1
|
Teichner EM, Subtirelu RC, Patil S, Parikh C, Ashok AB, Talasila S, Anderson VA, Khan T, Su Y, Werner T, Alavi A, Revheim ME. Positron Emission Tomography (PET) in presurgical planning of anterior temporal lobectomy: A systematic review of efficacy and limitations. Clin Neurol Neurosurg 2024; 246:108562. [PMID: 39326280 DOI: 10.1016/j.clineuro.2024.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Temporal lobe epilepsy (TLE), a debilitating neurological disorder, necessitates refined diagnostic and treatment strategies. This comprehensive review appraises the potential of positron emission tomography (PET) in enhancing the presurgical planning of Anterior Temporal Lobectomy (ATL) for patients afflicted with TLE. METHODS A comprehensive literature search was conducted using the PubMed, SCOPUS, and ScienceDirect databases from 1985 to 2022, following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for studies investigating PET and ATL. This review studied a range of radiotracers, including FDG, H2O, FMZ, MPPF, and FCWAY, analyzing their efficacy in detecting epileptogenic foci, establishing resection boundaries, and predicting postoperative outcomes. The study paid special attention to cases where MRI findings were inconclusive. RESULTS A total of 52 studies were included in the final analysis. Our analysis revealed that FDG-PET imaging was instrumental in identifying seizure foci and predicting postoperative results. It exhibited significant value in situations where structural abnormalities were absent on MRI scans. Furthermore, newer radiotracers such as 5-HT1A antagonists, FCWAY and MPPF, presented promising potential for localizing seizure foci, particularly in MRI-negative TLE, despite their comparatively limited current usage. CONCLUSION PET imaging, although challenged by issues such as radiation exposure, limited accessibility, and high costs, offers considerable promise. Integration with other imaging modalities, such as EEG and MRI, has contributed to improved localization of epileptogenic foci and subsequently, enhanced surgical outcomes. Further research must focus on establishing the relative efficacy and optimal combinations of these radiotracers in the orchestration of ATL surgical planning and prognostication of postoperative outcomes for TLE patients. Encouragingly, these advancements hold the potential to revolutionize the management of TLE, delivering a better quality of life for patients.
Collapse
Affiliation(s)
- Eric M Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert C Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shiv Patil
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arjun B Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victoria A Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Talha Khan
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Su
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Kumar A, Shandal V, Juhász C, Chugani HT. PET imaging in epilepsy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Niu N, Xing H, Wu M, Ma Y, Liu Y, Ba J, Zhu S, Li F, Huo L. Performance of PET imaging for the localization of epileptogenic zone in patients with epilepsy: a meta-analysis. Eur Radiol 2021; 31:6353-6366. [PMID: 33523306 DOI: 10.1007/s00330-020-07645-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The aim of this meta-analysis was to estimate the clinical use value of 11C-FMZ and 18F-FDG in PET for the localization of epileptogenic zone and to provide evidence for practitioners' clinical decision-making. METHODS We searched PubMed and Embase in a time frame from inception to May 31, 2020. Studies utilizing FMZ or FDG-PET or FDG-PET/MRI used in patients with epilepsy, with EEG or surgical outcomes as the gold standard and corresponding outcomes such as concordance rates of PET or PET/MRI scan compared with reference standard, absolute numbers of participants with true-positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN) results in FDG or FMZ PET. Pooled concordance rates, overall sensitivity, and specificity of 11C-FMZ-PET and 18F-FDG-PET were calculated. RESULTS In total, 44 studies met the inclusion criteria. The pooled concordance rates of FDG-PET, FMZ-PET, and FDG-PET/MRI coregistration compared with reference standard were 0.67 (95% CI: 0.60-0.73), 0.75 (95% CI: 0.57-0.93), and 0.93 (95% CI: 0.89-0.97), respectively. The concordance rate of 18F-FDG-PET in patients with temporal lobe epilepsy (TLE) was 0.79 (0.63; 0.92). The overall sensitivity and specificity of 18F-FDG-PET were 0.66 (95% CI: 0.58-0.73) and 0.71 (95% CI: 0.63-0.78), respectively. 11C-FMZ-PET displayed an overall sensitivity of 0.62 (95% CI: 0.49-0.73) and specificity of 0.73 (95% CI: 0.59-0.84). CONCLUSIONS Both 11C-FMZ PET and 18F-FDG PET are the choice of modalities for the localization of epileptogenic zone, especially when coregistered with MRI. KEY POINTS • 11C-FMZ-PET may be more helpful than 18F-FDG-PET in the localization of epilepsy foci. • Coregistration of FDG-PET and MRI is recommended in the localization of epileptogenic zone.
Collapse
Affiliation(s)
- Na Niu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Meiqi Wu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yanru Ma
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yimin Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Jiantao Ba
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Shikun Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
| |
Collapse
|
4
|
McGinnity CJ, Riaño Barros DA, Hinz R, Myers JF, Yaakub SN, Thyssen C, Heckemann RA, de Tisi J, Duncan JS, Sander JW, Lingford-Hughes A, Koepp MJ, Hammers A. Αlpha 5 subunit-containing GABA A receptors in temporal lobe epilepsy with normal MRI. Brain Commun 2021; 3:fcaa190. [PMID: 33501420 PMCID: PMC7811756 DOI: 10.1093/braincomms/fcaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors containing the α5 subunit mediate tonic inhibition and are widely expressed in the limbic system. In animals, activation of α5-containing receptors impairs hippocampus-dependent memory. Temporal lobe epilepsy is associated with memory impairments related to neuron loss and other changes. The less selective PET ligand [11C]flumazenil has revealed reductions in GABAA receptors. The hypothesis that α5 subunit receptor alterations are present in temporal lobe epilepsy and could contribute to impaired memory is untested. We compared α5 subunit availability between individuals with temporal lobe epilepsy and normal structural MRI ('MRI-negative') and healthy controls, and interrogated the relationship between α5 subunit availability and episodic memory performance, in a cross-sectional study. Twenty-three healthy male controls (median ± interquartile age 49 ± 13 years) and 11 individuals with MRI-negative temporal lobe epilepsy (seven males; 40 ± 8) had a 90-min PET scan after bolus injection of [11C]Ro15-4513, with arterial blood sampling and metabolite correction. All those with epilepsy and six controls completed the Adult Memory and Information Processing Battery on the scanning day. 'Bandpass' exponential spectral analyses were used to calculate volumes of distribution separately for the fast component [V F; dominated by signal from α1 (α2, α3)-containing receptors] and the slow component (V S; dominated by signal from α5-containing receptors). We made voxel-by-voxel comparisons between: the epilepsy and control groups; each individual case versus the controls. We obtained parametric maps of V F and V S measures from a single bolus injection of [11C]Ro15-4513. The epilepsy group had higher V S in anterior medial and lateral aspects of the temporal lobes, the anterior cingulate gyri, the presumed area tempestas (piriform cortex) and the insulae, in addition to increases of ∼24% and ∼26% in the ipsilateral and contralateral hippocampal areas (P < 0.004). This was associated with reduced V F:V S ratios within the same areas (P < 0.009). Comparisons of V S for each individual with epilepsy versus controls did not consistently lateralize the epileptogenic lobe. Memory scores were significantly lower in the epilepsy group than in controls (mean ± standard deviation -0.4 ± 1.0 versus 0.7 ± 0.3; P = 0.02). In individuals with epilepsy, hippocampal V S did not correlate with memory performance on the Adult Memory and Information Processing Battery. They had reduced V F in the hippocampal area, which was significant ipsilaterally (P = 0.03), as expected from [11C]flumazenil studies. We found increased tonic inhibitory neurotransmission in our cohort of MRI-negative temporal lobe epilepsy who also had co-morbid memory impairments. Our findings are consistent with a subunit shift from α1/2/3 to α5 in MRI-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Daniela A Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
| | - James F Myers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Siti N Yaakub
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Charlotte Thyssen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103SW, The Netherlands
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias J Koepp
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Alexander Hammers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neurodis Foundation, CERMEP, Imagerie du Vivant, 69003 Lyon, France
| |
Collapse
|
5
|
Avendaño-Estrada A, Velasco F, Velasco AL, Cuellar-Herrera M, Saucedo-Alvarado PE, Marquez-Franco R, Rivera-Bravo B, Ávila-Rodríguez MA. Quantitative Analysis of [18F]FFMZ and [18F]FDG PET Studies in the Localization of Seizure Onset Zone in Drug-Resistant Temporal Lobe Epilepsy. Stereotact Funct Neurosurg 2019; 97:232-240. [PMID: 31722358 DOI: 10.1159/000503692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Positron emission tomography (PET) imaging in epilepsy is an in vivo technique that allows the localization of a possible seizure onset zone (SOZ) during the interictal period. Stereo-electro-encephalography (SEEG) is the gold standard to define the SOZ. The objective of this research was to evaluate the accuracy of PET imaging in localizing the site of SOZ compared with SEEG. METHODS Seven patients with refractory temporal lobe epilepsy (Ep) and 2 healthy controls (HC) underwent 2 PET scans, one with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and another with 2'-[18F]fluoroflumazenil (FFMZ), acquired 1 day apart. FDG was acquired for 10 min (static scan) 1 h after administration. An FFMZ scan was acquired for 60 min from radiopharmaceutical administration in a dynamic mode. Each brain PET image was segmented using a standard template implemented in PMOD 3.8. The pons was used as the reference region for modeling of the nondisplaceable binding potential (BPND)for FFMZ, and to obtain uptake ratios for FDG. SEEG studies of patients were performed as a part of their surgical evaluation to define the SOZ. RESULTS Well-defined differences between HC and Ep were found with both radiopharmaceuticals, showing the utility to identify abnormal brain regions using quantitative PET imaging. Lateralization of the SOZ findings by PET (lower uptake/binding in a specific brain hemisphere) matched in 86% for FFMZ and 71% for FDG with SEEG data. CONCLUSION Quantitative PET imaging is an excellent complementary tool that matches reasonably well with SEEG to define SOZ in presurgical evaluation.
Collapse
Affiliation(s)
- Arturo Avendaño-Estrada
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Velasco
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de México, Mexico City, Mexico
| | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de México, Mexico City, Mexico
| | - Manola Cuellar-Herrera
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de México, Mexico City, Mexico
| | - Pablo E Saucedo-Alvarado
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de México, Mexico City, Mexico
| | - Rene Marquez-Franco
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de México, Mexico City, Mexico
| | - Belen Rivera-Bravo
- Unidad PET/CT, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico,
| |
Collapse
|
6
|
Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, Dhaher R, Matuskey D, Baum E, Holden D, Spencer DD, Mercier J, Hannestad J, Huang Y, Carson RE. Imaging synaptic density in the living human brain. Sci Transl Med 2017; 8:348ra96. [PMID: 27440727 DOI: 10.1126/scitranslmed.aaf6667] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022]
Abstract
Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA.
| | - Nabeel B Nabulsi
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | - Kamil Detyniecki
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Shu-Fei Lin
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Ming-Kai Chen
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | - David Matuskey
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Evan Baum
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Daniel Holden
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University, New Haven, CT 06520, USA
| | | | | | - Yiyun Huang
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale Positron Emission Tomography Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA. Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Kumar A, Chugani HT. The Role of Radionuclide Imaging in Epilepsy, Part 1: Sporadic Temporal and Extratemporal Lobe Epilepsy. J Nucl Med Technol 2017; 45:14-21. [PMID: 28258205 DOI: 10.2967/jnumed.112.114397] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/06/2013] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is one of the most common yet diverse neurologic disorders, affecting almost 1%-2% of the population. Presently, radionuclide imaging such as PET and SPECT is not used in the primary diagnosis or evaluation of recent-onset epilepsy. However, it can play a unique and important role in certain specific situations, such as in noninvasive presurgical localization of epileptogenic brain regions in intractable-seizure patients being considered for epilepsy surgery. Radionuclide imaging can be particularly useful if MR imaging is either negative for lesions or shows several lesions of which only 1 or 2 are suspected to be epileptogenic and if electroencephalogram changes are equivocal or discordant with the structural imaging. Similarly, PET and SPECT can also be useful for evaluating the functional integrity of the rest of the brain and may provide useful information on the possible pathogenesis of the neurocognitive and behavioral abnormalities frequently observed in these patients.
Collapse
Affiliation(s)
- Ajay Kumar
- PET Center, Department of Pediatrics, Neurology, and Radiology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| | - Harry T Chugani
- PET Center, Department of Pediatrics, Neurology, and Radiology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
8
|
Hodolic M, Topakian R, Pichler R. (18)F-fluorodeoxyglucose and (18)F-flumazenil positron emission tomography in patients with refractory epilepsy. Radiol Oncol 2016; 50:247-53. [PMID: 27679539 PMCID: PMC5024661 DOI: 10.1515/raon-2016-0032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder characterized by epileptic seizures as a result of excessive neuronal activity in the brain. Approximately 65 million people worldwide suffer from epilepsy; 20-40% of them are refractory to medication therapy. Early detection of disease is crucial in the management of patients with epilepsy. Correct localization of the ictal onset zone is associated with a better surgical outcome. The modern non-invasive techniques used for structural-functional localization of the seizure focus includes electroencephalography (EEG) monitoring, magnetic resonance imaging (MRI), single photon emission tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT). PET/CT can predict surgical outcome in patients with refractory epilepsy. The aim of the article is to review the current role of routinely used tracer 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) as well as non routinely used (18)F-Flumazenil ((18)F-FMZ) tracers PET/CT in patients with refractory epilepsy. CONCLUSIONS Functional information delivered by PET and the morphologic information delivered by CT or MRI are essential in presurgical evaluation of epilepsy. Nowadays (18)F-FDG PET/CT is a routinely performed imaging modality in localization of the ictal onset zone in patients with refractory epilepsy who are unresponsive to medication therapy. Unfortunately, (18)F-FDG is not an ideal PET tracer regarding the management of patients with epilepsy: areas of glucose hypometabolism do not correlate precisely with the proven degree of change within hippocampal sclerosis, as observed by histopathology or MRI. Benzodiazepine-receptor imaging is a promising alternative in nuclear medicine imaging of epileptogenic focus. The use of (11)C-FMZ in clinical practice has been limited by its short half-life and necessitating an on-site cyclotron for production. Therefore, (18)F-FMZ might be established as one of the tracers of choice for patients with refractory epilepsy because of better sensitivity and anatomical resolution.
Collapse
Affiliation(s)
- Marina Hodolic
- Nuclear Medicine Research Department, Iason, Graz, Austria
- Department of Nuclear Medicine, Palacký University Olomouc, Czech Republic
| | - Raffi Topakian
- Department of Neurology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Robert Pichler
- Institute of Nuclear Medicine, Kepler Universitätsklinikum, Neuromed Campus, Linz, Austria
| |
Collapse
|
9
|
Stanišić M, Coello C, Ivanović J, Egge A, Danfors T, Hald J, Heminghyt E, Mikkelsen MM, Krossnes BK, Pripp AH, Larsson PG. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochir (Wien) 2015; 157:1905-16. [PMID: 26350516 PMCID: PMC4604506 DOI: 10.1007/s00701-015-2578-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
Background The area of predominant perifocal [18F]fluorodeoxyglucose (18F-FDG) hypometabolism and reduced [11C]flumazenil (11C-FMZ) -binding on PET scans is currently considered to contain the epileptogenic zone and corresponds anatomically to the area localizing epileptogenicity in patients with temporal lobe epilepsy (TLE). The question is whether the volume of the perifocal pre-operative PET abnormalities, the extent of their resection, and the volume of the non-resected abnormalities affects the post-operative seizure outcome. Methods The sample group consisted of 32 patients with mesial temporal sclerosis who underwent anteromedial temporal lobe resection for refractory TLE. All patients had pathologic perifocal findings on both of the PET modalities as well as on the whole-brain MRI. The volumetric data of the PET and MRI abnormalities within the resected temporal lobe were estimated by automated quantitative voxel-based analysis. The obtained volumetric data were investigated in relation to the outcome subgroups of patients (Engel classification) determined at the 2-year post-operative follow-up. Results The mean volume of the pre-operative perifocal 18F-FDG- and 11C-FMZ PET abnormalities in the volumes of interest (VOI) of the epileptogenic temporal lobe, the mean resected volume of these PET abnormalities, the mean volume of the non-resected PET abnormalities, and the mean MRI-derived resected volume were not significantly related to the outcome subgroups and had a low prediction for individual freedom from seizures. Conclusions The extent of pre-surgical perifocal PET abnormalities, the extent of their resection, and the extent of non-resected abnormalities were not useful predictors of individual freedom from seizures in patients with TLE.
Collapse
Affiliation(s)
- Milo Stanišić
- Department of Neurosurgery Rikshospitalet, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway.
| | | | - Jugoslav Ivanović
- Department of Neurosurgery Rikshospitalet, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway
| | - Arild Egge
- Department of Neurosurgery Rikshospitalet, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway
| | - Torsten Danfors
- Section of Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - John Hald
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Einar Heminghyt
- Department of Clinical Psychology and Neuropsychology, National Center for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Marjan Makki Mikkelsen
- Department of Adult Epilepsy, National Center for Epilepsy, Oslo University Hospital, Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Center of Biostatistics and Epidemiology, Research Support Service, Oslo University Hospital, Oslo, Norway
| | - Pål Gunnar Larsson
- Clinical Neurophysiologic Laboratories, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Sarikaya I. PET studies in epilepsy. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2015; 5:416-430. [PMID: 26550535 PMCID: PMC4620171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. (18)Fluoro-2-deoxyglucose ((18)F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced (11)C-flumazenil (GABAA-cBDZ) and (18)F-MPPF (5-HT1A serotonin) and increased (11)C-cerfentanil (mu opiate) and (11)C-MeNTI (delta opiate) bindings in the area of seizure. (11)C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that (11)C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex. (15)O-H2O PET was reported to have a similar sensitivity to FDG-PET in detecting epileptic foci.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Nuclear Medicine Section, Baskent University Hospital Istanbul, Turkey
| |
Collapse
|
11
|
Juhász C. The impact of positron emission tomography imaging on the clinical management of patients with epilepsy. Expert Rev Neurother 2013; 12:719-32. [PMID: 22650174 DOI: 10.1586/ern.12.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical positron emission tomography (PET) imaging of human epilepsy has a 30-year history, but it is still searching for its exact role among rapidly advancing neuroimaging techniques. The vast majority of epilepsy PET studies used this technique to improve detection of epileptic foci for surgical resection. Here, we review the main trends emerging from three decades of PET research in epilepsy, with a particular emphasis on how PET imaging has impacted on the clinical management of patients with intractable epilepsy. While reviewing the latest studies, we also present an argument for a changing role of PET and molecular imaging in the future, with an increasing focus on epileptogenesis and newly discovered molecular mechanisms of epilepsy. These new applications will be facilitated by technological advances, such as the use of integrated PET/MRI systems and utilization of novel radiotracers, which may also enhance phenotype-genotype correlations and assist rational, individualized treatment strategies.
Collapse
Affiliation(s)
- Csaba Juhász
- Department of Pediatrics, Wayne State University School of Medicine, PET Center, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
A brief review of Japanese guidelines for the clinical use of 18F-FDG-PET/MRI 2012 (Ver 1.0). Ann Nucl Med 2013; 27:309-13. [DOI: 10.1007/s12149-013-0710-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
13
|
The development of potential new fluorine-18 labelled radiotracers for imaging the GABAA receptor. Bioorg Med Chem Lett 2013; 23:821-6. [DOI: 10.1016/j.bmcl.2012.11.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 12/13/2022]
|
14
|
Abstract
Among various neuroimaging techniques used for the evaluation of children with intractable epilepsy, positron emission tomography (PET) employing various PET tracers plays a very important role, especially in localizing areas of focal cortical dysplasia. This is particularly important in infants, where incomplete myelination may limit the structural information provided by MRI. In children with tuberous sclerosis, PET can differentiate between epileptogenic and nonepileptogenic tubers, previously not thought to be possible with neuroimaging. PET may reveal cortical or subcortical abnormalities in various epilepsy syndromes, such as infantile spasms and Landau-Kleffner syndrome. Various other applications of PET have included the investigation of epileptic networks, secondary epileptic foci, dual pathology, and neuroinflammation. Finally, PET can also be used to evaluate various cognitive processes and their underlying neurological substrates and can help in addressing the issue of brain plasticity and reorganization, related to epilepsy.
Collapse
Affiliation(s)
- Ajay Kumar
- Departments of Pediatrics and Neurology, School of Medicine, Wayne State University, and PET Center, Children's Hospital of Michigan, Detroit, MI, USA
| | | |
Collapse
|
15
|
Windhorst AD, Klok RP, Koolen CL, Visser GWM, Herscheid JDM. Labeling of [18F]flumazenil via instant fluorination, a new nucleophilic fluorination method. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.25804401327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Kumar A, Semah F, Chugani HT, Theodore WH. Epilepsy diagnosis: positron emission tomography. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:409-24. [PMID: 22938986 DOI: 10.1016/b978-0-444-52898-8.00026-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ajay Kumar
- Department of Pediatrics & Neurology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | |
Collapse
|
17
|
Shao X, Hoareau R, Runkle AC, Tluczek LJM, Hockley BG, Henderson BD, Scott PJH. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [11C]-labeled radiopharmaceuticals using a Tracerlab FXC-Pro. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1937] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xia Shao
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| | - Raphaël Hoareau
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| | - Adam C. Runkle
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| | - Louis J. M. Tluczek
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| | - Brian G. Hockley
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| | - Bradford D. Henderson
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| | - Peter J. H. Scott
- Department of Radiology; The University of Michigan School of Medicine; Ann Arbor; MI; 48109; USA
| |
Collapse
|
18
|
Giovacchini G, Squitieri F, Esmaeilzadeh M, Milano A, Mansi L, Ciarmiello A. PET translates neurophysiology into images: A review to stimulate a network between neuroimaging and basic research. J Cell Physiol 2011; 226:948-61. [DOI: 10.1002/jcp.22451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Muzik O, Chugani DC, Shen C, da Silva EA, Shah J, Shah A, Canady A, Watson C, Chugani HT. Objective Method for Localization of Cortical Asymmetries Using Positron Emission Tomography to Aid Surgical Resection of Epileptic Foci. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/10929089809148132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Imaging malformations of cortical development. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18809040 DOI: 10.1016/s0072-9752(07)87026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
21
|
Abstract
Intractable seizures can have a devastating effect on the development of a child. In children with intractable epilepsy that is refractory to medication, surgical treatment may be needed. Magnetic resonance imaging is an essential neuroimaging tool to assist in the identification of an epileptogenic substrate. The interpretation of MR images should be done in the context of clinical knowledge of the seizure symptomatology and electroencephalographic findings. Quantitative processing of structural MR data and advanced MR imaging such as diffusion tensor imaging and MR spectroscopy have the potential to identify subtle lesions that may otherwise have been missed. In addition to lesion localization, identification of eloquent cortex and white matter tracts are also an essential component of epilepsy surgery workup. Functional MR imaging maps the sensorimotor cortex and also lateralizes language. Diffusion tensor imaging tractography can be used to map the corticospinal tracts and the optic radiations. In addition to MR imaging, magnetoencephalography and nuclear medicine studies such as PET and SPECT scanning may be used to lateralize seizure focus when clinical, electrophysiological, and structural MR imaging findings are discordant.
Collapse
|
22
|
Voxel- and ROI-based statistical analyses of PET parameters for guidance in the surgical treatment of intractable mesial temporal lobe epilepsy. Ann Nucl Med 2008; 22:495-503. [DOI: 10.1007/s12149-008-0140-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 02/20/2008] [Indexed: 10/21/2022]
|
23
|
|
24
|
Hammers A, Panagoda P, Heckemann RA, Kelsch W, Turkheimer FE, Brooks DJ, Duncan JS, Koepp MJ. [11C]Flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling? J Cereb Blood Flow Metab 2008; 28:207-16. [PMID: 17579659 DOI: 10.1038/sj.jcbfm.9600515] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reduced signal on [(11)C]]flumazenil (FMZ) positron emission tomography (PET) is associated with epileptogenic foci. Linear correlations within individuals between parametric and nonparametric images of FMZ binding have been shown, and various methods have been used, without comparison of diagnostic usefulness. Using hippocampal sclerosis (HS) as a test case, we formally compare the diagnostic yield of parametric images obtained either with a parent tracer arterial plasma input function and spectral analysis (yielding volume-of-distribution (VD) images), or with an image-based input function and the simplified reference tissue model (binding potential images, BP-SRTM) with the diagnostic yield of semiquantitative-integrated (ADD) images from 10 to 20 or 20 to 40 mins (ADD1020 and ADD2040). Dynamic 90-min [(11)C]FMZ PET datasets and arterial plasma input functions were available for 15 patients with medically refractory medial temporal lobe epilepsy (TLE) and histologically verified unilateral HS and for 13 control subjects. SPM2 was used for analysis. ADD1020 and ADD2040 images showed decreased FMZ uptake ipsilateral to the epileptogenic hippocampus in 13/15 cases; 6/13 had bilateral decreases in the ADD1020 analysis and 5/13 in the ADD2040 analysis. BP-SRTM images detected ipsilateral decreases in 12/15 cases, with bilateral decreases in three. In contrast, VD images showed ipsilateral hippocampal decreases in all 15 patients, with bilateral decreases in three patients. Bilateral decreases in the ADD images tended to be more symmetrical and in one case were more marked contralaterally. Full quantification with an image-independent input should ideally be used in the evaluation of FMZ PET; at least in TLE, intrasubject correlations do not predict equivalent clinical usefulness.
Collapse
Affiliation(s)
- Alexander Hammers
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Studies using positron emission tomography (PET) have advanced our pathophysiological and biochemical understanding of focal and generalized epilepsies. H(2) (15)O PET allows quantification of cerebral blood flow and (18)F-fluorodeoxyglucose-PET quantification of cerebral glucose metabolism. Neurotransmitters are directly responsible for modulating synaptic activity and newer PET tracers can provide information about synaptic activity and specific ligand-receptor relationships, which are important for epileptogenesis and the spread of epileptic activity.
Collapse
Affiliation(s)
- Matthias J Koepp
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
26
|
Gorji A, Straub H, Speckmann EJ. Epilepsy surgery: perioperative investigations of intractable epilepsy. ACTA ACUST UNITED AC 2006; 210:525-37. [PMID: 16180018 DOI: 10.1007/s00429-005-0043-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent advances in our understanding of the basic mechanisms of epilepsy have derived, to a large extent, from increasing ability to carry out detailed studies on patients surgically treated for intractable epilepsy. Clinical and experimental perioperative studies divide into three different phases: before the surgical intervention (preoperative studies), on the intervention itself (intraoperative studies), and on the period when the part of the brain that has to be removed is available for further investigations (postoperative studies). Before surgery, both structural and functional neuroimaging techniques, in addition to their diagnostic roles, could be used to investigate the pathophysiological mechanisms of seizure attacks in epileptic patients. During epilepsy surgery, it is possible to insert microdialysis catheters and electroencephalogram electrodes into the brain tissues in order to measure constituents of extracellular fluid and record the bioelectrical activity. Subsequent surgical resection provides tissue that can be used for electrophysiological, morphological, and molecular biological investigations. To take full advantage of these opportunities, carefully designed experimental protocols are necessary to compare the data from different phases and characterize abnormalities in the human epileptic brain.
Collapse
Affiliation(s)
- A Gorji
- Institut für Physiologie I, Universität Münster, Robert-Koch-Strasse 27a, 48149 Münster, Germany.
| | | | | |
Collapse
|
27
|
Multitracer PET imaging in Heidenhain variant of Creutzfeldt–Jakob disease. J Neurol 2006. [DOI: 10.1007/s00415-005-0016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Thomas A, Klein JC, Galldiks N, Hilker R, Grond M, Jacobs AH. Multitracer PET imaging in Heidenhain variant of Creutzfeldt-Jakob disease. J Neurol 2005; 253:258-60. [PMID: 16047109 DOI: 10.1007/s00415-005-0953-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 05/03/2005] [Accepted: 05/23/2005] [Indexed: 11/30/2022]
|
29
|
Bouvard S, Costes N, Bonnefoi F, Lavenne F, Mauguière F, Delforge J, Ryvlin P. Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenil-PET study. Brain 2005; 128:1330-43. [PMID: 15758035 DOI: 10.1093/brain/awh470] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have undertaken a test-re-test [11C]flumazenil (FMZ) PET study in 10 drug-resistant epileptic patients, including six with a mesiotemporal epilepsy (MTE), and 10 normal controls, in order to investigate seizure-related short-term plasticity of benzodiazepine (BZD) receptors. All subjects underwent two FMZ-PET scans at a 1 week interval. Patients benefited from a concurrent video-EEG monitoring which allowed determination of the duration of the interictal period (IP) preceding each PET. Test-re-test whole brain B'(max) variations, evaluated with a partial-saturation injection protocol, were similarly observed in patients and controls, suggesting a physiological modulation of BZD receptors. Five patients (50%), but no controls, also demonstrated clinically significant test-re-test FMZ-PET variations in the mesial temporal region. This was observed in all three patients with MTE and no hippocampal atrophy in whom only the PET study associated with the shortest IP correctly identified the epileptogenic zone. Statistical analysis revealed a significant effect of IP duration on BZD receptor B'(max) in MTE patients, suggesting that the shorter the IP, the lower the B'(max) in the epileptogenic hippocampus. FMZ-PET appears to be an interesting tool for investigating both normal and abnormal short-term modulations of the BZD receptor system, and should ideally be performed within a few days following a seizure in patients with MTE and a normal MRI.
Collapse
Affiliation(s)
- Sandrine Bouvard
- EA1880, Federal Institute of Neurosciences, Neurological Hospital, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The role of molecular neuroimaging techniques is increasing in the understanding of pathophysiological mechanism of diseases. To date, positron emission tomography is the most powerful tool for the non-invasive study of biochemical and molecular processes in humans and animals in vivo. With the development in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analyzed by PET. This opens up the exciting and rapidly field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. Besides its usefulness for basic research positron emission tomography has been proven to be superior to conventional diagnostic methods in several clinical indications. This is illustrated by detection of biological or anatomic changes that cannot be demonstrated by computed tomography or magnetic resonance imaging, as well as even before symptoms are expressed. The present review summarizes the clinical use of positron emission tomography in neuroscience that has helped elucidate the pathophysiology of a number of diseases and has suggested strategies in the treatment of these patients. Special reference is given to the neurovascular, neurodegenerative and neurooncological disease.
Collapse
Affiliation(s)
- B Schaller
- Max-Planck-Institut für Neurologische Forschung, Köln
| |
Collapse
|
31
|
Abstract
Over the past decade there have been many advances in data acquisition and analysis for structural and functional neuroimaging of people with epilepsy. New imaging sequences and analysis techniques have increased the resolution of images such that underlying structural pathology can be seen in many patients with "cryptogenic" epilepsy. When an epileptogenic lesion is present, antiepileptic drugs alone rarely prevent seizures. However, the success of surgical treatment is improved when a structural lesion has been identified. Lesions might not overlap with the area of the cortex generating seizures and may continue into areas sustaining normal functions. To prevent postsurgical morbidity, the spatial relation between functionally important areas and the epileptogenic lesion must be assessed before surgery. In this review we describe the potential of different neuroimaging techniques to show lesions, assess neuronal function, and assist with the prognosis of postsurgical outcome in patients with refractory focal epilepsy.
Collapse
|
32
|
Hammers A. Flumazenil positron emission tomography and other ligands for functional imaging. Neuroimaging Clin N Am 2004; 14:537-51. [PMID: 15324863 DOI: 10.1016/j.nic.2004.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most PET receptor studies in idiopathic generalized epilepsy conducted to date include only small numbers of patients and should be interpreted with caution. Differences between earlier and later studies can largely be explained by different inclusion criteria and improving methodology. The finding of some increase of GABAA receptor binding in IGE has a potential pathologic basis in microdysgenesis. Future studies aiming to elucidate the pathophysiology of IGEs may benefit from the use of subtype-specific opioid ligands, available now, and GABAB ligands, if and when they become available.
Collapse
Affiliation(s)
- Alexander Hammers
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
33
|
Abstract
Positron emission tomography (PET) is a powerful imaging technique which enables in vivo examination of brain functions. It allows non-invasive quantification of cerebral blood flow, metabolism, and receptor binding. In the past PET has been employed mainly in the research setting due to the relatively high costs and complexity of the support infrastructure, such as cyclotrons, PET scanners, and radiochemistry laboratories. In recent years, because of advancements in technology and proliferation of PET scanners, PET is being increasingly used in clinical neurology to improve our understanding of disease pathogenesis, to aid with diagnosis, and to monitor disease progression and response to treatment. This article aims to provide an overview of the principles of PET and its applications to clinical neurology.
Collapse
Affiliation(s)
- Y F Tai
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK
| | | |
Collapse
|
34
|
Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS. Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 2003; 126:1300-18. [PMID: 12764053 DOI: 10.1093/brain/awg138] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In 20-30% of potential surgical candidates with refractory focal epilepsy, standard MRI does not identify the cause. gamma-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain. [(11)C]Flumazenil (FMZ) PET images most subtypes of GABA(A) receptors, present on most neurons. We investigated [(11)C]FMZ binding in grey and white matter in 16 normal controls and in 44 patients with refractory neocortical focal epilepsy and normal optimal MRI. Fourteen patients had unilateral frontal lobe epilepsy, five occipital lobe epilepsy (OLE), six parietal lobe epilepsy (PLE) and 19 neocortical epilepsy that was not clearly lobar. Parametric images of FMZ volume of distribution (FMZ-V(d)) were computed. Statistical parametric mapping (SPM99) with explicit masking, including the white matter, was used to analyse individual patients and groups. Thirty-three of the 44 patients showed focal abnormal FMZ-V(d); increases in 16, decreases in eight, and both increases and decreases in nine. In seven patients, the increases in FMZ binding were periventricular, in locations normally seen in periventricular nodular heterotopia on MRI. There were frontal and parietal increases in FMZ binding in grey and white matter in the PLE group and decreases in the cingulate gyrus in the OLE group. FMZ binding increases, particularly periventricular increases, were a prominent feature of MRI-negative focal epilepsies and may represent neuronal migration disturbances.
Collapse
Affiliation(s)
- Alexander Hammers
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
35
|
Buck A, Kamel E. [Clinical impact of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of brain diseases]. ACTA MEDICA AUSTRIACA 2003; 29:156-61. [PMID: 12506766 DOI: 10.1046/j.1563-2571.2002.02041.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review it will be discussed in which neurological disorders positron emission tomography can yield important diagnostic information. Because positron emission tomography is an expensive method indications have to be clearly defined. One important question concerns the differentiation of tumor recurrence and scar due to radiation therapy or an operation. The grading of brain tumors is another application. In HIV patients fluorodeoxyglucose positron emission tomography can separate lymphoma and toxoplasmosis. In the evaluation of dementia positron emission tomography can help to clarify the differential diagnosis. Another important area is the presurgical evaluation of epilepsy patients and patients with cerebrovascular disease in whom a surgical revascularisation procedure is planned. In extrapyramidal disorders, positron emission tomography can often help to establish the final diagnosis.
Collapse
Affiliation(s)
- A Buck
- PET-Zentrum, Nuklearmedizin des Universitätsspitals Zürich, Rämistrasse 100, CH-8091 Zürich, Schweiz.
| | | |
Collapse
|
36
|
Goethals I, Van de Wiele C, Boon P, Dierckx R. Is central benzodiazepine receptor imaging useful for the identification of epileptogenic foci in localization-related epilepsies? Eur J Nucl Med Mol Imaging 2003; 30:325-8. [PMID: 12552355 DOI: 10.1007/s00259-002-1083-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the presurgical evaluation of patients with partial epilepsies, the most extensively studied functional neuro-imaging modality to define the origin of seizure onset is fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET). Generally, this technique reveals a widespread zone of interictal glucose hypometabolism in the region of the epileptogenic focus. However, the technique may miss the epileptogenic region and FDG PET abnormalities may extend beyond the seizure onset zone. Consequently, for the precise identification of epileptogenic regions more specific imaging probes than FDG are warranted. This review considers the clinical utility of iomazenil (IMZ) SPET and flumazenil (FMZ) PET for the precise localization of epileptogenic foci in partial epilepsy syndromes.
Collapse
Affiliation(s)
- Ingeborg Goethals
- Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
37
|
Abstract
Drug treatment resistant epilepsy is an important public health problem. Patients with epilepsy of focal origin may have an excellent outcome following surgery that removes the source of seizures. Identification of the precise cortical region producing seizures is crucial to a good outcome; additionally, identification of eloquent cortical areas near the region to be resected is essential to prevent postoperative neurological deficit. A wide range of imaging techniques is valuable for imaging the epileptogenic zone, including high-resolution T1 MRI, T2 signal quantitation, MR spectroscopy, diffusion imaging, PET, SPECT and simultaneous EEG-fMRI. Eloquent cortex has in the past been mapped using highly invasive techniques; fMRI of motor and cognitive tasks holds great promise for future non-invasive mapping strategies.
Collapse
Affiliation(s)
- Mark P Richardson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, UK
| |
Collapse
|
38
|
Trampal C, Engler H. [PET in neurology and psychiatry. II]. REVISTA ESPANOLA DE MEDICINA NUCLEAR 2002; 21:439-55; quiz 456-60. [PMID: 12425894 DOI: 10.1016/s0212-6982(02)72123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- C Trampal
- Uppsala University PET Centre. Uppsala. Sweden.
| | | |
Collapse
|
39
|
Hammers A, Koepp MJ, Hurlemann R, Thom M, Richardson MP, Brooks DJ, Duncan JS. Abnormalities of grey and white matter [11C]flumazenil binding in temporal lobe epilepsy with normal MRI. ACTA ACUST UNITED AC 2002; 125:2257-71. [PMID: 12244083 DOI: 10.1093/brain/awf233] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In 20% of potential surgical candidates with refractory epilepsy, current optimal MRI does not identify the cause. GABA is the principal inhibitory neurotransmitter in the brain, and GABA(A) receptors are expressed by most neurones. [(11)C]Flumazenil (FMZ) PET images the majority of GABA(A) receptor subtypes. We investigated abnormalities of FMZ binding in grey and white matter in 18 patients with refractory temporal lobe epilepsy (TLE) and normal quantitative MRI. Parametric images of FMZ volume of distribution (FMZ-V(d)) were calculated. Twenty-one healthy controls were scanned for comparison. Statistical parametric mapping (SPM99) was used to localize significant changes in FMZ-V(d) in individual patients and between groups, specifically including the entire white matter in all subjects through explicit masking. Sixteen of 18 patients showed single or multiple abnormalities of FMZ-V(d). Six had hippocampal decreases of FMZ-V(d). Eleven patients showed increased FMZ-V(d) in the temporal lobe white matter (TLWM). Outside the mesial temporal structures, seven showed multiple areas of increase or decrease and only one a single area of decrease. In seven of the 16 patients with abnormalities, findings were concordant with EEG and clinical data, enabling further presurgical evaluation. Group findings were: (i) decreased FMZ-V(d) in the ipsilateral (Z = 3.01) and contralateral (Z = 2.56) hippocampus; (ii) increased FMZ-V(d) in the ipsilateral (Z = 3.71) and contralateral TLWM (two clusters, Z = 3.11 and 2.79); and (iii) increased FMZ-V(d) in the ipsilateral frontal lobe white matter between the superior and medial frontal gyrus (Z = 3.80) with similar changes contralaterally (Z = 4.87). No changes were found in the thalamus and basal ganglia. Region-of-interest analyses indicated an average increase in FMZ binding of 16% in the TLWM ipsilateral to the epileptic focus. PET findings were corroborated by invasive EEG or pathology in five cases. FMZ-PET, analysed by SPM with explicit masking, was sensitive in patients with normal MRI, and hippocampal abnormalities were detected in a third of these patients. Furthermore, increases in FMZ binding in TLWM, indicating microdysgenesis, were detected in the majority of these patients and may represent the structural basis of their epilepsy.
Collapse
Affiliation(s)
- A Hammers
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, Finland.
| | | | | |
Collapse
|
41
|
Shamoto H, Nakajima T, Nakasato N, Iwasaki M, Shirane R, Itoh M, Yoshimoto T. Mesial temporal lobe epilepsy with lateral temporal lobe abnormalities in magnetoencephalography and glucose metabolism. J Clin Neurosci 2002; 9:192-4. [PMID: 11922713 DOI: 10.1054/jocn.2001.1005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnetoencephalography (MEG) and positron emission tomography (PET) revealed abnormal findings in the lateral temporal lobe of a 22 year old female with mesial temporal lobe epilepsy. Electroencephalography identified the epileptogenic focus in the left mesial temporal lobe and standard anterior temporal lobectomy resulted in a good surgical outcome. These discrepancies can be explained by the presence of anatomical and functional pathways between the mesial and lateral temporal structures, or pathophysiological abnormalities in both the mesial and lateral temporal lobes. Careful evaluation is necessary for analysis of MEG and PET findings in patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- H Shamoto
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Szelies B, Sobesky J, Pawlik G, Mielke R, Bauer B, Herholz K, Heiss WD. Impaired benzodiazepine receptor binding in peri-lesional cortex of patients with symptomatic epilepsies studied by [(11)C]-flumazenil PET. Eur J Neurol 2002; 9:137-42. [PMID: 11882054 DOI: 10.1046/j.1468-1331.2002.00338.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Individual benzodiazepine receptor (BZR) binding of peri-lesional cortex was investigated in symptomatic epilepsies. Eleven patients aged 19-44 years were studied whose diagnosis was established by medical history, clinical, electroencephalographic, and magnetic resonance imaging (MRI) findings. Three-dimensional [11C]-flumazenil (FMZ) positron emission tomography and MRI scans were obtained and coregistered. Lesions (five low-grade brain tumours, one AV malformation, one cavernoma, one cystic lesion of unknown aetiology, one traumatic brain injury, one post-operative and one post-haemorrhagic defect) were outlined on individual MRI scans. Adjacent to those lesions, and in homologous contralateral structures, FMZ binding was analysed in four pairs of cortical 9 x 9-mm regions of interest (ROIs) placed on transaxial and coronal slices, respectively, as well as in the lesion volume and its mirror region. Percentage asymmetry ratios were calculated and those at or outside the 90-110% range were operationally defined significant. Peri-lesional FMZ binding asymmetries ranged from 70 to 125%, lesional asymmetries from 38 to 82%. Only one patient showed no significant change, whilst nine exhibited significant reductions of FMZ binding in at least one ROI (3 x 1, 4 x 2, 1 x 3, 1 x 4), and significant increases were observed in two ROIs of another patient. Therefore, peri-lesional disturbances of BZR binding are common but variable in location. Because a close correlation between regional decreases in FMZ binding and spiking activity was recently demonstrated in neocortical epilepsies, abnormal peri-lesional FMZ binding may bear some relation to the mechanisms of epileptogenesis in symptomatic epilepsies.
Collapse
Affiliation(s)
- Brigitte Szelies
- Neurologische Universitätsklinik and Max-Planck-Institut für Neurologische Forschung, Joseph-Stelzmann-Strasse 9, 50931 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bouilleret V, Dupont S, Spelle L, Baulac M, Samson Y, Semah F. Insular cortex involvement in mesiotemporal lobe epilepsy: a positron emission tomography study. Ann Neurol 2002; 51:202-8. [PMID: 11835376 DOI: 10.1002/ana.10087] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somesthetic and emotional symptoms that are common in patients with mesial temporal lobe epilepsy are usually related to hippocampo-amygdalar complex involvement. Recent stereo-electroencephalographic studies have shown a relationship between such symptoms and epileptic insular discharges. To further investigate this problem, we carried out a positron emission tomography study using fluorodeoxyglucose (18F-FDG) and flumazenil (11C-FMZ) in mesial temporal lobe epilepsy patients. The aim of our study was to assess the existence of a cortical insular involvement in order to examine its clinical correlates and the relationship between the postoperative outcome and the insular involvement. Fluorodeoxyglucose and flumazenil-positron emission tomography studies were carried out in 18 patients with mesial temporal lobe epilepsy patients. A statistical parametric mapping (SPM96) was performed to analyze the data in comparison to 18 healthy volunteers. For each set of fluorodeoxyglucose and flumazenil images a group and an individual analysis were performed. In addition, a region of interest analysis was performed to validate the results. Focusing on the metabolic abnormalities, we also investigated the role of insular cortex in the symptoms experienced by the patients and the prognostic value of insular metabolic abnormalities. Highly significant hypometabolism and BZR binding decreases were detected in the insular cortex. Results were similar using the region of interest approach. Insular involvement (mainly ipsilateral to the seizure focus) was present in 60% of the patients. Emotional symptoms correlated with hypometabolism in the anterior part of the ipsilateral insular cortex, whereas somesthetic symptoms correlated with hypometabolism in the posterior part. No relationship between postoperative outcome and ipsilateral insular hypometabolism was found. Unilateral mesial temporal lobe epilepsy is associated with insular hypometabolism and benzodiazepine receptor loss. Our results also suggest that the anterior part of the insular cortex is involved in the emotional symptoms and the posterior insular cortex is involved in the somesthetic symptoms. Hypometabolism located in the insula did not influence postoperative outcome after anterior lobectomy.
Collapse
|
44
|
Toczek MT, Theodore WH. Cortical dysplasia and epilepsy: functional imaging using single photon emission computed tomography and positron emission tomography. Neurosurg Clin N Am 2002; 13:71-86, viii. [PMID: 11754318 DOI: 10.1016/s1042-3680(02)80008-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional imaging using single photon emission CT and positron emission tomography have made important contributions to the evaluation of patients with medically intractable epilepsy and cortical dysplasia by identifying patients who previously were not considered surgical candidates. This article reviews the role of functional imaging in the presurgical evaluation of this patient population.
Collapse
MESH Headings
- Brain Mapping
- Cerebral Cortex/abnormalities
- Cerebral Cortex/diagnostic imaging
- Cerebral Cortex/physiopathology
- Child
- Child, Preschool
- Epilepsies, Partial/congenital
- Epilepsies, Partial/diagnostic imaging
- Epilepsies, Partial/physiopathology
- Epilepsy/congenital
- Epilepsy/diagnostic imaging
- Epilepsy/physiopathology
- Humans
- Infant
- Infant, Newborn
- Neurons/physiology
- Prognosis
- Regional Blood Flow/physiology
- Spasms, Infantile/congenital
- Spasms, Infantile/diagnostic imaging
- Spasms, Infantile/physiopathology
- Tomography, Emission-Computed
- Tomography, Emission-Computed, Single-Photon
Collapse
Affiliation(s)
- Maria T Toczek
- Clinical Epilepsy Section, Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1408, USA.
| | | |
Collapse
|
45
|
Hammers A, Koepp MJ, Labbé C, Brooks DJ, Thom M, Cunningham VJ, Duncan JS. Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy. Neurology 2001; 56:897-906. [PMID: 11294927 DOI: 10.1212/wnl.56.7.897] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize abnormalities in neocortical central benzodiazepine receptor (cBZR) binding in patients with mesial temporal lobe epilepsy (mTLE) with unilateral hippocampal sclerosis (HS) using [(11)C]-flumazenil-(FMZ) PET and complementary voxel-based and quantitative volume-of-interest (VOI) methods. METHODS The authors studied 13 control subjects and 15 patients with refractory mTLE and unilateral HS with [(11)C]-FMZ PET. Data were corrected for partial volume effect in the interactively outlined hippocampus and in 28 cortical VOI using an individualized template. A voxel-based analysis was also performed using statistical parametric mapping (SPM). RESULTS Fourteen patients with mTLE had reduced [(11)C]-FMZ volume distribution (V(d)) in the hippocampus ipsilateral to the EEG focus, extending into the amygdala in four. Five patients showed additional significant neocortical abnormalities of [(11)C]-FMZ binding: temporal neocortical increases (1), extratemporal decreases (2), extratemporal increases only (1), and temporal and extratemporal neocortical increases (1). Group VOI analysis revealed significant reductions only in the ipsilateral hippocampus. SPM showed decreased [(11)C]-FMZ-V(d) in the ipsilateral hippocampus in 13 of 15 patients, extending into the amygdala in eight. Five patients showed additional neocortical abnormalities: temporal neocortical increases only (3), extratemporal decreases (1), or both temporal neocortical and extratemporal decreases (1). Group analysis showed significant reductions in the ipsilateral hippocampus only. CONCLUSIONS A combination of VOI- and voxel-based analysis of [(11)C]-FMZ PET detected extrahippocampal changes of cBZR binding in eight of 15 patients with mTLE due to HS. The finding of abnormalities in patients who were thought to have unilateral HS only based on MRI suggests that more widespread abnormalities are present in HS.
Collapse
Affiliation(s)
- A Hammers
- National Society for Epilepsy and Institute of Neurology, Queen Square, London
| | | | | | | | | | | | | |
Collapse
|
46
|
Richardson MP. CPD - education and self-assessment: functional imaging in epilepsy. Seizure 2001; 10:139-56. [PMID: 11407959 DOI: 10.1053/seiz.2001.0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Functional imaging plays a growing role in the clinical assessment and research investigation of patients with epilepsy. This article reviews the literature on functional MRI (fMRI) investigation of EEG activity, fMRI evaluation of cognitive and motor functions, magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT) and positron emission tomography (PET) in epilepsy. The place of these techniques in clinical evaluation and their contribution to a better neurobiological understanding of epilepsy are discussed.
Collapse
Affiliation(s)
- M P Richardson
- Medical Research Council Fellow, Institute of Neurology, University College London, UK.
| |
Collapse
|
47
|
Abstract
OBJECTIVE To investigate sleep spindle asymmetry in patients with idiopathic generalized epilepsy (IGE), cryptogenic partial epilepsy (CPE), and symptomatic partial epilepsy (SPE). METHODS Post-sleep deprivation EEG records of the patients were investigated. Fast Fourier transform was applied to 200 s of stage-2 activity (without spikes, spike-waves and artefacts). Individual spindle frequency and topography was identified in each patient. Spindle intensity was computed and expressed in microvolts. In order to calculate spindle asymmetry the site of maximum spindle intensity within one hemisphere was compared to the mirror site in the other hemisphere. Asymmetry was expressed by the asymmetry index (AI). In the PE group AI was defined as [AI=(P-N)/(P+N)x100], where P and N were spindle intensity in the pathological and normal hemisphere, respectively. In the IGE group P and N were substituted for L and R (spindle intensity in the left and right hemisphere, respectively). RESULTS In IGE patients spindle asymmetry was in the range of -13 to +12%. No significant lateralization to the left or right hemisphere was observed. In PE patients, spindle asymmetry ranged from -23 to+29%. As compared to spindle intensity in the unaffected hemisphere, spindling was enhanced in the 'epileptic' hemisphere in most PE patients (15/20 in the CPE and 5/7 in the SPE group). CONCLUSION In IGEs (where the epileptic condition involved both hemispheres to the same extent) spindle intensity did not show significant asymmetry. In PE patients (where the epileptic process was clearly lateralized to one hemisphere while the other hemisphere was unaffected) enhanced spindling usually was related to the side of the epileptic process. The generally held notion that the pathological hemisphere displays less spindling than the healthy one might be misleading in cases of focal epilepsy. The results suggest that epileptogenic cortex slightly facilitates spindle generation.
Collapse
Affiliation(s)
- B Clemens
- Kenézy Gyula Kórház Neurologia, Bartók Béla út. 3, 4031, Debrecen, Hungary
| | | |
Collapse
|
48
|
Abstract
Epilepsy is a major health problem, and there is hope that current international initiatives--epitomized in the "Epilepsy: Out of the Shadows" campaign--will increase the commitment of the general public and health officials to the care of patients. Particularly in developing countries, there is great need for alleviation of the extremely difficult situation of people with epilepsy and their families. Doctors can play their part by adhering to specific medical and surgical strategies aimed at the improvement of epilepsy care in these countries. Included in the former are joining efforts to guarantee a regular distribution of conventional antiepileptic drugs (AEDs), make optimal use of the more easily available AEDs, and improve communication with patients and families at all levels. It is also important to support the creation of local and regional specialized epilepsy centers with the capability to perform presurgical evaluation and epilepsy surgery in many patients with medically refractory seizures. The establishment of such centers in developing countries will face several challenges, including a critical view of technological advances and the need to support well-trained, creative people who can evaluate and operate on patients with relatively limited resources. This article proposes that the success of such an approach depends on the progressive build-up of a "critical mass" of specialized people who are trained locally to select or reject epilepsy patients for surgery using the available resources. A stepwise approach to the increasing levels of complexity involved in the evaluation and surgical treatment is proposed, with the expectation that each center will find its level and adhere to its capability.
Collapse
Affiliation(s)
- A Palmini
- Porto Alegre Epilepsy Surgery Program, Hospital São Lucas da Pontificia Universidade Catolica do Rio Grande do Sul, Brazil
| |
Collapse
|
49
|
Szelies B, Weber-Luxenburger G, Mielke R, Pawlik G, Kessler J, Pietrzyk U, Bauer B, Heiss WD. Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry. Eur J Neurol 2000; 7:393-400. [PMID: 10971598 DOI: 10.1046/j.1468-1331.2000.00077.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The significance of benzodiazepine receptor (BZR) concentration in comparison with hippocampal metabolism and volumetry was assessed in 14 patients diagnosed with temporal lobe epilepsy (TLE) without hippocampal signal change on T2-weighted magnetic resonance imaging (MRI) scans. Focus lateralization was achieved by clinical, electroencephalographic and neuropsychological examinations. Three-dimensional positron emission tomography (PET) and MRI scans were coregistered for determination of hippocampal 11C-flumazenil (FMZ) binding, normalized to average cortical values for glucose metabolism (rCMRglc) and volume. The hippocampi were individually outlined on T1-weighted MRI. Volumes of interest (VOI) were used for calculation of asymmetries between clinically affected and unaffected sides. Eleven out of 14 TLE patients presented a significant reduction in hippocampal volume. In nine of these 11 patients hippocampal FMZ binding and in seven cases hippocampal CMRglc was also reduced. In two patients without hippocampal volume asymmetry FMZ binding was markedly reduced in the mesial temporal lobe appropriately to the clinically diagnosed side. In our study volumetry is therefore the most sensitive tool for the detection of hippocampal abnormality in TLE. However, in cases without hippocampal atrophy the reduction of FMZ may indicate functional impairment of BZR before neuronal loss becomes evident. Our results emphasize the complementary nature of these tests in TLE patients.
Collapse
Affiliation(s)
- B Szelies
- Neurologische Universitätsklinik and Max-Planck-Institut für neurologische Forschung, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Arnold S, Berthele A, Drzezga A, Tölle TR, Weis S, Werhahn KJ, Henkel A, Yousry TA, Winkler PA, Bartenstein P, Noachtar S. Reduction of benzodiazepine receptor binding is related to the seizure onset zone in extratemporal focal cortical dysplasia. Epilepsia 2000; 41:818-24. [PMID: 10897152 DOI: 10.1111/j.1528-1157.2000.tb00248.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Comparison of regional reduction of GABA receptor binding and seizure onset zone in patients with extratemporal epilepsy due to focal cortical dysplasia. METHODS Two patients with frontal lobe epilepsy who remained seizure free after partial frontal lobe resection were investigated with magnetic resonance imaging, positron emission tomography (PET) with 18F-fluoro-deoxy-glucose (FDG) and 11C-flumazenil, subdural EEG-video recordings, and postoperative benzodiazepine (BDZ)-receptor autoradiography. RESULTS The area of reduced BDZ-receptor binding as documented by preoperative flumazenil-PET and postoperative BDZ-receptor autoradiography corresponded to the seizure onset zone and was smaller than the interictal hypometabolism documented by FDG-PET. CONCLUSION Flumazenil-PET is a useful tool for localization of the epileptogenic zone in patients with extratemporal epilepsy caused by focal cortical dysplasia. Neuronal distribution of BDZ-receptor density confirms in vivo flumazenil-PET findings. The regional reduction of BDZ-receptor binding in focal cortical dysplasia seems to be confined to the seizure onset zone and not to the extent of dysplastic cortex.
Collapse
Affiliation(s)
- S Arnold
- Department of Neurology, University of Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|