277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
FAM134B is also known as the reticulophagy regulator 1 (RETREG1) or JK-1. FAM134B consists of two long hydrophobic fragments with a reticulon-homology domain, an N-terminal cytoplasmic domain, and a C-terminal cytoplasmic domain. FAM134B plays an important role in regulating selective ER-phagy, and is related to the occurrence and development of many diseases. In the present review, we describe theFAM134B molecular structure, subcellular localization, tissue distribution, and review its mechanisms of action during selective ER-phagy. Furthermore, we summarize the relationship between FAM134B and diseases, including neoplastic diseases, degenerative diseases, central nervous system disease, and infectious diseases. Considering the pleiotropic action of FAM134B, targeting FAM134B may be a potent therapeutic avenue for these diseases.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Hui Mao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
11
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Taşdelen E, Calame DG, Akay G, Mitani T, Fatih JM, Herman I, Du H, Coban-Akdemir Z, Marafi D, Jhangiani SN, Posey JE, Gibbs RA, Altıparmak T, Kutlay NY, Lupski JR, Pehlivan D. Novel RETREG1 (FAM134B) founder allele is linked to HSAN2B and renal disease in a Turkish family. Am J Med Genet A 2022; 188:2153-2161. [PMID: 35332675 DOI: 10.1002/ajmg.a.62727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 11/06/2022]
Abstract
Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry. Due to the history of chronic recurrent multifocal osteomyelitis and microcytic anemia, a diagnosis of Majeed syndrome was considered; however, sequencing of LPIN2 was negative. Family-based exome sequencing (ES) revealed a novel homozygous ultrarare RETREG1 variant NM_001034850.2:c.321G>A;p.Trp107Ter. Electrophysiological studies of the proband demonstrated axonal sensorimotor neuropathy predominantly in the lower extremities. Consistent with the lack of shared ancestry, the coefficient of inbreeding calculated from ES data was low (F = 0.002), but absence of heterozygosity (AOH) analysis demonstrated a 7.2 Mb AOH block surrounding the variant consistent with a founder allele. Two of the four affected individuals had unexplained renal failure which has not been reported in HSAN2B cases to date. Therefore, this report describes a novel RETREG1 founder allele and suggests renal failure may be an unrecognized feature of the RETREG1-disease spectrum.
Collapse
Affiliation(s)
- Elifcan Taşdelen
- Department of Medical Genetics, Sanliurfa Education and Research Hospital, Şanlıurfa, Turkey.,Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Daniel G Calame
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, University of Utah, Salt Lake, Utah, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabella Herman
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Nüket Yürür Kutlay
- Department of Medical Genetics, Sanliurfa Education and Research Hospital, Şanlıurfa, Turkey
| | - James R Lupski
- Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Davut Pehlivan
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 728] [Impact Index Per Article: 242.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
14
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
15
|
Luo ZY, Wang HJ, Zhao YK, Liu JH, Chen YM, Lin ZM, Luo DQ. Late-onset hereditary sensory and autonomic neuropathy type 2B caused by novel compound heterozygous mutations in FAM134B presenting as chronic recurrent ulcers on the soles. Indian J Dermatol Venereol Leprol 2021; 87:455. [PMID: 33943063 DOI: 10.25259/ijdvl_519_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/01/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Ze-Yu Luo
- Department of Dermatology The East Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui-Jun Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yu-Kun Zhao
- Department of Dermatology The East Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan-Hua Liu
- Department of Dermatology The East Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying-Ming Chen
- Department of Radiology, The East Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Miao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Di-Qing Luo
- Department of Dermatology The East Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Zhu L, Wang X, Wang Y. Roles of FAM134B in diseases from the perspectives of organelle membrane morphogenesis and cellular homeostasis. J Cell Physiol 2021; 236:7242-7255. [PMID: 33843059 DOI: 10.1002/jcp.30377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
Family with sequence similarity 134 member B (FAM134B)/RETREG1/JK1 is a novel gene with recently reported roles in various diseases. Understanding the function and mechanism of action of FAM134B is necessary to develop disease therapies. Notably, emerging data are clarifying the molecular mechanisms of FAM134B function in organelle membrane morphogenesis and the regulation of signaling pathways, such as the Wnt and AKT signaling pathways. In addition, transcription factors, RNA N6 -methyladenosine-mediated epigenetic regulation, microRNA, and small molecules are involved in the regulation of FAM134B expression. This review comprehensively considers recent studies on the role of FAM134B and its potential mechanisms in neurodegenerative diseases, obesity, viral diseases, cancer, and other diseases. The functions of FAM134B in maintaining cell homeostasis by regulating Golgi morphology, endoplasmic reticulum autophagy, and mitophagy are also highlighted, which may be the underlying mechanism of FAM134B gene mutation-induced diseases. Moreover, the molecular mechanisms of the FAM134B function during numerous biological processes are discussed. This review provides novel insights into the functions and mechanisms of FAM134B in various diseases, which will inform the development of effective drugs to treat diseases.
Collapse
Affiliation(s)
- Luoyi Zhu
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Ghosh S, Tourtellotte WG. The Complex Clinical and Genetic Landscape of Hereditary Peripheral Neuropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:487-509. [PMID: 33497257 DOI: 10.1146/annurev-pathol-030320-100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| |
Collapse
|
18
|
Sheehan BK, Orefice NS, Peng Y, Shapiro SL, Puglielli L. ATG9A regulates proteostasis through reticulophagy receptors FAM134B and SEC62 and folding chaperones CALR and HSPB1. iScience 2021; 24:102315. [PMID: 33870132 PMCID: PMC8042170 DOI: 10.1016/j.isci.2021.102315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/01/2022] Open
Abstract
The acetylation of ATG9A within the endoplasmic reticulum (ER) lumen regulates the induction of reticulophagy. ER acetylation is ensured by AT-1/SLC33A1, a membrane transporter that maintains the cytosol-to-ER flux of acetyl-CoA. Defective AT-1 activity, as caused by heterozygous/homozygous mutations and gene duplication events, results in severe disease phenotypes. Here, we show that although the acetylation of ATG9A occurs in the ER lumen, the induction of reticulophagy requires ATG9A to engage FAM134B and SEC62 on the cytosolic side of the ER. To address this conundrum, we resolved the ATG9A interactome in two mouse models of AT-1 dysregulation: AT-1 sTg, a model of systemic AT-1 overexpression with hyperacetylation of ATG9A, and AT-1S113R/+, a model of AT-1 haploinsufficiency with hypoacetylation of ATG9A. We identified CALR and HSPB1 as two ATG9A partners that regulate the induction of reticulophagy as a function of ATG9A acetylation and discovered that ATG9A associates with several proteins that maintain ER proteostasis. The ATG9A-FAM134B and ATG9A-SEC62 interaction requires specific structural features Opposite Ca++-binding EF hands regulate ATG9A-FAM134B interaction HSBP1 and CALR regulate ATG9A-mediated induction of reticulophagy Many of the proteins that ensure ER proteostasis display spatial vicinity/cross talk
Collapse
Affiliation(s)
- Brendan K Sheehan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nicola S Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samantha L Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
19
|
Mo J, Chen J, Zhang B. Critical roles of FAM134B in ER-phagy and diseases. Cell Death Dis 2020; 11:983. [PMID: 33199694 PMCID: PMC7670425 DOI: 10.1038/s41419-020-03195-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
FAM134B (also called JK-1, RETREG1), a member of the family with sequence similarity 134, was originally discovered as an oncogene in esophageal squamous cell carcinoma. However, its most famous function is that of an ER-phagy-regulating receptor. Over the decades, the powerful biological functions of FAM134B were gradually revealed. Overwhelming evidence indicates that its dysfunction is related to pathophysiological processes such as neuropathy, viral replication, inflammation, and cancer. This review describes the biological functions of FAM134B, focusing on its role in ER-phagy. In addition, we summarize the diseases in which it is involved and review the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Mo
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Jin Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
20
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
21
|
Mookherjee D, Das S, Mukherjee R, Bera M, Jana SC, Chakrabarti S, Chakrabarti O. RETREG1/FAM134B mediated autophagosomal degradation of AMFR/GP78 and OPA1 -a dual organellar turnover mechanism. Autophagy 2020; 17:1729-1752. [PMID: 32559118 DOI: 10.1080/15548627.2020.1783118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Buchmann Institute for Molecular Life Sciences, Frankfurt Am Main, Germany
| | - Manindra Bera
- Laboratory of Cell Biology, the Rockefeller University, New York, USA
| | | | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
22
|
Yao RQ, Ren C, Xia ZF, Yao YM. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy 2020; 17:385-401. [PMID: 32048886 PMCID: PMC8007140 DOI: 10.1080/15548627.2020.1725377] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structural integrity and functional stability of organelles are prerequisites for the viability and responsiveness of cells. Dysfunction of multiple organelles is critically involved in the pathogenesis and progression of various diseases, such as chronic obstructive pulmonary disease, cardiovascular diseases, infection, and neurodegenerative diseases. In fact, those organelles synchronously present with evident structural derangement and aberrant function under exposure to different stimuli, which might accelerate the corruption of cells. Therefore, the quality control of multiple organelles is of great importance in maintaining the survival and function of cells and could be a potential therapeutic target for human diseases. Organelle-specific autophagy is one of the major subtypes of autophagy, selectively targeting different organelles for quality control. This type of autophagy includes mitophagy, pexophagy, reticulophagy (endoplasmic reticulum), ribophagy, lysophagy, and nucleophagy. These kinds of organelle-specific autophagy are reported to be beneficial for inflammatory disorders by eliminating damaged organelles and maintaining homeostasis. In this review, we summarized the recent findings and mechanisms covering different kinds of organelle-specific autophagy, as well as their involvement in various diseases, aiming to arouse concern about the significance of the quality control of multiple organelles in the treatment of inflammatory diseases.Abbreviations: ABCD3: ATP binding cassette subfamily D member 3; AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ARIH1: ariadne RBR E3 ubiquitin protein ligase 1; ATF: activating transcription factor; ATG: autophagy related; ATM: ATM serine/threonine kinase; BCL2: BCL2 apoptosis regulator; BCL2L11/BIM: BCL2 like 11; BCL2L13: BCL2 like 13; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CANX: calnexin; CAT: catalase; CCPG1: cell cycle progression 1; CHDH: choline dehydrogenase; COPD: chronic obstructive pulmonary disease; CSE: cigarette smoke exposure; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DISC1: DISC1 scaffold protein; DNM1L/DRP1: dynamin 1 like; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 alpha kinase 3; EMD: emerin; EPAS1/HIF-2α: endothelial PAS domain protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBXO27: F-box protein 27; FKBP8: FKBP prolyl isomerase 8; FTD: frontotemporal dementia; FUNDC1: FUN14 domain containing 1; G3BP1: G3BP stress granule assembly factor 1; GBA: glucocerebrosidase beta; HIF1A/HIF1: hypoxia inducible factor 1 subunit alpha; IMM: inner mitochondrial membrane; LCLAT1/ALCAT1: lysocardiolipin acyltransferase 1; LGALS3/Gal3: galectin 3; LIR: LC3-interacting region; LMNA: lamin A/C; LMNB1: lamin B1; LPS: lipopolysaccharide; MAPK8/JNK: mitogen-activated protein kinase 8; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFN1: mitofusin 1; MOD: multiple organelles dysfunction; MTPAP: mitochondrial poly(A) polymerase; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NLRP3: NLR family pyrin domain containing 3; NUFIP1: nuclear FMR1 interacting protein 1; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PARL: presenilin associated rhomboid like; PEX3: peroxisomal biogenesis factor 3; PGAM5: PGAM family member 5; PHB2: prohibitin 2; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHOT1/MIRO1: ras homolog family member T1; RIPK3/RIP3: receptor interacting serine/threonine kinase 3; ROS: reactive oxygen species; RTN3: reticulon 3; SEC62: SEC62 homolog, preprotein translocation factor; SESN2: sestrin2; SIAH1: siah E3 ubiquitin protein ligase 1; SNCA: synuclein alpha; SNCAIP: synuclein alpha interacting protein; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; TICAM1/TRIF: toll-like receptor adaptor molecule 1; TIMM23: translocase of inner mitochondrial membrane 23; TNKS: tankyrase; TOMM: translocase of the outer mitochondrial membrane; TRIM: tripartite motif containing; UCP2: uncoupling protein 2; ULK1: unc-51 like autophagy activating kinase; UPR: unfolded protein response; USP10: ubiquitin specific peptidase 10; VCP/p97: valosin containing protein; VDAC: voltage dependent anion channels; XIAP: X-linked inhibitor of apoptosis; ZNHIT3: zinc finger HIT-type containing 3.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
23
|
Jiang X, Wang X, Ding X, Du M, Li B, Weng X, Zhang J, Li L, Tian R, Zhu Q, Chen S, Wang L, Liu W, Fang L, Neculai D, Sun Q. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy. EMBO J 2020; 39:e102608. [PMID: 31930741 DOI: 10.15252/embj.2019102608] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Degradation of endoplasmic reticulum (ER) by selective autophagy (ER-phagy) is crucial for ER homeostasis. However, it remains unclear how ER scission is regulated for subsequent autophagosomal sequestration and lysosomal degradation. Here, we show that oligomerization of ER-phagy receptor FAM134B (also referred to as reticulophagy regulator 1 or RETREG1) through its reticulon-homology domain is required for membrane fragmentation in vitro and ER-phagy in vivo. Under ER-stress conditions, activated CAMK2B phosphorylates the reticulon-homology domain of FAM134B, which enhances FAM134B oligomerization and activity in membrane fragmentation to accommodate high demand for ER-phagy. Unexpectedly, FAM134B G216R, a variant derived from a type II hereditary sensory and autonomic neuropathy (HSAN) patient, exhibits gain-of-function defects, such as hyperactive self-association and membrane scission, which results in excessive ER-phagy and sensory neuron death. Therefore, this study reveals a mechanism of ER membrane fragmentation in ER-phagy, along with a signaling pathway in regulating ER turnover, and suggests a potential implication of excessive selective autophagy in human diseases.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianming Ding
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Du
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Boran Li
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xialian Weng
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Rui Tian
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhu
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Liang Wang
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Dante Neculai
- Department of Cell Biology, Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Park GY, Jang DH, Lee DW, Jang JH, Joo J. Hereditary Sensory and Autonomic Neuropathy 2B Caused by a Novel RETREG1 Mutation (c.765dupT) and Paternal Uniparental Isodisomy of Chromosome 5. Front Genet 2019; 10:1085. [PMID: 31737055 PMCID: PMC6837162 DOI: 10.3389/fgene.2019.01085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/09/2019] [Indexed: 11/13/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy (HSAN) 2B is a rare disease and has been reported mostly in offspring of consanguineous parents. Here we report the case of a patient born to non-consanguineous parents who was diagnosed with HSAN 2B caused due to a novel frameshift mutation (NM_001034850.2: c.765dupT/p.Gly256TrpfsTer7) in the RETREG1 gene and paternal uniparental isodisomy of chromosome 5. Uniparental isodisomy of chromosome 5 is also a rare condition, and these two rare events lead to homozygous expression of a recessive mutation, as in the present case. Clinicians should be aware that autosomal recessive disorders due to homozygous variants can occur because of uniparental disomy in offspring of non-consanguineous parents.
Collapse
Affiliation(s)
- Geun-Young Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Joungsu Joo
- EONE-DIAGNOMICS Genome Center, Incheon, South Korea
| |
Collapse
|
25
|
ER-phagy and human diseases. Cell Death Differ 2019; 27:833-842. [PMID: 31659280 DOI: 10.1038/s41418-019-0444-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
Autophagy regulates the degradation of unnecessary or dysfunctional cellular components. This catabolic process requires the formation of a double-membrane vesicle, the autophagosome, that engulfs the cytosolic material and delivers it to the lysosome. Substrate specificity is achieved by autophagy receptors, which are characterized by the presence of at least one LC3-interaction region (LIR) or GABARAP-interaction motif (GIM). Only recently, several receptors that mediate the specific degradation of endoplasmic reticulum (ER) components via autophagy have been identified (the process known as ER-phagy or reticulophagy). Here, we give an update on the current knowledge about the role of ER-phagy receptors in health and disease.
Collapse
|
26
|
Falcão de Campos C, Vidailhet M, Toutain A, Becdelièvre A, Funalot B, Bonello‐Palot N, Stojkovic T. Hereditary sensory autonomic neuropathy type II: Report of two novel mutations in the
FAM134B
gene. J Peripher Nerv Syst 2019; 24:354-358. [DOI: 10.1111/jns.12352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Catarina Falcão de Campos
- Department of Neurosciences and Mental Health, Department of Neurology, Hospital de Santa MariaCentro Hospitalar Universitário de Lisboa Norte Lisbon Portugal
| | - Marie Vidailhet
- APHP, GH Pitié‐Salpêtrière, Department of NeurologyICM and Sorbonne University Paris France
| | - Annick Toutain
- Genetics DepartmentUniversity Hospital, UMR 1253 iBrain, Inserm, Université de Tours Tours France
| | - Alix Becdelièvre
- APHP, Hôpital Henri Mondor, Department of Medical GeneticsUniversité Paris‐Est‐Créteil, Inserm UMR955 Créteil France
| | - Benoît Funalot
- APHP, Hôpital Henri Mondor, Department of Medical GeneticsUniversité Paris‐Est‐Créteil, Inserm UMR955 Créteil France
| | | | - Tanya Stojkovic
- APHP, GH‐Pitié‐Salpêtrière, Centre de référence des maladies neuromusculaires Paris France
| |
Collapse
|
27
|
Conway O, Akpinar HA, Rogov VV, Kirkin V. Selective Autophagy Receptors in Neuronal Health and Disease. J Mol Biol 2019; 432:2483-2509. [PMID: 31654670 DOI: 10.1016/j.jmb.2019.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Neurons are electrically excitable, postmitotic cells that perform sensory, relaying, and motor functions. Because of their unique morphological and functional specialization, cells of this type are sensitive to the stress caused by accumulation of misfolded proteins or damaged organelles. Autophagy is the fundamental mechanism that ensures sequestration of cytosolic material and its subsequent degradation in lysosomes of eukaryotic cells, thereby providing cell-autonomous nutrients and removing harmful cargos. Strikingly, mice and flies lacking functional autophagy develop early onset progressive neurodegeneration. Like in human neurodegenerative diseases (NDDs)-Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, and amyotrophic lateral sclerosis-characteristic protein aggregates observed in autophagy-deficient neurons in the animal models are indicators of the ongoing neuronal pathology. A number of selective autophagy receptors (SARs) have been characterized that interact both with the cargo and components of the autophagic machinery, thus providing the molecular basis for selective degradation of sizable cytosolic components. Interference with autophagy in experimental models, but also during the pathological vagaries in neurons, will thus have far-reaching consequences for a range of selective autophagy pathways critical for the normal functioning of the nervous system. Here, we review the key principles behind the selective autophagy and discuss how the SARs may be involved in the pathogenesis of NDDs. Using recently published examples, we also examine the emerging role of less well studied selective autophagy pathways in neuronal health and disease. We conclude by discussing targeting selective autophagy as an emerging therapeutic modality in NDDs.
Collapse
Affiliation(s)
- Owen Conway
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hafize Aysin Akpinar
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt Am Main, Germany
| | - Vladimir Kirkin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
28
|
Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, Zhang L, Ren L, Chu L, Liang H, Fan H, Zhang B, Chen X. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol 2019; 13:792-810. [PMID: 30556279 PMCID: PMC6441892 DOI: 10.1002/1878-0261.12429] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
Fam134b (JK-1, RETREG1) was first identified as an oncogene in esophageal squamous cell carcinoma. However, the roles of FAM134B during tumorigenesis of hepatocellular carcinoma (HCC) and in epithelial-to-mesenchymal transition (EMT) were previously unclear. In this study, we investigated the function of FAM134B in HCC and the related tumorigenesis mechanisms, as well as how FAM134B induces EMT. We detected the expression of FAM134B in a normal hepatic cell line, HCC cell lines, fresh specimens, and a HCC tissue microarray. A retrospective study of 122 paired HCC tissue microarrays was used to analyze the correlation between FAM134B and clinical features. Gain- and loss-of-function experiments, rescue experiments, Akt pathway activator/inhibitors, nude mice xenograft models, and nude mice lung metastasis models were used to determine the underlying mechanisms of FAM134B in inducing tumorigenesis and EMT in vitro and in vivo. The expression level of FAM134B was highly elevated in HCC, as compared with that in normal liver tissues and normal hepatic cells. Overexpression of FAM134B was significantly associated with tumor size (P = 0.025), pathological vascular invasion (P = 0.026), differentiation grade (P = 0.023), cancer recurrence (P = 0.044), and portal vein tumor thrombus (P = 0.036) in HCC. Patients with high expression of FAM134B had shorter overall survival and disease-free survival than patients with non-high expression of FAM134B. Furthermore, knockdown of FAM134B with shRNAs inhibited cell growth and motility, as well as tumor formation and metastasis in nude mice, all of which were promoted by overexpression of FAM134B. Our study demonstrated that Fam134b is an oncogene that plays a crucial role in HCC via the Akt signaling pathway with subsequent glycogen synthase kinase-3β phosphorylation, accumulation of β-catenin, and stabilization of Snail, which promotes tumorigenesis, EMT, and tumor metastasis in HCC.
Collapse
Affiliation(s)
- Zhao‐qi Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Jin Chen
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Wan‐qiu Huang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Deng Ning
- Department of Biliary and Pancreatic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiu‐meng Liu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Chao Wang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Long Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Li Ren
- Department of Hepatopancreatobiliary SurgeryAffiliated Hospital of Qinghai UniversityXiningChina
| | - Liang Chu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Hui‐fang Liang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Hai‐ning Fan
- Department of Hepatopancreatobiliary SurgeryAffiliated Hospital of Qinghai UniversityXiningChina
| | - Bi‐xiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| | - Xiao‐ping Chen
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhanChina
- Clinical Medicine Research Center of Hepatic Surgery in Hubei ProvinceWuhanChina
| |
Collapse
|
29
|
Rahmani B, Fekrmandi F, Ahadi K, Ahadi T, Alavi A, Ahmadiani A, Asadi S. A novel nonsense mutation in WNK1/HSN2 associated with sensory neuropathy and limb destruction in four siblings of a large Iranian pedigree. BMC Neurol 2018; 18:195. [PMID: 30497409 PMCID: PMC6262971 DOI: 10.1186/s12883-018-1201-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hereditary sensory and autonomic neuropathy type 2 (HSAN2) is an autosomal recessive disorder with predominant sensory dysfunction and severe complications such as limb destruction. There are different subtypes of HSAN2, including HSAN2A, which is caused by mutations in WNK1/HSN2 gene. Methods An Iranian family with four siblings and autosomal recessive inheritance pattern whom initially diagnosed with HSAN2 underwent whole exome sequencing (WES) followed by segregation analysis. Results According to the filtering criteria of the WES data, a novel candidate variation, c.3718C > A in WNK1/HSN2 gene that causes p.Tyr1025* was identified. This variation results in a truncated protein with 1025 amino acids instead of the wild-type product with 2645 amino acids. Sanger sequencing revealed that the mutation segregates with disease status in the pedigree. Conclusions The identified novel nonsense mutation in WNK1/HSN2 in an Iranian HSAN2 pedigree presents allelic heterogeneity of this gene in different populations. The result of current study expands the spectrum of mutations of the HSN2 gene as the genetic background of HSAN2A as well as further supports the hypothesis that HSN2 is a causative gene for HSAN2A. However, it seems that more research is required to determine the exact effects of this product in the nervous system.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | - Keivan Ahadi
- Department of Orthopaedic Surgery, Milad Hospital, Tehran, Iran
| | - Tannaz Ahadi
- Neuromusculoskeletal Research Centre, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Abstract
Selective autophagy represents the major quality control mechanism that ensures proper turnover of exhausted or harmful organelles, among them the endoplasmic reticulum (ER), which is fragmented and delivered to the lysosome for degradation via a specific type of autophagy called ER-phagy. The recent discovery of ER-resident proteins that bind to mammalian Atg8 proteins has revealed that the selective elimination of ER involves different receptors that are specific for different ER subdomains or ER stresses. FAM134B (also known as RETREG1) and RTN3 are reticulon-type proteins that are able to remodel the ER network and ensure the basal membrane turnover. SEC62 and CCPG1 are transmembrane ER receptors that function in response to ER stress signals. This task sharing reflects the complexity of the ER in terms of biological functions and morphology. In this Cell Science at a Glance article and the accompanying poster, we summarize the most recent findings about ER-phagy in yeast and in mammalian cells.
Collapse
Affiliation(s)
- Paolo Grumati
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany .,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt - Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Alexandra Stolz
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt - Riedberg Campus, 60438 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Islam F, Chaousis S, Wahab R, Gopalan V, Lam AK. Protein interactions of FAM134B with EB1 and APC/beta‐catenin in vitro in colon carcinoma. Mol Carcinog 2018; 57:1480-1491. [DOI: 10.1002/mc.22871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Farhadul Islam
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Stephanie Chaousis
- Australian Rivers Institute and School of EnvironmentGriffith UniversityGold CoastQueenslandAustralia
| | - Riajul Wahab
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| | - Vinod Gopalan
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- School of Medical ScienceMenzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| | - Alfred K.‐Y. Lam
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
32
|
Genetic aberrations in macroautophagy genes leading to diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524522 DOI: 10.1016/j.bbamcr.2018.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The catabolic process of macroautophagy, through the rapid degradation of unwanted cellular components, is involved in a multitude of cellular and organismal functions that are essential to maintain homeostasis. Those functions include adaptation to starvation, cell development and differentiation, innate and adaptive immunity, tumor suppression, autophagic cell death, and maintenance of stem cell stemness. Not surprisingly, an impairment or block of macroautophagy can lead to severe pathologies. A still increasing number of reports, in particular, have revealed that mutations in the autophagy-related (ATG) genes, encoding the key players of macroautophagy, are either the cause or represent a risk factor for the development of several illnesses. The aim of this review is to provide a comprehensive overview of the diseases and disorders currently known that are or could be caused by mutations in core ATG proteins but also in the so-called autophagy receptors, which provide specificity to the process of macroautophagy. Our compendium underlines the medical relevance of this pathway and underscores the importance of the eventual development of therapeutic approaches aimed at modulating macroautophagy.
Collapse
|
33
|
Zorina-Lichtenwalter K, Parisien M, Diatchenko L. Genetic studies of human neuropathic pain conditions: a review. Pain 2018; 159:583-594. [PMID: 29240606 PMCID: PMC5828382 DOI: 10.1097/j.pain.0000000000001099] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level.
Collapse
Affiliation(s)
| | - Marc Parisien
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Islam F, Gopalan V, Pillai S, Lu CT, Kasem K, Lam AKY. Promoter hypermethylation inactivate tumor suppressor FAM134B and is associated with poor prognosis in colorectal cancer. Genes Chromosomes Cancer 2018; 57:240-251. [PMID: 29318692 DOI: 10.1002/gcc.22525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 01/04/2023] Open
Abstract
The present study aims to examine promoter methylation status of FAM134B in a large cohort of patients with colorectal adenocarcinomas. The clinical significances and correlations of FAM134B promoter methylation with its expression are also analysed. Methylation-specific high-resolution melt-curve analysis followed by sequencing was used to identify FAM134B promoter methylation in colorectal adenomas (N = 32), colorectal adenocarcinomas (N = 164), matched adjacent non-neoplastic colorectal mucosae (N = 83) and colon cancer cell lines (N = 4). FAM134B expression was studied by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blots. FAM134B promoter methylation was more frequent in adenocarcinomas (52%; 85/164) when compared to that of adenomas (28%; 9/32) and non-neoplastic mucosae (35%; 29/83). Cancer cells exhibited higher methylation when compared to non-neoplastic cells. FAM134B promoter methylation was inversely correlated with low FAM134B copy number and mRNA/protein expressions, whereas in-vitro demethylation has restored FAM134B expression in colon cancer cells. FAM134B promoter methylation was associated with high histological grade (P = .025), presence of peri-neural infiltration (P = .012), lymphovascular invasion (P = .021), lymph node metastasis (P = .0001), distant metastasis (P = .0001) and advanced pathological stages (P = .0001). In addition, FAM134B promoter methylation correlated with cancer recurrence and poor survival rates of patients with colorectal adenocarcinomas. To conclude, FAM134B promoter methylation plays a key role in regulating FAM134B expression in vitro and in vivo, which in turn contributes to the prediction of the biological aggressiveness of colorectal adenocarcinomas. Furthermore, FAM134B methylation might act as a marker in predicting clinical prognosis in patients with colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Suja Pillai
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia.,School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast Hospital, Gold Coast, Queensland, Australia
| | - Kais Kasem
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
35
|
Islam F, Gopalan V, Lam AKY. RETREG1(FAM134B): A new player in human diseases: 15 years after the discovery in cancer. J Cell Physiol 2018; 233:4479-4489. [DOI: 10.1002/jcp.26384] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
- Department of Biochemistry and Molecular Biology; University of Rajshahi; Rajshahi Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Alfred King-yin Lam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| |
Collapse
|
36
|
Islam F, Gopalan V, Wahab R, Lee KTW, Haque MH, Mamoori A, Lu CT, Smith RA, Lam AKY. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum Genet 2017; 136:321-337. [DOI: 10.1007/s00439-017-1760-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022]
|
37
|
Islam F, Gopalan V, Wahab R, Smith RA, Qiao B, Lam AKY. Stage dependent expression and tumor suppressive function of FAM134B( JK1) in colon cancer. Mol Carcinog 2017; 56:238-249. [DOI: 10.1002/mc.22488] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Riajul Wahab
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Robert A. Smith
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
| | - Bin Qiao
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology; School of Medicine and Griffith Health Institute; Griffith University; Gold Coast Queensland Australia
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| |
Collapse
|
38
|
An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed. G3-GENES GENOMES GENETICS 2016; 6:2687-92. [PMID: 27527794 PMCID: PMC5015927 DOI: 10.1534/g3.116.027896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population.
Collapse
|
39
|
Haque MH, Gopalan V, Chan KW, Shiddiky MJA, Smith RA, Lam AKY. Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma. Sci Rep 2016; 6:29173. [PMID: 27373372 PMCID: PMC4931577 DOI: 10.1038/srep29173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023] Open
Abstract
Mutation of FAM134B (Family with Sequence Similarity 134, Member B) leading to loss of function of its encoded Golgi protein and has been reported induce apoptosis in neurological disorders. FAM134B mutation is still unexplored in cancer. Herein, we studied the DNA copy number variation and novel mutation sites of FAM134B in a large cohort of freshly collected oesophageal squamous cell carcinoma (ESCC) tissue samples. In ESCC tissues, 37% (38/102) showed increased FAM134B DNA copies whereas 35% (36/102) showed loss of FAM134B copies relative to matched non-cancer tissues. Novel mutations were detected in exons 4, 5, 7, 9 as well as introns 2, 4-8 of FAM134B via HRM (High-Resolution Melt) and Sanger sequencing analysis. Overall, thirty-seven FAM134B mutations were noted in which most (31/37) mutations were homozygous. FAM134B mutations were detected in all the cases with metastatic ESCC in the lymph node tested and in 14% (8/57) of the primary ESCC. Genetic alteration of FAM134B is a frequent event in the progression of ESCCs. These findings imply that mutation might be the major driving source of FAM134B genetic modulation in ESCCs.
Collapse
Affiliation(s)
- Md Hakimul Haque
- Cancer Molecular Pathology in Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology in Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Kwok-Wah Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | | - Robert Anthony Smith
- Cancer Molecular Pathology in Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology in Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
40
|
Hübner CA, Kurth I. Membrane-shaping disorders: a common pathway in axon degeneration. ACTA ACUST UNITED AC 2014; 137:3109-21. [PMID: 25281866 DOI: 10.1093/brain/awu287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with long projections are particularly liable to damage, which is reflected by a large group of hereditary neurodegenerative disorders that primarily affect these neurons. In the group of hereditary spastic paraplegias motor axons of the central nervous system degenerate, while distal pure motor neuropathies, Charcot-Marie-Tooth disorders and the group of hereditary sensory and autonomic neuropathies are characterized by degeneration of peripheral nerve fibres. Because the underlying pathologies share many parallels, the disorders are also referred to as axonopathies. A large number of genes has been associated with axonopathies and one of the emerging subgroups encodes membrane-shaping proteins with a central reticulon homology domain. Association of these proteins with lipid bilayers induces positive membrane curvature and influences the architecture of cellular organelles. Membrane-shaping proteins closely cooperate and directly interact with each other, but their structural features and localization to distinct subdomains of organelles suggests mutually exclusive roles. In some individuals a mutation in a shaping protein can result in upper motor neuron dysfunction, whereas in other patients it can lead to a degeneration of peripheral neurons. This suggests that membrane-shaping disorders might be considered as a continuous disease-spectrum of the axon.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
41
|
Kasem K, Gopalan V, Salajegheh A, Lu CT, Smith RA, Lam AKY. The roles of JK-1 (FAM134B) expressions in colorectal cancer. Exp Cell Res 2014; 326:166-73. [PMID: 24973512 DOI: 10.1016/j.yexcr.2014.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
The aims of the present study are to investigate the clinicopathological correlations of JK-1(FAM134B) expression and its relationship to carcinogenesis in a colorectal adenoma-adenocarcinoma model. JK-1(FAM134B) protein expression was studied in a colon cancer cell line by Western blot and immunocytochemistry. JK-1(FAM134B) expression profiles at mRNA and protein levels were investigated in cancer tissues from 236 patients with colorectal adenocarcinoma and 32 patients with colorectal adenoma using real-time polymerase chain reaction and immunohistochemistry. The findings were then correlated with the clinicopathological features of these tumours. JK-1(FAM134B) protein was demonstrated in the colon cancer cells by Western blot. The protein was located in the nuclei of the tumour cells at both cellular and tissue levels. In colorectal adenocarcinomas, lower levels of JK-1(FAM134B) protein expression were associated with younger age (p=0.032), larger tumour size (p=0.004), advanced cancer stages (p=0.016) and higher rates of cancer recurrence (p=0.04). Also, lower levels of JK-1(FAM134B) mRNA expression were associated with advanced cancer stages (p=0.02) and presence of lymphovascular invasion (p=0.014). Higher JK-1(FAM134B) mRNA and protein expression levels were identified in adenomas and non-neoplastic mucosae, compared to carcinomas (p=0.005). To conclude, JK-1(FAM134B) mRNA expression and JK1 (FAM134B) protein levels varied with the different stages of progression of colorectal tumours. The expression levels of the gene were associated with clinicopathological features in patients with colorectal adenocarcinoma suggesting that JK-1(FAM134B) gene has roles in controlling some steps in the development of the invasive phenotypes from colorectal adenoma to early staged as well as advanced staged colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Kais Kasem
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Alfred K-Y Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
42
|
Ilgaz Aydinlar E, Rolfs A, Serteser M, Parman Y. Mutation in FAM134B causing hereditary sensory neuropathy with spasticity in a Turkish family. Muscle Nerve 2014; 49:774-5. [PMID: 24327336 DOI: 10.1002/mus.24145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Elif Ilgaz Aydinlar
- Department of Neurology, Acibadem University School of Medicine, Gulsuyu mah, Fevzi Cakmak Cad. Divan Sok, Maltepe, 34848, Istanbul, Turkey
| | | | | | | |
Collapse
|
43
|
Esmer C, Díaz Zambrano S, Santos Díaz M, González Huerta L, Cuevas Covarrubias S, Bravo Oro A. Neuropatía sensitiva autonómica hereditaria tipo IIA: manifestaciones neurológicas y esqueléticas tempranas. An Pediatr (Barc) 2014; 80:254-8. [DOI: 10.1016/j.anpedi.2013.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/18/2013] [Indexed: 01/31/2023] Open
|
44
|
Abstract
Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future.
Collapse
|
45
|
Abstract
The inherited neuropathies are a clinically and genetically heterogeneous group of disorders in which there have been rapid advances in the last two decades. Molecular genetic testing is now an integral part of the evaluation of patients with inherited neuropathies. In this chapter we describe the genes responsible for the primary inherited neuropathies. We briefly discuss the clinical phenotype of each of the known inherited neuropathy subgroups, describe algorithms for molecular genetic testing of affected patients and discuss genetic counseling. The basic principles of careful phenotyping, documenting an accurate family history, and testing the available genes in an appropriate manner should identify the vast majority of individuals with CMT1 and many of those with CMT2. In this chapter we also describe the current methods of genetic testing. As advances are made in molecular genetic technologies and improvements are made in bioinformatics, it is likely that the current time-consuming methods of DNA sequencing will give way to quicker and more efficient high-throughput methods, which are briefly discussed here.
Collapse
|
46
|
Davidson GL, Murphy SM, Polke JM, Laura M, Salih MAM, Muntoni F, Blake J, Brandner S, Davies N, Horvath R, Price S, Donaghy M, Roberts M, Foulds N, Ramdharry G, Soler D, Lunn MP, Manji H, Davis MB, Houlden H, Reilly MM. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J Neurol 2012; 259:1673-85. [PMID: 22302274 PMCID: PMC3752368 DOI: 10.1007/s00415-011-6397-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/25/2022]
Abstract
The hereditary sensory and autonomic neuropathies (HSAN, also known as the hereditary sensory neuropathies) are a clinically and genetically heterogeneous group of disorders, characterised by a progressive sensory neuropathy often complicated by ulcers and amputations, with variable motor and autonomic involvement. To date, mutations in twelve genes have been identified as causing HSAN. To study the frequency of mutations in these genes and the associated phenotypes, we screened 140 index patients in our inherited neuropathy cohort with a clinical diagnosis of HSAN for mutations in the coding regions of SPTLC1, RAB7, WNK1/HSN2, FAM134B, NTRK1 (TRKA) and NGFB. We identified 25 index patients with mutations in six genes associated with HSAN (SPTLC1, RAB7, WNK1/HSN2, FAM134B, NTRK1 and NGFB); 20 of which appear to be pathogenic giving an overall mutation frequency of 14.3%. Mutations in the known genes for HSAN are rare suggesting that further HSAN genes are yet to be identified. The p.Cys133Trp mutation in SPTLC1 is the most common cause of HSAN in the UK population and should be screened first in all patients with sporadic or autosomal dominant HSAN.
Collapse
Affiliation(s)
- G. L. Davidson
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK. MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - S. M. Murphy
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - J. M. Polke
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK. MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M. Laura
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M. A. M. Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - F. Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guildford St, London, UK
| | - J. Blake
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK. Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - S. Brandner
- Division of Neuropathology, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London, UK
| | - N. Davies
- Department of Neurology, Queen Elizabeth Hospital, Birmingham, UK
| | - R. Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - S. Price
- Department of Clinical Genetics, Oxford Radcliffe Hospital, Oxford, UK
| | - M. Donaghy
- Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - M. Roberts
- Department of Neurology, University Hospital of South Manchester, Manchester, UK
| | - N. Foulds
- Clinical Genetics Service, Southampton University Hospitals Trust, Southampton, UK
| | - G. Ramdharry
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - D. Soler
- Department of Paediatrics, Mater Dei Hospital, Msida, Malta
| | - M. P. Lunn
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - H. Manji
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M. B. Davis
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK. MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - H. Houlden
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK. MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M. M. Reilly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
47
|
Rotthier A, Baets J, Timmerman V, Janssens K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 2012; 8:73-85. [PMID: 22270030 DOI: 10.1038/nrneurol.2011.227] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) are a clinically and genetically heterogeneous group of disorders of the PNS. Progressive degeneration, predominantly of sensory and autonomic neurons, is the main pathological feature in patients with HSAN, and causes prominent sensory loss and ulcerative mutilations in combination with variable autonomic and motor disturbances. Advances in molecular genetics have enabled identification of disease-causing mutations in 12 genes, and studies on the functional effects of these mutations are underway. Although some of the affected proteins--such as nerve growth factor and its receptor--have obvious nerve-specific roles, others are ubiquitously expressed proteins that are involved in sphingolipid metabolism, vesicular transport, transcription regulation and structural integrity. An important challenge in the future will be to understand the common molecular pathways that result in HSANs. Unraveling the mechanisms that underlie sensory and autonomic neurodegeneration could assist in identifying targets for future therapeutic strategies in patients with HSAN. This Review highlights key advances in the understanding of HSANs, including insights into the molecular mechanisms of disease, derived from genetic studies of patients with these disorders.
Collapse
Affiliation(s)
- Annelies Rotthier
- VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | | | | | | |
Collapse
|