1
|
Boglietti E, Haddad D, Bezin L, Rheims S. Pathophysiology of SUDEP: How far are we from understanding? Rev Neurol (Paris) 2025; 181:432-437. [PMID: 40204591 DOI: 10.1016/j.neurol.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Sudden and unexpected death in epilepsy patients (SUDEP) is the leading cause of death in patients suffering from drug-resistant epilepsy. A significant number of studies have been conducted in both patients and animal models to examine the initial cascade of events that directly cause death as well as the factors that contribute to the long-term risk of SUDEP. This review aims to discuss the main pathophysiological hypotheses that are currently considered in both clinical and pre-clinical models of SUDEP. Studies have highlighted that SUDEP is typically triggered by a seizure, with central fatal apnea as the primary cause of death. Findings also suggest that chronic impairments in respiratory regulation may contribute to SUDEP risk, with serotonin dysfunction playing a key role in the associated respiratory abnormalities. These insights on SUDEP pathophysiology contribute to better risk assessment, though gaps remain in understanding the precise mechanisms linking SUDEP and transient peri-ictal respiratory dysfunction.
Collapse
Affiliation(s)
- E Boglietti
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - D Haddad
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - L Bezin
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - S Rheims
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.
| |
Collapse
|
2
|
Dereli AS, Apaire A, El Tahry R. Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception. Int J Mol Sci 2025; 26:1598. [PMID: 40004062 PMCID: PMC11855741 DOI: 10.3390/ijms26041598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a critical concern for individuals suffering from epilepsy, with respiratory dysfunction playing a significant role in its pathology. Fatal seizures are often characterized by central apnea and hypercapnia (elevated CO2 levels), indicating a failure in ventilatory control. Research has shown that both human epilepsy patients and animal models exhibit a reduced hypercapnic ventilatory response in the interictal (non-seizure) period, suggesting an impaired ability to regulate breathing in response to high CO2 levels. This review examines the role of central chemoreceptors-specifically the retrotrapezoid nucleus, raphe nuclei, nucleus tractus solitarius, locus coeruleus, and hypothalamus in this pathology. These structures are critical for sensing CO2 and maintaining respiratory homeostasis. Emerging evidence also implicates neuropeptidergic pathways within these chemoreceptive regions in SUDEP. Neuropeptides like galanin, pituitary adenylate cyclase-activating peptide (PACAP), orexin, somatostatin, and bombesin-like peptides may modulate chemosensitivity and respiratory function, potentially exacerbating respiratory failure during seizures. Understanding the mechanisms linking central chemoreception, respiratory control, and neuropeptidergic signaling is essential to developing targeted interventions to reduce the risk of SUDEP in epilepsy patients.
Collapse
Affiliation(s)
- Ayse S. Dereli
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
| | - Auriane Apaire
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
| | - Riem El Tahry
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Meletti S, Duma GM, Burani M, Danieli A, Giovannini G, Osanni E, Micalizzi E, Mambretti F, Pugnaghi M, Vaudano AE, Bonanni P. Ictal and Postictal Central Apnea in DEPDC5-Related Epilepsy. Neurol Genet 2024; 10:e200183. [PMID: 39376210 PMCID: PMC11458130 DOI: 10.1212/nxg.0000000000200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 10/09/2024]
Abstract
Objectives DEPDC5-related epilepsy carries an increased risk of sudden unexpected death in epilepsy. We evaluated the occurrence and features of ictal central apnea (ICA) in patients with pathogenic sequence variant in DEPDC5. Methods We reviewed data of 108 patients collected in 2 independent cohorts of patients with focal epilepsy who prospectively underwent long-term video-EEG monitoring (LTVM) with cardiorespiratory polygraphy. All patients underwent (1) at least an overnight polysomnography, (2) a high-field (3T) brain MRI study, and (3) CSF analysis when clinically indicated. Genetic testing (next-generation sequencing [NGS]) was offered for diagnostic purposes to patients with focal epilepsy of unknown etiology. Results In this cohort, NGS was finally performed in 29 patients, resulting in DEPDC5 pathogenic mutations in 5 patients. According to the presence of ictal apnea events, 5 of 14 patients with ICA showed pathogenic DEPDC5 variants (35%) while none of the 15 patients without ICA showed pathogenic mutation. Notably, DEPDC5 patients showed ICA in all recorded seizures (n = 15) with apnea duration ranging from 20 seconds to more than 1 minute. All seizures were characterized by motor arrest without overt automatic behaviors during ictal apnea. Scalp EEG showed the involvement of temporal lobe leads in all events. Severe oxygen desaturation was observed in 2 cases. Discussion In our cohort, ictal central apnea was a common finding in DEPDC5. These results support (1) the need for respiratory polygraphy during LTVM in DEPDC5-related epilepsy and (2) the potential relevance of genetic testing in patients with focal epilepsy of unknown etiology and ictal apnea.
Collapse
Affiliation(s)
- Stefano Meletti
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Gian Marco Duma
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Margherita Burani
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Alberto Danieli
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Giada Giovannini
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Elisa Osanni
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Elisa Micalizzi
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Fabiana Mambretti
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Matteo Pugnaghi
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Anna E Vaudano
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Paolo Bonanni
- From the Department of Biomedical Metabolic Sciences and Neurosciences (S.M., M.B., E.M., A.E.V.), University of Modena and Reggio Emilia; Neurophysiology Unit and Epilepsy Centre (S.M., M.B., G.G., M.P., A.E.V.), Neuroscience Department, Modena AOU; Epilepsy Unit (G.M.D., A.D., E.O., P.B.), IRCCS E. Medea Scientific Institute, Conegliano; Neurophysiology Unit and Epilepsy Centre (E.M.), IRCCS Ospedale Policlinico San Martino, Genoa; and Laboratory of Molecular Genetics (F.M.), IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
4
|
Acedo Reina E, Germany Morrison E, Dereli AS, Collard E, Raffoul R, Nonclercq A, El Tahry R. Vagus nerve electroneurogram-based detection of acute kainic acid induced seizures. Front Neurosci 2024; 18:1427308. [PMID: 39170680 PMCID: PMC11335647 DOI: 10.3389/fnins.2024.1427308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Seizures produce autonomic symptoms, mainly sympathetic but also parasympathetic in origin. Within this context, the vagus nerve is a key player as it carries information from the different organs to the brain and vice versa. Hence, exploiting vagal neural traffic for seizure detection might be a promising tool to improve the efficacy of closed-loop Vagus Nerve Stimulation. This study developed a VENG detection algorithm that effectively detects seizures by emphasizing the loss of spontaneous rhythmicity associated with respiration in acute intrahippocampal Kainic Acid rat model. Among 20 induced seizures in six anesthetized rats, 13 were detected (sensitivity: 65%, accuracy: 92.86%), with a mean VENG-detection delay of 25.3 ± 13.5 s after EEG-based seizure onset. Despite variations in detection parameters, 7 out of 20 seizures exhibited no ictal VENG modifications and remained undetected. Statistical analysis highlighted a significant difference in Delta, Theta and Beta band evolution between detected and undetected seizures, in addition to variations in the magnitude of HR changes. Binomial logistic regression analysis confirmed that an increase in delta and theta band activity was associated with a decreased likelihood of seizure detection. This results suggest the possibility of distinct seizure spreading patterns between the two groups which may results in differential activation of the autonomic central network. Despite notable progress, limitations, particularly the absence of respiration recording, underscore areas for future exploration and refinement in closed-loop stimulation strategies for epilepsy management. This study constitutes the initial phase of a longitudinal investigation, which will subsequently involve reproducing these experiments in awake conditions with spontaneous recurrent seizures.
Collapse
Affiliation(s)
- Elena Acedo Reina
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
| | - Enrique Germany Morrison
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Ayse S. Dereli
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
| | - Elise Collard
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
| | - Romain Raffoul
- BEAMS Department, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Riëm El Tahry
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Department of Neurology, Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
5
|
Richerson GB. Divergent Causes and Convergent Mechanisms of SUDEP. Ann Neurol 2023; 94:809-811. [PMID: 37715256 DOI: 10.1002/ana.26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Affiliation(s)
- George B Richerson
- Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
7
|
Hamoy AO, da Fonseca SM, Cei GL, Júnior FLDA, Hamoy MKO, Ribeiro RM, Barbas LAL, Muto N, Hamoy M. Behavioral, electrocorticographic and electrocardiologic changes in Colossoma macropomum (Tambaqui) in the effect of cunaniol. PLoS One 2023; 18:e0287681. [PMID: 37390086 PMCID: PMC10313049 DOI: 10.1371/journal.pone.0287681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
The Clibadium spp. is a shrub of occurrence in the Amazon, popularly known as Cunambi. The compounds in the leaves demonstrate ichthyotoxic properties, and its major substance, cunaniol, is a powerful central nervous system stimulant with proconvulsant activity. Few current studies relate behavioral changes to the electrophysiological profile of fish poisoning. This study aimed to describe the behavioral, electromyographic, electroencephalographic, electrocardiographic, and seizure control characteristics of anticonvulsant drugs in Colossoma macropomum submitted to cunaniol intoxication during bathing containing 0.3 μg/L cunaniol. The behavioral test showed rapid evolution presenting excitability and spasms, which were confirmed by the analysis of Electroencephalogram (EEG), Electromyogram (EMG), and changes in cardiac function detected in the ECG. Cunaniol-induced excitability control was evaluated using three anticonvulsant agents: Phenytoin, Phenobarbital, and Diazepam. While phenytoin was not effective in seizure control, diazepam proved to be the most efficient. These results demonstrate the susceptibility of Colossoma macropomum to cunaniol poisoning, given that the central nervous system and electrocardiographic changes were considered severe.
Collapse
Affiliation(s)
- Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Suzane Maia da Fonseca
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Giovanna Lourenço Cei
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Fábio Leite do Amaral Júnior
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Maria Klara Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Rafaela Marques Ribeiro
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Luis Andre Luz Barbas
- Tropical Species Aquaculture Laboratory, Federal Institute of Education, Science and Technology of Pará (IFPA), Castanhal Campus, Castanhal, Brazil
| | - Nilton Muto
- Center for the Valorization of Bioactive Compounds, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| |
Collapse
|
8
|
You SM, Cho BH, Bae HE, Kim YK, Kim JR, Park SR, Shon YM, Seo DW, Kim IY. Exploring Autonomic Alterations during Seizures in Temporal Lobe Epilepsy: Insights from a Heart-Rate Variability Analysis. J Clin Med 2023; 12:4284. [PMID: 37445319 DOI: 10.3390/jcm12134284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epilepsy's impact on cardiovascular function and autonomic regulation, including heart-rate variability, is complex and may contribute to sudden unexpected death in epilepsy (SUDEP). Lateralization of autonomic control in the brain remains the subject of debate; nevertheless, ultra-short-term heart-rate variability (HRV) analysis is a useful tool for understanding the pathophysiology of autonomic dysfunction in epilepsy patients. A retrospective study reviewed medical records of patients with temporal lobe epilepsy who underwent presurgical evaluations. Data from 75 patients were analyzed and HRV indices were extracted from electrocardiogram recordings of preictal, ictal, and postictal intervals. Various HRV indices were calculated, including time domain, frequency domain, and nonlinear indices, to assess autonomic function during different seizure intervals. The study found significant differences in HRV indices based on hemispheric laterality, language dominancy, hippocampal atrophy, amygdala enlargement, sustained theta activity, and seizure frequency. HRV indices such as the root mean square of successive differences between heartbeats, pNN50, normalized low-frequency, normalized high-frequency, and the low-frequency/high-frequency ratio exhibited significant differences during the ictal period. Language dominancy, hippocampal atrophy, amygdala enlargement, and sustained theta activity were also found to affect HRV. Seizure frequency was correlated with HRV indices, suggesting a potential relationship with the risk of SUDEP.
Collapse
Affiliation(s)
- Sung-Min You
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Baek-Hwan Cho
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
- Institute of Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Hyo-Eun Bae
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young-Kyun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae-Rim Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soo-Ryun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - In-Young Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Li J, Cossette-Roberge H, Toffa DH, Deacon C, Keezer MR. Sudden unexpected death in epilepsy (SUDEP): A bibliometric analysis. Epilepsy Res 2023; 193:107159. [PMID: 37167883 DOI: 10.1016/j.eplepsyres.2023.107159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE The literature on sudden unexpected death in epilepsy (SUDEP) has been evolving at a staggering rate. We conducted a bibliometric analysis of the SUDEP literature with the aim of presenting its structure, performance, and trends. METHODS The Scopus database was searched in April 2023 for documents explicitly detailing SUDEP in their title, abstract, or keywords. After the removal of duplicate documents, bibliometric analysis was performed using the R package bibliometrix and the program VOSviewer. Performance metrics were computed to describe the literature's annual productivity, most relevant authors and countries, and most important publications. Science mapping was performed to visualize the relationships between research constituents by constructing a country collaboration network, co-authorship network, keyword co-occurrence network, and document co-citation network. RESULTS A total of 2140 documents were analyzed. These documents were published from 1989 onward, with an average number of citations per document of 25.78. Annual productivity had been on the rise since 2006. Out of 6502 authors, five authors were in both the list of the ten most productive and the list of the ten most cited authors: Devinsky O, Sander JW, Tomson T, Ryvlin P, and Lhatoo SD. The USA and the United Kingdom were the most productive and cited countries. Collaborations between American authors and European authors were particularly rich. Prominent themes in the literature included those related to pathophysiology (e.g., cardiac arrhythmia, apnea, autonomic dysfunction), epilepsy characteristics (e.g., epilepsy type, refractoriness, antiseizure medications), and epidemiology (e.g., incidence, age, sex). Emerging themes included sleep, genetics, epilepsy refractoriness, and non-human studies. SIGNIFICANCE The body of literature on SUDEP is rich, fast-growing, and benefiting from frequent international collaborations. Some research themes such as sleep, genetics, and animal studies have become more prevalent over recent years.
Collapse
Affiliation(s)
- Jimmy Li
- Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Hélène Cossette-Roberge
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dènahin Hinnoutondji Toffa
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Charles Deacon
- Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Mark Robert Keezer
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; School of Public Health, Université de Montréal, Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
10
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Measuring vagal activity in postictal bradycardia. Epilepsy Behav 2023; 141:109148. [PMID: 36907083 DOI: 10.1016/j.yebeh.2023.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Alterations to cardiac electrical conduction are some of the most frequently observed systemic complications of seizures, with autonomic dysregulation cited as the principal driver for these alterations. In this prospective study, we use 6-lead continuous ECG monitoring in hospitalized patients with epilepsy to trend heart rate patterns in the postictal period. A total of 117 seizures in 45 patients met the criteria for analysis. There was a postictal heart rate increase of 61% (n = 72 seizures), and a decline in heart rate (deceleration) following 38.5% (n = 45). Using 6-lead ECGs for waveform analysis revealed that there was PR prolongation accompanying those seizures that were associated with postictal bradycardia.
Collapse
|
12
|
Chinardet P, Gilles F, Cochet H, Chelly J, Quenot JP, Jacq G, Soulier P, Lesieur O, Beuret P, Holleville M, Bruel C, Bailly P, Sauneuf B, Sejourne C, Galbois A, Fontaine C, Perier F, Pichon N, Arrayago M, Mongardon N, Schnell D, Lascarrou JB, Convers R, Legriel S. Electrocardiographic Changes at the Early Stage of Status Epilepticus: First Insights From the ICTAL Registry. Crit Care Med 2023; 51:388-400. [PMID: 36533915 DOI: 10.1097/ccm.0000000000005768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To describe early electrocardiogram (ECG) abnormalities after status epilepticus (SE) and evaluate their association with 90-day neurological outcomes. DESIGN Retrospective analysis of a multicenter, national prospective registry between February 2018 and June 2020. SETTING Sixteen ICUs in France, IctalGroup Research Network. PATIENTS Adults with available ECG performed less than or equal to 24 hours after the onset of SE and less than or equal to 12 hours after its resolution. INTERVENTION Double-blinded review of all ECGs was performed by two independent cardiologists. ECGs were categorized as normal/abnormal and then with minor/major early ECG abnormalities according to the Novacode ECG Classification system. MEASUREMENTS AND MAIN RESULTS Among 155 critically ill patients with SE, early ECG abnormalities were encountered in 145 (93.5%), categorized as major in 91 of 145 (62.8%). In addition to sinus tachycardia, the main abnormalities were in the ST segment (elevation [16.6%] or depression [17.9%]) or negative T waves (42.1%). Major early ECG abnormalities were significantly associated with respiratory distress and sinus tachycardia at the scene and hyperlactatemia at ICU admission. By multivariable analysis, three variables were significantly associated with 90-day poor outcome: age, preexisting ultimately fatal comorbidity, and cerebral insult as the cause of SE. Early major ECG abnormalities were not independently associated with 90-day functional outcome. CONCLUSIONS In our study, early ECG abnormalities in the acute phase of SE were frequent, often unrecognized and were associated with clinical and biological stigma of hypoxemia. Although they were not independently associated with 90-day functional outcome, ECG changes at the early stage of SE should be systematically evaluated. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT03457831 .
Collapse
Affiliation(s)
- Paul Chinardet
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
| | - Floriane Gilles
- Cardiology Department, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
| | - Helene Cochet
- Cardiology Department, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
| | - Jonathan Chelly
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Centre Hospitalier Intercommunal Toulon La Seyne sur Mer, Toulon, France
| | - Jean-Pierre Quenot
- IctalGroup, Le Chesnay, France
- Department of Intensive Care, François Mitterrand University Hospital, Dijon, France
| | - Gwenaelle Jacq
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
- IctalGroup, Le Chesnay, France
- UVSQ, INSERM, University Paris-Saclay, CESP, Team «PsyDev», Villejuif, France
| | - Pauline Soulier
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Marc Jacquet Hospital, Melun, France
| | - Olivier Lesieur
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Saint-Louis Hospital, La Rochelle, France
| | - Pascal Beuret
- IctalGroup, Le Chesnay, France
- Department of Intensive and Continuous Care, Roanne Hospital, Roanne, France
| | - Mathilde Holleville
- IctalGroup, Le Chesnay, France
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, Paris, France
| | - Cedric Bruel
- IctalGroup, Le Chesnay, France
- Saint Joseph Hospital, Medical-Surgical Intensive Care Unit, Paris, France
| | - Pierre Bailly
- IctalGroup, Le Chesnay, France
- Medical Intensive Care Unit, University Hospital of Brest, Cavale Blanche, Brest Cedex, France
| | - Bertrand Sauneuf
- IctalGroup, Le Chesnay, France
- Cotentin Public Hospital Center, General Intensive Care Unit, Cherbourg-en-Cotentin, France
| | - Caroline Sejourne
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Hôpital de Béthune, Beuvry, France
| | - Arnaud Galbois
- IctalGroup, Le Chesnay, France
- Department of Polyvalent Intensive Care Unit, Ramsay Générale de Santé, Claude Galien Private Hospital, Quincy-sous-Sénart, France
| | - Candice Fontaine
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
- IctalGroup, Le Chesnay, France
| | - François Perier
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
- IctalGroup, Le Chesnay, France
| | - Nicolas Pichon
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Centre Hospitalier de Brive, Brive-La-Gaillarde, France
| | - Marine Arrayago
- IctalGroup, Le Chesnay, France
- Department of Intensive Care, Cannes Hospital, Cannes, France
| | - Nicolas Mongardon
- IctalGroup, Le Chesnay, France
- Henri Mondor Teaching Hospital, Service D'anesthésie-Réanimation Chirurgicale, DMU CARE, DHU A-TVB, Assistance Publique-Hôpitaux de Paris (AP-HP), Univ Paris Est Créteil, Faculté de Santé, Créteil, France
- U955-IMRB, Equipe 03 "Pharmacologie Et Technologies Pour Les Maladies Cardiovasculaires (PROTECT)," Inserm, Univ Paris Est Créteil (UPEC), Ecole Nationale Vétérinaire d'Alfort (EnVA), Maisons-Alfort, France
| | - David Schnell
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Centre Hospitalier d'Angoulême, Angoulême, France
| | - Jean-Baptiste Lascarrou
- IctalGroup, Le Chesnay, France
- Intensive Care Unit, Centre Hospitalier Universitaire Hôtel-Dieu, Nantes Cedex, France
| | - Raphaële Convers
- Cardiology Department, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
| | - Stephane Legriel
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Versailles - Site André Mignot, Le Chesnay Cedex, France
- IctalGroup, Le Chesnay, France
- UVSQ, INSERM, University Paris-Saclay, CESP, Team «PsyDev», Villejuif, France
| |
Collapse
|
13
|
Serrand C, Rheims S, Faucanié M, Crespel A, Dinkelacker V, Szurhaj W, Biraben A, Bartolomei F, de Grissac N, Landré E, Denuelle M, Vercueil L, Marchal C, Maillard L, Derambure P, Dupont S, Navarro V, Mura T, Jaussent A, Macioce V, Ryvlin P, Picot MC. Stratifying sudden death risk in adults with drug-resistant focal epilepsy: The SUDEP-CARE score. Eur J Neurol 2023; 30:22-31. [PMID: 36094672 PMCID: PMC10087018 DOI: 10.1111/ene.15566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE A clinical risk score for sudden unexpected death in epilepsy (SUDEP) in patients with drug-resistant focal epilepsy could help improve prevention. METHODS A case-control study was conducted including (i) definite or probable SUDEP cases collected by the French National Sentinel Mortality Epilepsy Network and (ii) control patients from the French national research database of epilepsy monitoring units. Patients with drug-resistant focal epilepsy were eligible. Multiple logistic regressions were performed. After sensitivity analysis and internal validation, a simplified risk score was developed from the selected variables. RESULTS Sixty-two SUDEP cases and 620 controls were included. Of 21 potential predictors explored, seven were ultimately selected, including generalized seizure frequency (>1/month vs. <1/year: adjusted odds ratio [AOR] 2.6, 95% confidence interval [CI] 1.25-5.41), nocturnal or sleep-related seizures (AOR 4.49, 95% CI 2.68-7.53), current or past depression (AOR 2.0, 95% CI 1.19-3.34) or the ability to alert someone of an oncoming seizure (AOR 0.57, 95% CI 0.33-0.98). After internal validation, a clinically usable score ranging from -1 to 8 was developed, with high discrimination capabilities (area under the receiver operating curve 0.85, 95% CI 0.80-0.90). The threshold of 3 has good sensitivity (82.3%, 95% CI 72.7-91.8), whilst keeping a good specificity (82.7%, 95% CI 79.8-85.7). CONCLUSIONS These results outline the importance of generalized and nocturnal seizures on the occurrence of SUDEP, and show a protective role in the ability to alert someone of an oncoming seizure. The SUDEP-CARE score is promising and will need external validation. Further work, including paraclinical explorations, could improve this risk score.
Collapse
Affiliation(s)
- Chris Serrand
- University Hospital of Montpellier, Montpellier, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sophie Dupont
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, Paris, France
| | - Vincent Navarro
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, Paris, France.,Paris Brain Institute, ICM, INSERM, CNRS, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Micalizzi E, Vaudano AE, Ballerini A, Talami F, Giovannini G, Turchi G, Cioclu MC, Giunta L, Meletti S. Ictal apnea: A prospective monocentric study in patients with epilepsy. Eur J Neurol 2022; 29:3701-3710. [PMID: 36057450 PMCID: PMC9826458 DOI: 10.1111/ene.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Ictal respiratory disturbances have increasingly been reported, in both generalized and focal seizures, especially involving the temporal lobe. Recognition of ictal breathing impairment has gained importance for the risk of sudden unexpected death in epilepsy (SUDEP). The aim of this study was to evaluate the incidence of ictal apnea (IA) and related hypoxemia during seizures. METHODS We collected and analyzed electroclinical data from consecutive patients undergoing long-term video-electroencephalographic (video-EEG) monitoring with cardiorespiratory polygraphy. Patients were recruited at the epilepsy monitoring unit of the Civil Hospital of Baggiovara, Modena Academic Hospital, from April 2020 to February 2022. RESULTS A total of 552 seizures were recorded in 63 patients. IA was observed in 57 of 552 (10.3%) seizures in 16 of 63 (25.4%) patients. Thirteen (81.2%) patients had focal seizures, and 11 of 16 patients showing IA had a diagnosis of temporal lobe epilepsy; two had a diagnosis of frontal lobe epilepsy and three of epileptic encephalopathy. Apnea agnosia was reported in all seizure types. Hypoxemia was observed in 25 of 57 (43.9%) seizures with IA, and the severity of hypoxemia was related to apnea duration. Apnea duration was significantly associated with epilepsy of unknown etiology (magnetic resonance imaging negative) and with older age at epilepsy onset (p < 0.001). CONCLUSIONS Ictal respiratory changes are a frequent clinical phenomenon, more likely to occur in focal epilepsies, although detected even in patients with epileptic encephalopathy. Our findings emphasize the need for respiratory polygraphy during long-term video-EEG monitoring for diagnostic and prognostic purposes, as well as in relation to the potential link of ictal apnea with the SUDEP risk.
Collapse
Affiliation(s)
- Elisa Micalizzi
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly,Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Anna Elisabetta Vaudano
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly,Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alice Ballerini
- Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giada Giovannini
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly,Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Giulia Turchi
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Maria Cristina Cioclu
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly,Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Leandra Giunta
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Stefano Meletti
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly,Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
15
|
Wenker IC, Boscia AR, Lewis C, Tariq A, Miralles R, Hanflink JC, Saraf P, Patel MK. Forebrain epileptiform activity is not required for seizure-induced apnea in a mouse model of Scn8a epilepsy. Front Neural Circuits 2022; 16:1002013. [PMID: 36160949 PMCID: PMC9490431 DOI: 10.3389/fncir.2022.1002013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8-17% of patients with epilepsy. Although the mechanisms of SUDEP are essentially unknown, one proposed mechanism is respiratory arrest initiated by a convulsive seizure. In mice, we have previously observed that extended apnea occurs during the tonic phase of seizures. Although often survived, tonic seizures became fatal when breathing did not immediately recover postictally. We also found that respiratory muscles were tonically contracted during the apnea, suggesting that muscle contraction could be the cause of apnea. In the present study, we tested the hypothesis that pyramidal neurons of the motor cortex drive motor units during the tonic phase, which produces apnea. Mice harboring the patient-derived N1768D point mutation of an Scn8a allele were crossed with transgenic mice such that inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD) receptors were selectively expressed in excitatory forebrain neurons. We then triggered audiogenic and hippocampal (HC) stimulated seizures under control conditions and when excitatory forebrain neurons were inhibited with the synthetic ligand Clozapine-N-Oxide (CNO). We found that inhibition with CNO was sufficient to increase seizure threshold of HC stimulated, but not audiogenic, seizures. In addition, regardless of seizure type, CNO nearly eliminated epileptiform activity that occurred proximal to the tonic phase; however, the seizure behaviors, notably the tonic phase and concomitant apnea, were unchanged. We interpret these results to indicate that while cortical neurons are likely critical for epileptogenesis and seizure initiation, the behavioral manifestations of tonic seizures are generated by neural circuitry in the mid- and/or hindbrain.
Collapse
|
16
|
Hupp NJ, Talavera B, Melius S, Lacuey N, Lhatoo SD. Protocols for multimodal polygraphy for cardiorespiratory monitoring in the epilepsy monitoring unit. Part II - Research acquisition. Epilepsy Res 2022; 185:106987. [PMID: 35843018 DOI: 10.1016/j.eplepsyres.2022.106987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Multimodal polygraphy including cardiorespiratory monitoring is a valuable tool for epilepsy and sudden unexpected death in epilepsy (SUDEP) research. Broader applications in research into stress, anxiety, mood and other domains exist. Polygraphy techniques used during video electroencephalogram (EEG) recordings provide information on cardiac and respiratory changes in the peri-ictal period. In addition, such monitoring in brain mapping during chronic intracranial EEG evaluations has helped the understanding of pathomechanisms that lead to seizure induced cardiorespiratory dysfunction. Our aim here is to provide protocols and information on devices that may be used in the Epilepsy Monitoring Unit, in addition to proposed standard of care data acquisition. These devices include oronasal thermistors, oronasal pressure transducers, capnography, transcutaneous CO2 sensors, and continuous noninvasive blood pressure monitoring. Standard protocols for cardiorespiratory monitoring simultaneously with video EEG recording, may be useful in the study of cardiorespiratory phenomena in persons with epilepsy.
Collapse
Affiliation(s)
- Norma J Hupp
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Blanca Talavera
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA.
| | - Stephen Melius
- Memorial Hermann. Texas Medical Center, Houston, TX, USA
| | - Nuria Lacuey
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Samden D Lhatoo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
17
|
Talavera B, Hupp NJ, Melius S, Lhatoo SD, Lacuey N. Protocols for multimodal polygraphy for cardiorespiratory monitoring in the epilepsy monitoring unit. Part I: Clinical acquisition. Epilepsy Res 2022; 185:106990. [PMID: 35930940 DOI: 10.1016/j.eplepsyres.2022.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multimodal polygraphy including cardiorespiratory monitoring in the Epilepsy Monitoring is becoming increasingly important. In addition to simultaneous recording of video and EEG, the combination of these techniques not only improves seizure detection, it enhances patient safety and provides information on autonomic clinical symptoms, which may be contributory to localization of seizure foci. However, there are currently no consensus guidelines, nor adequate information on devices available for multimodal polygraphy for cardiorespiratory monitoring in the Epilepsy Monitoring Unit. Our purpose here is to provide protocols and information on devices for such monitoring. Suggested parameters include respiratory inductance plethysmography (thoraco-abdominal belts for respiratory rate), pulse oximetry and four-lead electrocardiography. Detailed knowledge of devices, their operability and acquisition optimization enables accurate interpretation of signal and differentiation of abnormalities from artifacts. Multimodal polygraphy brings new opportunities for identification of peri-ictal cardiorespiratory abnormalities, and may identify high SUDEP risk individuals.
Collapse
Affiliation(s)
- Blanca Talavera
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA.
| | - Norma J Hupp
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Stephen Melius
- Memorial Hermann, Texas Medical Center, Houston, TX, USA
| | - Samden D Lhatoo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nuria Lacuey
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
18
|
Joyal KG, Kreitlow BL, Buchanan GF. The role of sleep state and time of day in modulating breathing in epilepsy: implications for sudden unexpected death in epilepsy. Front Neural Circuits 2022; 16:983211. [PMID: 36082111 PMCID: PMC9445500 DOI: 10.3389/fncir.2022.983211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with refractory epilepsy. While the exact etiology of SUDEP is unknown, mounting evidence implicates respiratory dysfunction as a precipitating factor in cases of seizure-induced death. Dysregulation of breathing can occur in epilepsy patients during and after seizures as well as interictally, with many epilepsy patients exhibiting sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA). The majority of SUDEP cases occur during the night, with the victim found prone in or near a bed. As breathing is modulated in both a time-of-day and sleep state-dependent manner, it is relevant to examine the added burden of nocturnal seizures on respiratory function. This review explores the current state of understanding of the relationship between respiratory function, sleep state and time of day, and epilepsy. We highlight sleep as a particularly vulnerable period for individuals with epilepsy and press that this topic warrants further investigation in order to develop therapeutic interventions to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Katelyn G. Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin L. Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan
| |
Collapse
|
19
|
Arslan GA, Erkent I, Saygi S, Tezer FI. Changes of oxygen saturation in patients with pure temporal lobe epilepsy. Seizure 2022; 100:30-35. [PMID: 35728344 DOI: 10.1016/j.seizure.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Ictal hypoxemia is accepted as one of the mechanisms underlying sudden unexpected death in epilepsy (SUDEP). Although ictal hypoxemia is more common in generalized seizures, it also occurs in focal seizures with or without generalization. In this study, we aimed to show the relationship between clinical and electroencephalographic findings of seizures in patients with temporal lobe epilepsy (TLE) with periictal oxygen saturation. METHODS The data of 55 adult patients who were hospitalized in the Video EEG Monitoring Unit (VEMU) and operated on for drug-resistant TLE between January 2017 and December 2020 were examined. Forty-five seizures from 21 patients with ictal peripheral arterial saturation information and that were seizure-free for at least a year during the follow-up were included in the study. RESULTS The median patient age was 28 (IQR 25-39.5) years (women: 9, men: 12). Age at epilepsy onset was negatively correlated with saturation at seizure onset. Moreover, the age at VEMU admission was also negatively correlated with saturation at seizure onset and the lowest levels of saturation. The saturation at the end of the seizures and the lowest saturation measured in the periictal period with generalization of EEG were significantly lower than those without generalization. The onset of ictal EEG with the rhythmic theta pattern was significantly associated with the lowest level of saturation (<90%), postictal generalized electroencephalographic suppression (PGES), and the presence of generalization. CONCLUSION According to the study, rhythmic ictal theta activity, older age, nocturnal seizure, and generalization in ictal EEG might increase the potential risk of SUDEP. Further studies including a greater number of subjects and different epilepsy syndromes may provide more comprehensive information about potential biomarkers for SUDEP.
Collapse
Affiliation(s)
- Gokce Ayhan Arslan
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - Irem Erkent
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - Serap Saygi
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - F Irsel Tezer
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| |
Collapse
|
20
|
Beniczky S, Tatum WO, Blumenfeld H, Stefan H, Mani J, Maillard L, Fahoum F, Vinayan KP, Mayor LC, Vlachou M, Seeck M, Ryvlin P, Kahane P. Seizure semiology: ILAE glossary of terms and their significance. Epileptic Disord 2022; 24:447-495. [PMID: 35770761 DOI: 10.1684/epd.2022.1430] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
This educational topical review and Task Force report aims to address learning objectives of the International League Against Epilepsy (ILAE) curriculum. We sought to extract detailed features involving semiology from video recordings and interpret semiological signs and symptoms that reflect the likely localization for focal seizures in patients with epilepsy. This glossary was developed by a working group of the ILAE Commission on Diagnostic Methods incorporating the EEG Task Force. This paper identifies commonly used terms to describe seizure semiology, provides definitions, signs and symptoms, and summarizes their clinical value in localizing and lateralizing focal seizures based on consensus in the published literature. Video-EEG examples are included to illustrate important features of semiology in patients with epilepsy.
Collapse
|
21
|
Gu L, Yu Q, Shen Y, Wang Y, Xu Q, Zhang H. The role of monoaminergic neurons in modulating respiration during sleep and the connection with SUDEP. Biomed Pharmacother 2022; 150:112983. [PMID: 35453009 DOI: 10.1016/j.biopha.2022.112983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among epilepsy patients, occurring even more frequently in cases with anti-epileptic drug resistance. Despite some advancements in characterizing SUDEP, the underlying mechanism remains incompletely understood. This review summarizes the latest advances in our understanding of the pathogenic mechanisms of SUDEP, in order to identify possible targets for the development of new strategies to prevent SUDEP. Based on our previous research along with the current literature, we focus on the role of sleep-disordered breathing (SDB) and its related neural mechanisms to consider the possible roles of monoaminergic neurons in the modulation of respiration during sleep and the occurrence of SUDEP. Overall, this review suggests that targeting the monoaminergic neurons is a promising approach to preventing SUDEP. The proposed roles of SDB and related monoaminergic neural mechanisms in SUDEP provide new insights for explaining the pathogenesis of SUDEP.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310006, China.
| |
Collapse
|
22
|
Wenker IC, Blizzard EA, Wagley PK, Patel MK. Peri-Ictal Autonomic Control of Cardiac Function and Seizure-Induced Death. Front Neurosci 2022; 15:795145. [PMID: 35126041 PMCID: PMC8813980 DOI: 10.3389/fnins.2021.795145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8–17% of patients with epilepsy. Although the mechanisms of SUDEP are unknown, one proposed mechanism is abnormal control of the heart by the autonomic nervous system (ANS). Our objective was to determine whether the broad changes in ictal heart rate experienced by mouse models of SUDEP are (1) due to the ANS and (2) contribute to seizure-induced death. Seizures were induced by electrical stimulation of the hippocampus of a mouse carrying the human SCN8A encephalopathy mutation p.Asn1768Asp (N1768D; “D/+ mice”). Using standard autonomic pharmacology, the relative roles of the parasympathetic and sympathetic nervous systems on heart rate changes associated with seizures were determined. All induced seizures had pronounced ictal bradycardia and postictal tachycardia. Seizure susceptibility or severity were unchanged by the pharmacological agents. Administration of Atropine, a muscarinic antagonist, eliminated ictal bradycardia, while carbachol, a muscarinic agonist, had no effect on ictal bradycardia, but reduced postictal tachycardia. Sotalol, an adrenergic β-receptor antagonist, had no effect on ictal bradycardia, but did suppress postictal tachycardia. Isoproterenol, a β-receptor agonist, had no effect on either ictal bradycardia or postictal tachycardia. Administration of the α1-receptor antagonist prazosin increases the incidence of seizure-induced death in D/+ mice. Although postictal heart rate was lower for these fatal seizures in the presence of prazosin, rates were not as low as that recorded for carbachol treated mice, which all survived. Both ictal bradycardia and postictal tachycardia are manifestations of the ANS. Bradycardia is mediated by a maximal activation of the parasympathetic arm of the ANS, and tachycardia is mediated by parasympathetic inactivation and sympathetic activation. While the changes in heart rate during seizures are profound, suppression of postictal heart rate did not increase seizure mortality.
Collapse
|
23
|
Teran FA, Bravo E, Richerson GB. Sudden unexpected death in epilepsy: Respiratory mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:153-176. [PMID: 36031303 PMCID: PMC10191258 DOI: 10.1016/b978-0-323-91532-8.00012-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epilepsy is one of the most common chronic neurologic diseases, with a prevalence of 1% in the US population. Many people with epilepsy live normal lives, but are at risk of sudden unexpected death in epilepsy (SUDEP). This mysterious comorbidity of epilepsy causes premature death in 17%-50% of those with epilepsy. Most SUDEP occurs after a generalized seizure, and patients are typically found in bed in the prone position. Until recently, it was thought that SUDEP was due to cardiovascular failure, but patients who died while being monitored in hospital epilepsy units revealed that most SUDEP is due to postictal central apnea. Some cases may occur when seizures invade the amygdala and activate projections to the brainstem. Evidence suggests that the pathophysiology is linked to defects in the serotonin system and central CO2 chemoreception, and that there is considerable overlap with mechanisms thought to be involved in sudden infant death syndrome (SIDS). Future work is needed to identify biomarkers for patients at highest risk, improve ascertainment, develop methods to alert caregivers when SUDEP is imminent, and find effective approaches to prevent these fatal events.
Collapse
Affiliation(s)
- Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
24
|
Yousif R, Abdulghani MO, Gaber A, El Khayat N, Abo Elnaga YA, Wahid El Din MM. Frequency of peri-ictal apnea and cardiac arrhythmias in epileptic seizures. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Abstract
Background
Available data from witnessed and monitored sudden unexpected death in epilepsy (SUDEP) cases postulate that ictal central apnea (ICA) and ictal arrhythmias are the main causes of SUDEP. ICA is a frequent semiological feature of focal epilepsy and occasionally the only clinical manifestation of focal seizures. The aim of this study was to assess the frequency of ICA and cardiac arrhythmias in epileptic patients and to study the risk factors and predictors of their occurrence.
Methods
Fifty patients diagnosed with epilepsy were recruited in this study. All participants underwent prolonged surface video electroencephalography (VEEG) study using the 10-20 international electrode system with concomitant polysomnography including electrocardiography (ECG), heart rate monitoring, and peripheral capillary oxygen saturation (SpO2) using pulse oximetry. Also inductance plethysmography was used to record chest and abdominal excursions.
Results
Complete datasets were available in 50 patients and 112 seizures were recorded. ICA occurred exclusively in focal epilepsy (P <0.001). Temporal lobe epilepsy was associated with higher occurrence of ICA in comparison to extratemporal epilepsy (P <0.001). In addition, seizures lateralized to the left hemisphere were associated with higher occurrence of ICA (P <0.001). On the other side, tachycardia was found to be more associated with temporal lobe epilepsy and left hemispheric seizure onset (P <0.001).
Conclusion
ICA occurred exclusively in focal seizures and tachycardia magnitude was more with focal seizures, and both had higher percentage in temporal lobe epilepsy in comparison to other types and in seizures with left hemispheric onset.
Collapse
|
25
|
Shlobin NA, Sander JW. Reducing Sudden Unexpected Death in Epilepsy: Considering Risk Factors, Pathophysiology and Strategies. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00691-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose of Review
Sudden Unexpected Death in Epilepsy (SUDEP) is the commonest cause of epilepsy-related premature mortality in people with chronic epilepsy. It is the most devastating epilepsy outcome. We describe and discuss risk factors and possible pathophysiological mechanisms to elucidate possible preventative strategies to avert SUDEP.
Recent Findings
Sudden death accounts for a significant proportion of premature mortality in people with epilepsy compared to the general population. Unmodifiable risk factors include a history of neurologic insult, younger age of seizure-onset, longer epilepsy duration, a history of convulsions, symptomatic epilepsy, intellectual disability, and non-ambulatory status. Modifiable risk factors include the presence of convulsive seizures, increased seizure frequency, timely and appropriate use of antiseizure medications, polytherapy, alcoholism, and supervision while sleeping. Pathophysiology is unclear, but several possible mechanisms such as direct alteration of cardiorespiratory function, pulmonary impairment, electrocerebral shutdown, adenosine dysfunction, and genetic susceptibility suggested.
Summary
Methods to prevent SUDEP include increasing awareness of SUDEP, augmenting knowledge of unmodifiable risk factors, obtaining full seizure remission, addressing lifestyle factors such as supervision and prone positioning, and enacting protocols to increase the detection of and intervention for SUDEP. Further studies are required to characterize precisely and comprehensively SUDEP risk factors and pathophysiological drivers and develop evidence-based algorithms to minimize SUDEP in people with epilepsy.
Collapse
|
26
|
Nei M, Pickard A. The role of convulsive seizures in SUDEP. Auton Neurosci 2021; 235:102856. [PMID: 34343824 DOI: 10.1016/j.autneu.2021.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
Convulsive seizures are the most consistently reported risk factor for SUDEP. However, the precise mechanisms by which convulsive seizures trigger fatal cardiopulmonary changes are still unclear. Additionally, it is not clear why some seizures cause death when most do not. This article reviews the physiologic changes that occur during and after convulsive seizures and how these may contribute to SUDEP. Seizures activate specific cortical and subcortical regions that can cause potentially lethal cardiorespiratory changes. Clinical factors, including sleep state, medication treatment and withdrawal, positioning and posturing during seizures, and underlying structural or genetic conditions may also affect specific aspects of seizures that may contribute to SUDEP. While seizure control, either through medication or surgical treatment, is the primary intervention that reduces SUDEP risk, unfortunately, seizures cannot be fully controlled despite maximal treatment in a significant proportion of people with epilepsy. Thus specific interventions to prevent adverse seizure-related cardiopulmonary consequences are needed. The potential roles of repositioning/stimulation after seizures, oxygen supplementation, cardiopulmonary resuscitation and clinical treatment options in reducing SUDEP risk are explored. Ultimately, understanding of these factors may lead to interventions that could reduce or prevent SUDEP.
Collapse
Affiliation(s)
- Maromi Nei
- Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Comprehensive Epilepsy Center, Department of Neurology, 901 Walnut Street, Suite 400, Philadelphia, PA 19107, United States of America.
| | - Allyson Pickard
- Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Comprehensive Epilepsy Center, Department of Neurology, 901 Walnut Street, Suite 400, Philadelphia, PA 19107, United States of America
| |
Collapse
|
27
|
Maternal Death Related to Sudden Unexpected Death in Epilepsy: A Nationwide Survey in Japan. Brain Sci 2021; 11:brainsci11080995. [PMID: 34439614 PMCID: PMC8392658 DOI: 10.3390/brainsci11080995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as the sudden death of a patient with epilepsy in the absence of an anatomic or toxicologic cause. Whether pregnancy is a risk factor for SUDEP is unclear. Using data submitted to the Japan Association of Obstetricians and Gynecologists (JAOG), which has been collating information regarding all maternal deaths in Japan since 2000, this study evaluated maternal mortality data from 2010 to 2019 to evaluate the current circumstances of maternal death related to SUDEP in Japan. Six women died due to SUDEP during this period; the maternal mortality rate related to SUDEP was 0.066/100,000 individuals. Two women each died during the second trimester, third trimester, and postpartum period. Four and two women were receiving monotherapy and no therapy with anti-epileptic drugs, respectively. The duration of epilepsy was ≤15 years in three women, >15 years in one woman, and unknown in two women. This study furthers our understanding of the prevalence of maternal deaths due to SUDEP in Japan. Further studies are needed to confirm whether pregnancy is a risk factor for SUDEP.
Collapse
|
28
|
Electrocardiographic Abnormalities and Mortality in Epilepsy Patients. ACTA ACUST UNITED AC 2021; 57:medicina57050504. [PMID: 34065703 PMCID: PMC8156797 DOI: 10.3390/medicina57050504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Background and Objectives: People with epilepsy (PWE) have a 2–3 times higher mortality rate than the general population. Sudden unexpected death in epilepsy (SUDEP) comprises a significant proportion of premature deaths, whereas sudden cardiac death (SCD) is among the leading causes of sudden death in the general population. Cardiac pathologies are significantly more prevalent in PWE. Whether electrocardiographic (ECG) parameters are associated with remote death in PWE has yet to be elucidated. The study objective was to assess whether interictal ECG parameters are associated with mortality in the long-term. Materials and Methods: The study involved 471 epilepsy patients who were hospitalized after a bilateral tonic-clonic seizure(s). ECG parameters were obtained on the day of hospitalization (heart rate, PQ interval, QRS complex, QT interval, heart rate corrected QT interval (QTc), ST segment and T wave changes), as well as reported ECG abnormalities. Mortality data were obtained from the Latvian National Cause-of-Death database 3–11, mean 7.0 years after hospitalization. The association between the ECG parameters and the long-term clinical outcome were examined. Results: At the time of assessment, 75.4% of patients were alive and 24.6% were deceased. Short QTc interval (odds ratio (OR) 4.780; 95% confidence interval (CI) 1.668–13.698; p = 0.004) was associated with a remote death. After the exclusion of known comorbidities with high mortality rates, short QTc (OR 4.631) and ECG signs of left ventricular hypertrophy (OR 5.009) were associated with a remote death. Conclusions: The association between routine 12-lead rest ECG parameters—short QTc interval and a pattern of left ventricular hypertrophy—and remote death in epilepsy patients was found. To the best of our knowledge, this is the first study to associate rest ECG parameters with remote death in an epileptic population.
Collapse
|
29
|
Velíšková J, Marra C, Liu Y, Shekhar A, Park DS, Iatckova V, Xie Y, Fishman GI, Velíšek L, Goldfarb M. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 2021; 62:1546-1558. [PMID: 33982289 DOI: 10.1111/epi.16916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor homologous factors (FHFs) are brain and cardiac sodium channel-binding proteins that modulate channel density and inactivation gating. A recurrent de novo gain-of-function missense mutation in the FHF1(FGF12) gene (p.Arg52His) is associated with early infantile epileptic encephalopathy 47 (EIEE47; Online Mendelian Inheritance in Man database 617166). To determine whether the FHF1 missense mutation is sufficient to cause EIEE and to establish an animal model for EIEE47, we sought to engineer this mutation into mice. METHODS The Arg52His mutation was introduced into fertilized eggs by CRISPR (clustered regularly interspaced short palindromic repeats) editing to generate Fhf1R52H /F+ mice. Spontaneous epileptiform events in Fhf1R52H /+ mice were assessed by cortical electroencephalography (EEG) and video monitoring. Basal heart rhythm and seizure-induced arrhythmia were recorded by electrocardiography. Modulation of cardiac sodium channel inactivation by FHF1BR52H protein was assayed by voltage-clamp recordings of FHF-deficient mouse cardiomyocytes infected with adenoviruses expressing wild-type FHF1B or FHF1BR52H protein. RESULTS All Fhf1R52H /+ mice experienced seizure or seizurelike episodes with lethal ending between 12 and 26 days of age. EEG recordings in 19-20-day-old mice confirmed sudden unexpected death in epilepsy (SUDEP) as severe tonic seizures immediately preceding loss of brain activity and death. Within 2-53 s after lethal seizure onset, heart rate abruptly declined from 572 ± 16 bpm to 108 ± 15 bpm, suggesting a parasympathetic surge accompanying seizures that may have contributed to SUDEP. Although ectopic overexpression of FHF1BR52H in cardiomyocytes induced a 15-mV depolarizing shift in voltage of steady-state sodium channel inactivation and slowed the rate of channel inactivation, heart rhythm was normal in Fhf1R52H /+ mice prior to seizure. SIGNIFICANCE The Fhf1 missense mutation p.Arg52His induces epileptic encephalopathy with full penetrance in mice. Both Fhf1 (p.Arg52His) and Scn8a (p.Asn1768Asp) missense mutations enhance sodium channel Nav 1.6 currents and induce SUDEP with bradycardia in mice, suggesting an FHF1/Nav 1.6 functional axis underlying altered brain sodium channel gating in epileptic encephalopathy.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Yue Liu
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Vasilisa Iatckova
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Ying Xie
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| |
Collapse
|
30
|
Differential Methylation in the GSTT1 Regulatory Region in Sudden Unexplained Death and Sudden Unexpected Death in Epilepsy. Int J Mol Sci 2021; 22:ijms22062790. [PMID: 33801838 PMCID: PMC7999472 DOI: 10.3390/ijms22062790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Sudden cardiac death (SCD) is a diagnostic challenge in forensic medicine. In a relatively large proportion of the SCDs, the deaths remain unexplained after autopsy. This challenge is likely caused by unknown disease mechanisms. Changes in DNA methylation have been associated with several heart diseases, but the role of DNA methylation in SCD is unknown. In this study, we investigated DNA methylation in two SCD subtypes, sudden unexplained death (SUD) and sudden unexpected death in epilepsy (SUDEP). We assessed DNA methylation of more than 850,000 positions in cardiac tissue from nine SUD and 14 SUDEP cases using the Illumina Infinium MethylationEPIC BeadChip. In total, six differently methylated regions (DMRs) between the SUD and SUDEP cases were identified. The DMRs were located in proximity to or overlapping genes encoding proteins that are a part of the glutathione S-transferase (GST) superfamily. Whole genome sequencing (WGS) showed that the DNA methylation alterations were not caused by genetic changes, while whole transcriptome sequencing (WTS) showed that DNA methylation was associated with expression levels of the GSTT1 gene. In conclusion, our results indicate that cardiac DNA methylation is similar in SUD and SUDEP, but with regional differential methylation in proximity to GST genes.
Collapse
|
31
|
Wenker IC, Teran FA, Wengert ER, Wagley PK, Panchal PS, Blizzard EA, Saraf P, Wagnon JL, Goodkin HP, Meisler MH, Richerson GB, Patel MK. Postictal Death Is Associated with Tonic Phase Apnea in a Mouse Model of Sudden Unexpected Death in Epilepsy. Ann Neurol 2021; 89:1023-1035. [PMID: 33604927 DOI: 10.1002/ana.26053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is an unpredictable and devastating comorbidity of epilepsy that is believed to be due to cardiorespiratory failure immediately after generalized convulsive seizures. METHODS We performed cardiorespiratory monitoring of seizure-induced death in mice carrying either a p.Arg1872Trp or p.Asn1768Asp mutation in a single Scn8a allele-mutations identified from patients who died from SUDEP-and of seizure-induced death in pentylenetetrazole-treated wild-type mice. RESULTS The primary cause of seizure-induced death for all mice was apnea, as (1) apnea began during a seizure and continued for tens of minutes until terminal asystole, and (2) death was prevented by mechanical ventilation. Fatal seizures always included a tonic phase that was coincident with apnea. This tonic phase apnea was not sufficient to produce death, as it also occurred during many nonfatal seizures; however, all seizures that were fatal had tonic phase apnea. We also made the novel observation that continuous tonic diaphragm contraction occurred during tonic phase apnea, which likely contributes to apnea by preventing exhalation, and this was only fatal when breathing did not resume after the tonic phase ended. Finally, recorded seizures from a patient with developmental epileptic encephalopathy with a previously undocumented SCN8A likely pathogenic variant (p.Leu257Val) revealed similarities to those of the mice, namely, an extended tonic phase that was accompanied by apnea. INTERPRETATION We conclude that apnea coincident with the tonic phase of a seizure, and subsequent failure to resume breathing, are the determining events that cause seizure-induced death in Scn8a mutant mice. ANN NEUROL 2021;89:1023-1035.
Collapse
Affiliation(s)
- Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA.,Department of Neurology, University of Virginia Health System, Charlottesville, VA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Elizabeth A Blizzard
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Priyanka Saraf
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Howard P Goodkin
- Department of Neurology, University of Virginia Health System, Charlottesville, VA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA.,Veterans Affairs Medical Center, Iowa City, IA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
32
|
Lucchesi M, Silverman JB, Sundaram K, Kollmar R, Stewart M. Proposed Mechanism-Based Risk Stratification and Algorithm to Prevent Sudden Death in Epilepsy. Front Neurol 2021; 11:618859. [PMID: 33569036 PMCID: PMC7868441 DOI: 10.3389/fneur.2020.618859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is the leading cause of death in young adults with uncontrolled seizures. First aid guidance to prevent SUDEP, though, has not been previously published because the rarity of monitored cases has made the underlying mechanism difficult to define. This starkly contrasts with the first aid guidelines for sudden cardiac arrest that have been developed based on retrospective studies and expert consensus and the discussion of resuscitation challenges in various American Heart Association certificate courses. However, an increasing amount of evidence from documented SUDEP cases and near misses and from animal models points to a consistent sequence of events that starts with sudden airway occlusion and suggests a mechanistic basis for enhancing seizure first aid. In monitored cases, this sudden airway occlusion associated with seizure activity can be accurately inferred from inductance plethysmography or (depending on recording bandwidth) from electromyographic (EMG) bursts that are associated with inspiratory attempts appearing on the electroencephalogram (EEG) or the electrocardiogram (ECG). In an emergency setting or outside a hospital, seizure first aid can be improved by (1) keeping a lookout for sudden changes in airway status during a seizure, (2) distinguishing thoracic and abdominal movements during attempts to inspire from effective breathing, (3) applying a simple maneuver, the laryngospasm notch maneuver, that may help with airway management when aggressive airway management is unavailable, (4) providing oxygen early as a preventative step to reduce the risk of death, and (5) performing cardiopulmonary resuscitation before the limited post-ictal window of opportunity closes. We propose that these additions to first aid protocols can limit progression of any potential SUDEP case and prevent death. Risk stratification can be improved by recognition of airway occlusion, attendant hypoxia, and need for resuscitation.
Collapse
Affiliation(s)
- Michael Lucchesi
- Department of Emergency Medicine, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Joshua B Silverman
- Department of Otolaryngology, North Shore Long Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Krishnamurthi Sundaram
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Richard Kollmar
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Mark Stewart
- Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Physiology & Pharmacology, State University of New York Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
33
|
Javalkar V, Amireh A, Kelley RE. Neurological complications of syncope and sudden cardiac arrest. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:189-192. [PMID: 33632438 DOI: 10.1016/b978-0-12-819814-8.00025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Syncope is very common and usually comes with enough warning for the person to assume a safer position rather than fall in a potentially dangerous way. Syncope may be associated with pregnancy, for example, but we rarely encounter significant injury related to the potential for an associated fall. In the elderly, however, there are often comorbid factors such as delayed reaction time and other aspects of cognitive impairment, along with gait instability, that can affect the defensive reflexes to the point that brain injury, including subdural or epidural hematoma, is not uncommonly encountered. Sudden syncope without warning can also have both neurological and general physical implications in terms of driving safety, safety operating potentially dangerous equipment or exposure to heights as well as the potential impact for drowning or near-drowning while swimming or taking a bath. Sudden death, from whatever the mechanism, implies cerebral hypoperfusion with the potential consequences of hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Vijayakumar Javalkar
- Department of Neurology, Ochsner/Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Abdallah Amireh
- Department of Neurology, Ochsner/Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Roger E Kelley
- Department of Neurology, Ochsner/Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
34
|
Hutson TN, Rezaei F, Gautier NM, Indumathy J, Glasscock E, Iasemidis L. Directed Connectivity Analysis of the Neuro-Cardio- and Respiratory Systems Reveals Novel Biomarkers of Susceptibility to SUDEP. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:301-311. [PMID: 34223181 PMCID: PMC8249082 DOI: 10.1109/ojemb.2020.3036544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023] Open
Abstract
Goal: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality and its pathophysiological mechanisms remain unknown. We set to record and analyze for the first time concurrent electroencephalographic (EEG), electrocardiographic (ECG), and unrestrained whole-body plethysmographic (Pleth) signals from control (WT - wild type) and SUDEP-prone mice (KO- knockout Kcna1 animal model). Employing multivariate autoregressive models (MVAR) we measured all tri-organ effective directional interactions by the generalized partial directed coherence (GPDC) in the frequency domain over time (hours). When compared to the control (WT) animals, the SUDEP-prone (KO) animals exhibited (p < 0.001) reduced afferent and efferent interactions between the heart and the brain over the full frequency spectrum (0-200Hz), enhanced efferent interactions from the brain to the lungs and from the heart to the lungs at high (>90 Hz) frequencies (especially during periods with seizure activity), and decreased feedback from the lungs to the brain at low (<40 Hz) frequencies. These results show that impairment in the afferent and efferent pathways in the holistic neuro-cardio-respiratory network could lead to SUDEP, and effective connectivity measures and their dynamics could serve as novel biomarkers of susceptibility to SUDEP and seizures respectively.
Collapse
Affiliation(s)
- T. Noah Hutson
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
| | - Farnaz Rezaei
- Department of Mathematics and StatisticsLouisiana Tech UniversityRustonLA71272USA
| | - Nicole M. Gautier
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA71130USA
| | - Jagadeeswaran Indumathy
- Department of PhysiologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Edward Glasscock
- Department of Biological SciencesSouthern Methodist UniversityDallasTX75275USA
| | - Leonidas Iasemidis
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
- Center for Biomedical Engineering and Rehabilitation ScienceLouisiana Tech UniversityRustonLA71272USA
| |
Collapse
|
35
|
Sivathamboo S, Constantino TN, Chen Z, Sparks PB, Goldin J, Velakoulis D, Jones NC, Kwan P, Macefield VG, O'Brien TJ, Perucca P. Cardiorespiratory and autonomic function in epileptic seizures: A video-EEG monitoring study. Epilepsy Behav 2020; 111:107271. [PMID: 32653843 DOI: 10.1016/j.yebeh.2020.107271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Seizure-induced cardiorespiratory and autonomic dysfunction has long been recognized, and growing evidence points to its implication in sudden unexpected death in epilepsy (SUDEP). However, a comprehensive understanding of cardiorespiratory function in the preictal, ictal, and postictal periods are lacking. METHODS We examined continuous cardiorespiratory and autonomic function in 157 seizures (18 convulsive and 139 nonconvulsive) from 70 consecutive patients who had a seizure captured on concurrent video-encephalogram (EEG) monitoring and polysomnography between February 1, 2012 and May 31, 2017. Heart and respiratory rates, heart rate variability (HRV), and oxygen saturation were assessed across four distinct periods: baseline (120 s), preictal (60 s), ictal, and postictal (300 s). Heart and respiratory rates were further followed for up to 60 min after seizure termination to assess return to baseline. RESULTS Ictal tachycardia occurred during both convulsive and nonconvulsive seizures, but the maximum rate was higher for convulsive seizures (mean: 138.8 beats/min, 95% confidence interval (CI): 125.3-152.4) compared with nonconvulsive seizures (mean: 105.4 beats/min, 95% CI: 101.2-109.6; p < 0.001). Convulsive seizures were associated with a lower ictal minimum respiratory rate (mean: 0 breaths/min, 95% CI: 0-0) compared with nonconvulsive seizures (mean: 11.0 breaths/min, 95% CI: 9.5-12.6; p < 0.001). Ictal obstructive apnea was associated with convulsive compared with nonconvulsive seizures. The low-frequency (LF) power band of ictal HRV was higher among convulsive seizures than nonconvulsive seizures (ratio of means (ROM): 2.97, 95% CI: 1.34-6.60; p = 0.008). Postictal tachycardia was substantially prolonged, characterized by a longer return to baseline for convulsive seizures (median: 60.0 min, interquartile range (IQR): 46.5-60.0) than nonconvulsive seizures (median: 0.26 min, IQR: 0.008-0.9; p < 0.001). For postictal hyperventilation, the return to baseline was longer in convulsive seizures (median: 25.3 min, IQR: 8.1-60) than nonconvulsive seizures (median: 1.0 min, IQR: 0.07-3.2; p < 0.001). The LF power band of postictal HRV was lower in convulsive seizures than nonconvulsive seizures (ROM: 0.33, 95% CI: 0.11-0.96; p = 0.043). Convulsive seizures with postictal generalized EEG suppression (PGES; n = 12) were associated with lower postictal heart and respiratory rate, and increased HRV, compared with those without (n = 6). CONCLUSIONS Profound cardiorespiratory and autonomic dysfunction associated with convulsive seizures may explain why these seizures carry the greatest risk of SUDEP.
Collapse
Affiliation(s)
- Shobi Sivathamboo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia.
| | - Thomas N Constantino
- Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton 3800, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia
| | - Paul B Sparks
- Department of Cardiology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Jeremy Goldin
- Department of Respiratory and Sleep Disorders Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Department of Psychiatry, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Vaughan G Macefield
- Human Autonomic Neurophysiology, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia
| |
Collapse
|
36
|
Stewart M, Silverman JB, Sundaram K, Kollmar R. Causes and Effects Contributing to Sudden Death in Epilepsy and the Rationale for Prevention and Intervention. Front Neurol 2020; 11:765. [PMID: 32849221 PMCID: PMC7411179 DOI: 10.3389/fneur.2020.00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) claims the lives of one in every thousand epileptic patients each year. Autonomic, cardiac, and respiratory pieces to a mechanistic puzzle have not yet been completely assembled. We propose a single sequence of causes and effects that unifies disparate and competitive concepts into a single algorithm centered on ictal obstructive apnea. Based on detailed animal studies that are sometimes impossible in humans, and striking parallels with a growing body of clinical examples, this framework (1) accounts for the autonomic, cardiac, and respiratory data to date by showing the causal relationships between specific elements, and (2) highlights specific kinds of data that can be used to precisely classify various patient outcomes. The framework also justifies a “near miss” designation to be applied to any cases with evidence of obstructive apnea even, and perhaps especially, in individuals that do not require resuscitation. Lastly, the rationale for preventative oxygen therapy is demonstrated. With better mechanistic understanding of SUDEP, we suggest changes for detection and classification to increase survival rates and improve risk stratification.
Collapse
Affiliation(s)
- Mark Stewart
- Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Physiology & Pharmacology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Joshua B Silverman
- Department of Otolaryngology, North Shore Long Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Krishnamurthi Sundaram
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Richard Kollmar
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
37
|
Liu J, Peedicail JS, Gaxiola-Valdez I, Li E, Mosher V, Wilson W, Perera T, Singh S, Teskey GC, Federico P. Postictal brainstem hypoperfusion and risk factors for sudden unexpected death in epilepsy. Neurology 2020; 95:e1694-e1705. [PMID: 32675079 DOI: 10.1212/wnl.0000000000010360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Since the strongest risk factor for sudden unexpected death in epilepsy (SUDEP) is frequent bilateral tonic-clonic seizures (BTCS), our aim was to determine whether postictal hypoperfusion in brainstem respiratory centers (BRCs) is more common following tonic-clonic seizures. METHODS We studied 21 patients with focal epilepsies who underwent perfusion imaging with arterial spin labeling MRI. Subtraction maps of cerebral blood flow were obtained from the postictal and baseline scans. We identified 6 regions of interest in the brainstem that contain key BRCs. Patients were considered to have postictal BRC hypoperfusion if any of the 6 regions of interest were significantly hypoperfused. RESULTS All 6 patients who experienced BTCS during the study had significant clusters of postictal hypoperfusion in BRCs compared to 7 who had focal impaired awareness seizures (7/15). The association between seizure type studied and the presence of BRC hypoperfusion was significant. Duration of epilepsy and frequency of BTCS were not associated with postictal brainstem hypoperfusion despite also being associated with risk for SUDEP. CONCLUSION Postictal hypoperfusion in brainstem respiratory centers occurs more often following BTCS than other seizure types, providing a possible explanation for the increased risk of SUDEP in patients who regularly experience BTCS.
Collapse
Affiliation(s)
- Jonathan Liu
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Joseph S Peedicail
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Ismael Gaxiola-Valdez
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Emmy Li
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Victoria Mosher
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - William Wilson
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Tefani Perera
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Shaily Singh
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - G Campbell Teskey
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Paolo Federico
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada.
| | | |
Collapse
|
38
|
Tescarollo FC, Rombo DM, DeLiberto LK, Fedele DE, Alharfoush E, Tomé ÂR, Cunha RA, Sebastião AM, Boison D. Role of Adenosine in Epilepsy and Seizures. J Caffeine Adenosine Res 2020; 10:45-60. [PMID: 32566903 PMCID: PMC7301316 DOI: 10.1089/caff.2019.0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an endogenous anticonvulsant and neuroprotectant of the brain. Seizure activity produces large quantities of adenosine, and it is this seizure-induced adenosine surge that normally stops a seizure. However, within the context of epilepsy, adenosine plays a wide spectrum of different roles. It not only controls seizures (ictogenesis), but also plays a major role in processes that turn a normal brain into an epileptic brain (epileptogenesis). It is involved in the control of abnormal synaptic plasticity and neurodegeneration and plays a major role in the expression of comorbid symptoms and complications of epilepsy, such as sudden unexpected death in epilepsy (SUDEP). Given the important role of adenosine in epilepsy, therapeutic strategies are in development with the goal to utilize adenosine augmentation not only for the suppression of seizures but also for disease modification and epilepsy prevention, as well as strategies to block adenosine A2A receptor overfunction associated with neurodegeneration. This review provides a comprehensive overview of the role of adenosine in epilepsy.
Collapse
Affiliation(s)
- Fabio C. Tescarollo
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Diogo M. Rombo
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, Lisbon, Portugal
- Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Lindsay K. DeLiberto
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Denise E. Fedele
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Enmar Alharfoush
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Ângelo R. Tomé
- Faculty of Science and Technology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, Lisbon, Portugal
- Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Detlev Boison
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
39
|
Zsom A, Tsekhan S, Hamid T, Levin J, Truccolo W, LaFrance WC, Blum AS, Li P, Wahed LA, Shaikh MA, Sharma G, Ranieri R, Zhang L. Ictal autonomic activity recorded via wearable-sensors plus machine learning can discriminate epileptic and psychogenic nonepileptic seizures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3502-3506. [PMID: 31946633 DOI: 10.1109/embc.2019.8857552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Differentiating epileptic seizures (ES) and psychogenic nonepileptic seizures (PNES) is commonly based on electroencephalogram and concurrent video recordings (vEEG). Here, we demonstrate that these two types of seizures can be discriminated based on signals related to autonomic nervous system activity recorded via wearable sensors. We used Empatica E4 Wristband sensors worn on both arms in vEEG confirmed seizures, and machine learning methods to train classifiers, specifically, extreme gradient boosting (XGBoost). Classification performance achieved a predictive accuracy of 78 ± 1.5% on previously unseen data for whether a seizure was epileptic or psychogenic, which is 6 standard deviations above the baseline of 68% accuracy. Our dataset contained altogether 35 seizures from 18 patients out of which 8 patients had 13 convulsive seizures. Prediction of seizure type was based on simple features derived from the segments of autonomic activity measurements (electrodermal activity, body temperature, blood volume pulse, and heart rate) and forearm acceleration. Features related to heart rate and electrodermal activity were ranked as the top predictors in XGBoost classifiers. We found that patients with PNES had a higher ictal heart rate and electrodermal activity than patients with ES. In contrast to existing published studies of mainly convulsive seizures, our classifier focuses on autonomic signals to differentiate convulsive or nonconvulsive semiology ES from PNES. Our results show that autonomic activity recorded via wearable sensors provides promising signals for detection and discrimination of psychogenic and epileptic seizures, but more work is necessary to improve the predictive power of the model.
Collapse
|
40
|
Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, Howard MA, Richerson GB, Steinschneider M, Wemmie JA, Dlouhy BJ. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 2020; 5:134852. [PMID: 32163374 PMCID: PMC7213805 DOI: 10.1172/jci.insight.134852] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDSeizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown.METHODSWe studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration.RESULTSIn 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3-17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons.CONCLUSIONSA focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.FUNDINGNational Institute of Neurological Disorders and Stroke - Congress of Neurological Surgeons, National Institute of General Medical Sciences, Roy J. Carver Charitable Trust.
Collapse
Affiliation(s)
| | | | - Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | - Daniel Tranel
- Iowa Neuroscience Institute
- Department of Psychological and Brain Sciences
- Department of Neurology
| | | | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|
41
|
Iyer SH, Aggarwal A, Warren TJ, Hallgren J, Abel PW, Simeone TA, Simeone KA. Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): The contribution of orexin. Epilepsia 2020; 61:572-588. [PMID: 32030748 PMCID: PMC11818939 DOI: 10.1111/epi.16434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Immediately preceding sudden unexpected death in epilepsy (SUDEP), patients experienced a final generalized tonic-clonic seizure (GTCS), rapid ventilation, apnea, bradycardia, terminal apnea, and asystole. Whether a progressive pathophysiology develops and increases risk of SUDEP remains unknown. Here, we determined (a) heart rate, respiratory rate, and blood oxygen saturation (SaO2 ) in low-risk and high-risk knockout (KO) mice; and (b) whether blocking receptors for orexin, a cardiorespiratory neuromodulator, influences cardiorespiratory function mice or longevity in high-risk KO mice. METHODS Heart rate and SaO2 were determined noninvasively with ECGenie and pulse oximetry. Respiration was determined with noninvasive airway mechanics technology. The role of orexin was determined within subject following acute treatment with a dual orexin receptor antagonist (DORA, 100 mg/kg). The number of orexin neurons in the lateral hypothalamus was determined with immunohistochemistry. RESULTS Intermittent bradycardia was more prevalent in high-risk KO mice, an effect that may be the result of increased parasympathetic drive. High-risk KO mice had more orexin neurons in the lateral hypothalamus. Blocking of orexin receptors differentially influenced heart rate in KO, but not wild-type (WT) mice. When DORA administration increased heart rate, it also decreased heart rate variability, breathing frequency, and/or hypopnea-apnea. Blocking orexin receptors prevented the methacholine (MCh)-induced increase in breathing frequency in KO mice and reduced MCh-induced seizures, via a direct or indirect mechanism. DORA improved oxygen saturation in KO mice with intermittent hypoxia. Daily administration of DORA to high-risk KO mice increased longevity. SIGNIFICANCE High-risk KO mice have a unique cardiorespiratory phenotype that is characterized by progressive changes in five interdependent endpoints. Blocking of orexin receptors attenuates some of these endpoints and increases longevity, supporting the notion that windows of opportunity for intervention exist in this preclinical SUDEP model.
Collapse
Affiliation(s)
- Shruthi H. Iyer
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Ankita Aggarwal
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Ted J. Warren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Jodi Hallgren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Peter W. Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Timothy A. Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Kristina A. Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| |
Collapse
|
42
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
43
|
González A, Nome CG, Bendiksen BA, Sjaastad I, Zhang L, Aleksandersen M, Taubøll E, Aurlien D, Heuser K. Assessment of cardiac structure and function in a murine model of temporal lobe epilepsy. Epilepsy Res 2020; 161:106300. [PMID: 32126491 DOI: 10.1016/j.eplepsyres.2020.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a significant cause of premature seizure-related death. An association between SUDEP and cardiac remodeling has been suggested. However, whether SUDEP is a direct consequence of acute or recurrent seizures is unsettled. The purpose of this study was to evaluate the impact of status epilepticus (SE) and chronic seizures on myocardial structure and function. We used the intracortical kainate injection model of temporal lobe epilepsy to elicit SE and chronic epilepsy in mice. In total, 24 C57/BL6 mice (13 kainate, 11 sham) were studied 2 and 30 days post-injection. Cardiac structure and function were investigated in-vivo with a 9.4 T MRI, electrocardiography (ECG), echocardiography, and histology [Haematoxylin/Eosin (HE) and Martius Scarlet Blue (MSB)] for staining of collagen proliferation and fibrin accumulation. In conclusion, we did not detect any significant changes in cardiac structure and function neither in mice 2 days nor 30 days post-injection.
Collapse
Affiliation(s)
- Alba González
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Bård Andre Bendiksen
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway; Bjørknes University College, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mona Aleksandersen
- School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erik Taubøll
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dag Aurlien
- Neuroscience Research Group and Dep. of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Kjell Heuser
- Dep. of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
44
|
Apnea Associated with Brainstem Seizures in Cacna1a S218L Mice Is Caused by Medullary Spreading Depolarization. J Neurosci 2019; 39:9633-9644. [PMID: 31628185 DOI: 10.1523/jneurosci.1713-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Seizure-related apnea is common and can be lethal. Its mechanisms however remain unclear and preventive strategies are lacking. We postulate that brainstem spreading depolarization (SD), previously associated with lethal seizures in animal models, initiates apnea upon invasion of brainstem respiratory centers. To study this, we assessed effects of brainstem seizures on brainstem function and respiration in male and female mice carrying a homozygous S218L missense mutation that leads to gain-of-function of voltage-gated CaV2.1 Ca2+ channels and high risk for fatal seizures. Recordings of brainstem DC potential and neuronal activity, cardiorespiratory activity and local tissue oxygen were performed in freely behaving animals. Brainstem SD occurred during all spontaneous fatal seizures and, unexpectedly, during a subset of nonfatal seizures. Seizure-related SDs in the ventrolateral medulla correlated with respiratory suppression. Seizures induced by stimulation of the inferior colliculus could evoke SD that spread in a rostrocaudal direction, preceding local tissue hypoxia and apnea, indicating that invasion of SD into medullary respiratory centers initiated apnea and hypoxia rather than vice versa Fatal outcome was prevented by timely resuscitation. Moreover, NMDA receptor antagonists MK-801 and memantine prevented seizure-related SD and apnea, which supports brainstem SD as a prerequisite for brainstem seizure-related apnea in this animal model and has translational value for developing strategies that prevent fatal ictal apnea.SIGNIFICANCE STATEMENT Apnea during and following seizures is common, but also likely implicated in sudden unexpected death in epilepsy (SUDEP). This underlines the need to understand mechanisms for potentially lethal seizure-related apnea. In the present work we show, in freely behaving SUDEP-prone transgenic mice, that apnea is induced when spontaneous brainstem seizure-related spreading depolarization (SD) reaches respiratory nuclei in the ventrolateral medulla. We show that brainstem seizure-related medullary SD is followed by local hypoxia and recovers during nonfatal seizures, but not during fatal events. NMDA receptor antagonists prevented medullary SD and apnea, which may be of translational value.
Collapse
|
45
|
Elmali AD, Bebek N, Baykan B. Let's talk SUDEP. ACTA ACUST UNITED AC 2019; 56:292-301. [PMID: 31903040 DOI: 10.29399/npa.23663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/21/2019] [Indexed: 01/17/2023]
Abstract
Sudden unexplained death in epilepsy (SUDEP) is a devastating complication of epilepsy which was under-recognized in the recent past despite its clear importance. In this review, we examine the definition of SUDEP, revise current pathophysiological theories, discuss risk factors and preventative measures, disclose tools for appraising the SUDEP risk, and last but not least dwell upon announcing and explaining the SUDEP risk to the patients and their caretakers. We aim to aid the clinicians in their responsibility of knowing SUDEP, explaining the SUDEP risk to their patients in a reasonable and sensible way and whenever possible, preventing SUDEP. Future studies are definitely needed to increase scientific knowledge and awareness related to this prioritized topic with malign consequences.
Collapse
Affiliation(s)
- Ayşe Deniz Elmali
- İstanbul University, İstanbul Faculty of Medicine, Department of Neurology, İstanbul, Turkey
| | - Nerses Bebek
- İstanbul University, İstanbul Faculty of Medicine, Department of Neurology, İstanbul, Turkey
| | - Betül Baykan
- İstanbul University, İstanbul Faculty of Medicine, Department of Neurology, İstanbul, Turkey
| |
Collapse
|
46
|
Murugesan A, Rani MRS, Vilella L, Lacuey N, Hampson JP, Faingold CL, Friedman D, Devinsky O, Sainju RK, Schuele S, Diehl B, Nei M, Harper RM, Bateman LM, Richerson G, Lhatoo SD. Postictal serotonin levels are associated with peri-ictal apnea. Neurology 2019; 93:e1485-e1494. [PMID: 31484709 DOI: 10.1212/wnl.0000000000008244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine the relationship between serum serotonin (5-HT) levels, ictal central apnea (ICA), and postconvulsive central apnea (PCCA) in epileptic seizures. METHODS We prospectively evaluated video EEG, plethysmography, capillary oxygen saturation (SpO2), and ECG for 49 patients (49 seizures) enrolled in a multicenter study of sudden unexpected death in epilepsy (SUDEP). Postictal and interictal venous blood samples were collected after a clinical seizure for measurement of serum 5-HT levels. Seizures were classified according to the International League Against Epilepsy 2017 seizure classification. We analyzed seizures with and without ICA (n = 49) and generalized convulsive seizures (GCS) with and without PCCA (n = 27). RESULTS Postictal serum 5-HT levels were increased over interictal levels for seizures without ICA (p = 0.01), compared to seizures with ICA (p = 0.21). In patients with GCS without PCCA, serum 5-HT levels were increased postictally compared to interictal levels (p < 0.001), but not in patients with seizures with PCCA (p = 0.22). Postictal minus interictal 5-HT levels also differed between the 2 groups with and without PCCA (p = 0.03). Increased heart rate was accompanied by increased serum 5-HT levels (postictal minus interictal) after seizures without PCCA (p = 0.03) compared to those with PCCA (p = 0.42). CONCLUSIONS The data suggest that significant seizure-related increases in serum 5-HT levels are associated with a lower incidence of seizure-related breathing dysfunction, and may reflect physiologic changes that confer a protective effect against deleterious phenomena leading to SUDEP. These results need to be confirmed with a larger sample size study.
Collapse
Affiliation(s)
- Arun Murugesan
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - M R Sandhya Rani
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD.
| | - Laura Vilella
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Nuria Lacuey
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Johnson P Hampson
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Carl L Faingold
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Daniel Friedman
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Orrin Devinsky
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Rup K Sainju
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Stephan Schuele
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Beate Diehl
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Maromi Nei
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Ronald M Harper
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Lisa M Bateman
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - George Richerson
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| | - Samden D Lhatoo
- From the Department of Neurology (A.M.), Case Western Reserve University; Department of Neurology (M.R.S.R., L.V., N.L., J.P.H., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Pharmacology and Neurology (C.L.F.), Southern Illinois University School of Medicine, Springfield; Department of Neurology (D.F., O.D.), New York University School of Medicine, New York; Department of Neurology (R.K.S., G.R.), University of Iowa Carver College of Medicine, Iowa City; Department of Neurology (S.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Institute of Neurology (B.D.), University College London, UK; Department of Neurology (M.N.), Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA; Department of Neurobiology (R.M.H.), David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Neurology (L.M.B.), Columbia University Medical Center, New York, NY; and Center for SUDEP Research (M.R.S.R., L.V., N.L., D.F., O.D., R.K.S., S.S., B.D., M.N., R.M.H., L.M.B., G.R., S.D.L.), National Institute for Neurological Disorders and Stroke, Bethesda, MD
| |
Collapse
|
47
|
Lacuey N, Martins R, Vilella L, Hampson JP, Rani MRS, Strohl K, Zaremba A, Hampson JS, Sainju RK, Friedman D, Nei M, Scott C, Gehlbach BK, Hupp NJ, Schuele S, Ogren J, Harper RM, Allen L, Diehl B, Bateman LM, Devinsky O, Richerson GB, Lhatoo S. The association of serotonin reuptake inhibitors and benzodiazepines with ictal central apnea. Epilepsy Behav 2019; 98:73-79. [PMID: 31301453 PMCID: PMC8975169 DOI: 10.1016/j.yebeh.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Ictal (ICA) and postconvulsive central apnea (PCCA) have been implicated in sudden unexpected death in epilepsy (SUDEP) pathomechanisms. Previous studies suggest that serotonin reuptake inhibitors (SRIs) and benzodiazepines (BZDs) may influence breathing. The aim of this study was to investigate if chronic use of these drugs alters central apnea occurrence in patients with epilepsy. METHODS Patients with epilepsy admitted to epilepsy monitoring units (EMUs) in nine centers participating in a SUDEP study were consented. Polygraphic physiological parameters were analyzed, including video-electroencephalography (VEEG), thoracoabdominal excursions, and pulse oximetry. Outpatient medication details were collected. Patients and seizures were divided into SRI, BZD, and control (no SRI or BZD) groups. Ictal central apnea and PCCA, hypoxemia, and electroclinical features were assessed for each group. RESULTS Four hundred and seventy-six seizures were analyzed (204 patients). The relative risk (RR) for ICA in the SRI group was half that of the control group (p = 0.02). In the BZD group, ICA duration was significantly shorter than in the control group (p = 0.02), as was postictal generalized EEG suppression (PGES) duration (p = 0.021). Both SRI and BZD groups were associated with smaller seizure-associated oxygen desaturation (p = 0.009; p ≪ 0.001). Neither presence nor duration of PCCA was significantly associated with SRI or BZD (p ≫ 0.05). CONCLUSIONS Seizures in patients taking SRIs have lower occurrence of ICA, and patients on chronic treatment with BZDs have shorter ICA and PGES durations. Preventing or shortening ICA duration by using SRIs and/or BZD in patients with epilepsy may play a possible role in SUDEP risk reduction.
Collapse
Affiliation(s)
- Nuria Lacuey
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Rita Martins
- Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Laura Vilella
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA
| | - Johnson P. Hampson
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Kingman Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH, USA
| | - Anita Zaremba
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA
| | | | - Rup K. Sainju
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daniel Friedman
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,NYU Langone School of Medicine, New York, NY, USA
| | - Maromi Nei
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Catherine Scott
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Institute of Neurology, University College London, London, UK
| | - Brian K Gehlbach
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Norma J. Hupp
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA
| | - Stephan Schuele
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Northwestern University, Feinberg School of Medicine, Chicago
| | - Jennifer Ogren
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ronald M. Harper
- Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal,Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Luke Allen
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Institute of Neurology, University College London, London, UK
| | - Beate Diehl
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Institute of Neurology, University College London, London, UK
| | - Lisa M. Bateman
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,Department of Neurology, Columbia University, New York, NY, USA
| | - Orrin Devinsky
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,NYU Langone School of Medicine, New York, NY, USA
| | - George B. Richerson
- NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samden Lhatoo
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA,NINDS Center for SUDEP Research (CSR), Cleveland, OH, USA
| |
Collapse
|
48
|
Apnea events in neonatal age: A case report and literature review. Med Hypotheses 2019; 131:109296. [PMID: 31443773 DOI: 10.1016/j.mehy.2019.109296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Among the most common autonomic signs visible in preterm neonates, apnea can represent the first sign of several neurologic and non-neurologic disorders, and seizure is a relatively infrequent cause. Herein authors present a case of neonatal autonomic apnea, discussing the polygraphic video-EEG features of this pathological entity and the differential diagnosis with central apnea and autonomic apnea. CASE REPORT A female preterm Caucasian infant (29 + 4 weeks' gestational age (GA)), first twin of a twin pregnancy, at birth was intubated and surfactant administration was performed. She was ventilated via invasive ventilation for three days, with subsequent weaning with non-invasive ventilation for other two days, when she stopped requiring any ventilator support. After one week the ventilation weaning, the child presented episodes of cyanosis associated with sudden oxygen desaturation, skin pallor, apnea, and bradycardia. Therefore, the child underwent a continuous video-eeg recording with polygraphic study. The exam showed the presence of apneic episodes with an abrupt and clear start, associated with oxygen desaturation at 70%, with minimal thoracic effort at onset, and then evolving into central apnea. Central apnea lasted about 16 s and presented clear start- and end-points. These episodes were also associated with suppression of the EEG trace in frequency and amplitude, and after about 10 s of central apnea an abrupt decrease of the child's heart rate (more than 50% variation, from 160 bpm to 65 bpm) was recorded. In the suspect of epileptic apneas of autonomic origin, a therapy with oral Levetiracetam, at a starting dose of 10 mg/Kg/day, then increased up to 40 mg/Kg/day, was initiated, and after about 48 h the first administration of the anticonvulsant therapy, no new episodes of cyanosis or electrical apneas were recorded. HYPOTHESIS Herein the authors suggest to consider the diagnosis of autonomic seizures in those neonates with apneic events associated with EEG suppression. Considering that apnea events are not only present in preterm infants but also in term neonates, it is mandatory to diagnose in this context neonatal seizures for a correct diagnosis and a proper therapeutic choice.
Collapse
|
49
|
Jordan A, Bausch M, Surges R. Semi-automatic quantification of seizure-related effects on heart activity. Epilepsy Res 2019; 157:106187. [PMID: 31470143 DOI: 10.1016/j.eplepsyres.2019.106187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/21/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Seizure-related modulation of heart rate (HR) was examined extensively in previous studies. However, the overall effect on HR attributable to epileptic seizures is difficult to determine, given the considerable fluctuations of HR before and during seizures. Here, we developed a semi-automatic procedure allowing quantification of the total impact of seizures on HR and determination of temporal relationships between seizure onset assessed by intracranial EEG (iEEG) and ECG. METHODS ECG and iEEG data of epilepsy patients undergoing video-EEG telemetry for epilepsy surgery with bilateral hippocampal depth electrodes were analysed retrospectively. Consecutive RR intervals and HR profiles were determined using R detection algorithms. Novel features including the normalized ictal area under the curve (niAUC), as well as the time point of ECG onset (HR breakpoint) were calculated. Selected HR features were compared to widely-used manually acquired measures. Data are given as median ± SD. RESULTS Fifteen patients had a total of 34 seizures with left-hippocampal and 37 seizures with right-hippocampal onset. HR increased by 9 ± 19% during seizures. Latency between iEEG seizure-onset to the HR breakpoint was 23 ± 22 s. No significant difference between left- and right-hippocampal seizures was observed with respect to HR increases, latencies and niAUC. A comparison between results of the semi-automatic and manual approach revealed that ictal HR changes showed a higher correlation (r = 0.6) than niAUC (r = 0.4). CONCLUSIONS The proposed semi-automatic approach to analyze continuous HR data provides useful tools for estimating the overall effect of seizures on HR in greater detail. Our results suggest that the side of hippocampal seizure onset has no significant effect on the latency and extent of ictal HR changes. The algorithms may be of further use in clinical research and the development of seizure detection devices.
Collapse
Affiliation(s)
- Arthur Jordan
- Department of Epileptology, University Hospital Bonn, Bonn, Germany; Department of Neurology, University Hospital of Aachen, Aachen, Germany.
| | - Marcel Bausch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
50
|
Somboon T, Grigg-Damberger MM, Foldvary-Schaefer N. Epilepsy and Sleep-Related Breathing Disturbances. Chest 2019; 156:172-181. [DOI: 10.1016/j.chest.2019.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
|