1
|
Liu Y, Zhong Z, Chen J, Kuo H, Chen X, Wang P, Shi M, Yang M, Liu B, Liu G. Brain activation patterns in patients with post-stroke cognitive impairment during working memory task: a functional near-infrared spectroscopy study. Front Neurol 2024; 15:1419128. [PMID: 39188710 PMCID: PMC11346344 DOI: 10.3389/fneur.2024.1419128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Objective To explore the activation patterns in the frontal cortex of patients with post-stroke cognitive impairment during the execution of working memory tasks. Methods 15 patients with post-stroke cognitive impairment, 17 patients without cognitive impairment, and 15 healthy controls of similar age and sex were included. All participants under-went immediate recall task testing and near-infrared spectroscopy imaging to measure frontal cortex activation during the task. Results The healthy control group performed the best in the immediate recall task, followed by the post-stroke non-cognitive impairment group. The post-stroke cognitive impairment group had the poorest performance. The near-infrared spectroscopy results revealed that during the immediate recall task, the healthy control group primarily activated the left frontal lobe region. In contrast, post-stroke patients exhibited reduced activation in the left frontal lobe and increased activation in the right frontal cortex, particularly in the right frontopolar and orbitofrontal regions, with the post-stroke cognitive impairment group displaying the most pronounced changes. Conclusion Patients with post-stroke cognitive impairment exhibit reduced activation in the left prefrontal cortex during the working memory tasks. They rely on compensatory activation in the right prefrontal cortex, particularly in the frontopolar and orbitofrontal cortex, to successfully complete the task.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Zongye Zhong
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Jian Chen
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Hochieh Kuo
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Xiuli Chen
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Ping Wang
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Mingfang Shi
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Mingzhen Yang
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Bangzhong Liu
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| | - Guanghua Liu
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine, Shanghai, China
| |
Collapse
|
2
|
Wylie GR, Genova HM, Yao B, Chiaravalloti N, Román CAF, Sandroff BM, DeLuca J. Evaluating the effects of brain injury, disease and tasks on cognitive fatigue. Sci Rep 2023; 13:20166. [PMID: 37978235 PMCID: PMC10656417 DOI: 10.1038/s41598-023-46918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Because cognitive fatigue (CF) is common and debilitating following brain injury or disease we investigated the relationships among CF, behavioral performance, and cerebral activation within and across populations by combining the data from two cross-sectional studies. Individuals with multiple sclerosis (MS) were included to model CF resulting from neurological disease; individuals who had sustained a traumatic brain injury (TBI) were included to model CF resulting from neurological insult; both groups were compared with a control group (Controls). CF was induced while neuroimaging data was acquired using two different tasks. CF significantly differed between the groups, with the clinical groups reporting more CF than Controls-a difference that was statistically significant for the TBI group and trended towards significance for the MS group. The accrual of CF did not differ across the three groups; and CF ratings were consistent across tasks. Increasing CF was associated with longer response time for all groups. The brain activation in the caudate nucleus and the thalamus was consistently correlated with CF in all three groups, while more dorsally in the caudate, activation differed across the groups. These results suggest the caudate and thalamus to be central to CF while more dorsal aspects of the caudate may be sensitive to damage associated with particular types of insult.
Collapse
Affiliation(s)
- Glenn R Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA.
- Department of Veterans' Affairs, The War Related Illness and Injury Center, East Orange Campus, East Orange, NJ, 07018, USA.
| | - Helen M Genova
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - Bing Yao
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - Nancy Chiaravalloti
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - Cristina A F Román
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
| | - Brian M Sandroff
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
| | - John DeLuca
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, USA
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| |
Collapse
|
3
|
El Haj M, Moustafa AA, Allain P. Memory in Social Interactions: The Effects of Introspection on Destination Memory in Traumatic Brain Injury. Brain Sci 2023; 13:1250. [PMID: 37759851 PMCID: PMC10526270 DOI: 10.3390/brainsci13091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Destination memory, which is the ability to remember to whom one has sent information, is intimately associated with social cognition. We assessed whether processing attributes of destinations would improve destination memory in patients with traumatic brain injury (TBI). In this cross-sectional study, we tested the destination memory of 24 patients with TBI and 25 control participants in two conditions. On the first one (control condition), we invited participants to tell proverbs to celebrities' faces in order to decide, on a subsequent recognition test, whether they previously told that proverb to that celebrity or not. On the second condition (experimental introspection condition), the same procedures were repeated. However, after telling the proverbs, we invited participants to introspect about what the destination might believe about the proverbs (e.g., "What do you think that the celebrities would think about the proverbs?"). Group comparisons demonstrated better destination memory after the introspection than when no introspection was implemented in control participants, but there were no significant differences between the two conditions in patients with TBI. However, analyses of individual profiles demonstrated that more than half (n = 13) of the patients with TBI demonstrated better destination memory after introspection. While these results demonstrate a beneficial effect of introspection on destination memory for some cases of patients with TBI, more research is needed to reveal how introspection may influence patients' memory in social interactions.
Collapse
Affiliation(s)
- Mohamad El Haj
- Institut Universitaire de France, F-75005 Paris, France
- CHU Nantes, Clinical Gerontology Department, Bd Jacques Monod, F-44093 Nantes, France
- LPPL-Laboratoire de Psychologie des Pays de la Loire, Faculté de Psychologie, Université de Nantes, Chemin de la Censive du Tertre, BP 81227, CEDEX 03, F-44312 Nantes, France
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD 4229, Australia
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Philippe Allain
- Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638, SFR Confluences, UNIV Angers, Maison de la recherche Germaine Tillion, 5 bis Boulevard Lavoisier, CEDEX 01, F-49045 Angers, France
- Département de Neurologie, Centre Hospitalier Universitaire d’Angers, F-49000 Angers, France
| |
Collapse
|
4
|
Esagoff AI, Stevens DA, Kosyakova N, Woodard K, Jung D, Richey LN, Daneshvari NO, Luna LP, Bray MJ, Bryant BR, Rodriguez CP, Krieg A, Trapp NT, Jones MB, Roper C, Goldwaser EL, Berich-Anastasio E, Pletnikova A, Lobner K, Lauterbach M, Sair HI, Peters ME. Neuroimaging Correlates of Post-Traumatic Stress Disorder in Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:1029-1044. [PMID: 36259461 PMCID: PMC10402701 DOI: 10.1089/neu.2021.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuroimaging is widely utilized in studying traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). The risk for PTSD is greater after TBI than after non-TBI trauma, and PTSD is associated with worse outcomes after TBI. Studying the neuroimaging correlates of TBI-related PTSD may provide insights into the etiology of both conditions and help identify those TBI patients most at risk of developing persistent symptoms. The objectives of this systematic review were to examine the current literature on neuroimaging in TBI-related PTSD, summarize key findings, and highlight strengths and limitations to guide future research. A Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) compliant literature search was conducted in PubMed (MEDLINE®), PsycINFO, Embase, and Scopus databases prior to January 2022. The database query yielded 4486 articles, which were narrowed based on specified inclusion criteria to a final cohort of 16 studies, composed of 854 participants with TBI. There was no consensus regarding neuroimaging correlates of TBI-related PTSD among the included articles. A small number of studies suggest that TBI-related PTSD is associated with white matter tract changes, particularly in frontotemporal regions, as well as changes in whole-brain networks of resting-state connectivity. Future studies hoping to identify reliable neuroimaging correlates of TBI-related PTSD would benefit from ensuring consistent case definition, preferably with clinician-diagnosed TBI and PTSD, selection of comparable control groups, and attention to imaging timing post-injury. Prospective studies are needed and should aim to further differentiate predisposing factors from sequelae of TBI-related PTSD.
Collapse
Affiliation(s)
- Aaron I. Esagoff
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel A. Stevens
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Kosyakova
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Kaylee Woodard
- Louisiana State University Health Sciences Center – New Orleans, New Orleans, Louisiana, USA
| | - Diane Jung
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa N. Richey
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas O. Daneshvari
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Licia P. Luna
- Department of Radiology and Radiological Science, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J.C. Bray
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R. Bryant
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carla P. Rodriguez
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas T. Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Melissa B. Jones
- Menninger Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | - Carrie Roper
- VA Maryland Healthcare System, Baltimore, Maryland, USA
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric L. Goldwaser
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Alexandra Pletnikova
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katie Lobner
- Department of Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Margo Lauterbach
- Sheppard Pratt, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haris I. Sair
- Louisiana State University Health Sciences Center – New Orleans, New Orleans, Louisiana, USA
| | - Matthew E. Peters
- Department of Psychiatry and Behavioral Sciences and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Nath T, Caffo B, Wager T, Lindquist MA. A machine learning based approach towards high-dimensional mediation analysis. Neuroimage 2023; 268:119843. [PMID: 36586543 PMCID: PMC10332048 DOI: 10.1016/j.neuroimage.2022.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Mediation analysis is used to investigate the role of intermediate variables (mediators) that lie in the path between an exposure and an outcome variable. While significant research has focused on developing methods for assessing the influence of mediators on the exposure-outcome relationship, current approaches do not easily extend to settings where the mediator is high-dimensional. These situations are becoming increasingly common with the rapid increase of new applications measuring massive numbers of variables, including brain imaging, genomics, and metabolomics. In this work, we introduce a novel machine learning based method for identifying high dimensional mediators. The proposed algorithm iterates between using a machine learning model to map the high-dimensional mediators onto a lower-dimensional space, and using the predicted values as input in a standard three-variable mediation model. Hence, the machine learning model is trained to maximize the likelihood of the mediation model. Importantly, the proposed algorithm is agnostic to the machine learning model that is used, providing significant flexibility in the types of situations where it can be used. We illustrate the proposed methodology using data from two functional Magnetic Resonance Imaging (fMRI) studies. First, using data from a task-based fMRI study of thermal pain, we combine the proposed algorithm with a deep learning model to detect distributed, network-level brain patterns mediating the relationship between stimulus intensity (temperature) and reported pain at the single trial level. Second, using resting-state fMRI data from the Human Connectome Project, we combine the proposed algorithm with a connectome-based predictive modeling approach to determine brain functional connectivity measures that mediate the relationship between fluid intelligence and working memory accuracy. In both cases, our multivariate mediation model links exposure variables (thermal pain or fluid intelligence), high dimensional brain measures (single-trial brain activation maps or resting-state brain connectivity) and behavioral outcomes (pain report or working memory accuracy) into a single unified model. Using the proposed approach, we are able to identify brain-based measures that simultaneously encode the exposure variable and correlate with the behavioral outcome.
Collapse
Affiliation(s)
- Tanmay Nath
- The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| | - Brian Caffo
- The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Tor Wager
- The Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin A Lindquist
- The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Banerji A, Sleigh JW, Voss LJ, Garcia PS, Gaskell AL. Deconstructing delirium in the post anaesthesia care unit. Front Aging Neurosci 2022; 14:930434. [PMID: 36268194 PMCID: PMC9577324 DOI: 10.3389/fnagi.2022.930434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The course of neuro-cognitive recovery following anaesthesia and surgery is distinctive and poorly understood. Our objective was to identify patterns of neuro-cognitive recovery of the domains routinely assessed for delirium diagnosis in the post anaesthesia care unit (PACU) and to compare them to the cognitive recovery patterns observed in other studies; thereby aiding in the identification of pathological (high risk) patterns of recovery in the PACU. We also compared which of the currently available tests (3D-CAM, CAM-ICU, and NuDESC) is the best to use in PACU. This was a post hoc secondary analysis of data from the Alpha Max study which involved 200 patients aged over 60 years, scheduled for elective surgery under general anaesthesia lasting more than 2 h. These patients were assessed for delirium at 30 min following arrival in the PACU, if they were adequately arousable (Richmond Agitation Sedation Score ≥ −2). All tests for delirium diagnosis (3D-CAM, CAM-ICU, and NuDESC) and the sub-domains assessed were compared to understand temporal recovery of neurocognitive domains. These data were also analysed to determine the best predictor of PACU delirium. We found the incidence of PACU delirium was 35% (3D-CAM). Individual cognitive domains were affected differently. Few individuals had vigilance deficits (6.5%, n = 10 CAM-ICU) or disorganized thinking (19% CAM-ICU, 27.5% 3D-CAM), in contrast attention deficits were common (72%, n = 144) and most of these patients (89.5%, n = 129) were not sedated (RASS ≥ −2). CAM-ICU (27%) and NuDESC (52.8%) detected fewer cases of PACU delirium compared to 3D-CAM. In conclusion, return of neurocognitive function is a stepwise process; Vigilance and Disorganized Thinking are the earliest cognitive functions to return to baseline and lingering deficits in these domains could indicate an abnormal cognitive recovery. Attention deficits are relatively common at 30 min in the PACU even in individuals who appear to be awake. The 3D CAM is a robust test to check for delirium in the PACU.
Collapse
Affiliation(s)
- Antara Banerji
- Department of Anaesthesia, Waikato Clinical Campus, University of Auckland, Auckland, New Zealand
- *Correspondence: Antara Banerji,
| | - Jamie W. Sleigh
- Department of Anaesthesia, Waikato Clinical Campus, University of Auckland, Auckland, New Zealand
| | - Logan J. Voss
- Department of Anaesthesia, Waikato Clinical Campus, University of Auckland, Auckland, New Zealand
- Department of Anaesthesia and Pain Medicine, Waikato District Health Board, Hamilton, New Zealand
| | - Paul S. Garcia
- Department of Anesthesiology, Chief Neuroanesthesia Division, Columbia University Medical Center New York Presbyterian Hospital – Irving, Columbia University, New York, NY, United States
| | - Amy L. Gaskell
- Department of Anaesthesia, Waikato Clinical Campus, University of Auckland, Auckland, New Zealand
- Department of Anaesthesia and Pain Medicine, Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
7
|
Shahab QS, Young IM, Dadario NB, Tanglay O, Nicholas PJ, Lin YH, Fonseka RD, Yeung JT, Bai MY, Teo C, Doyen S, Sughrue ME. A connectivity model of the anatomic substrates underlying Gerstmann syndrome. Brain Commun 2022; 4:fcac140. [PMID: 35706977 PMCID: PMC9189613 DOI: 10.1093/braincomms/fcac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
The Gerstmann syndrome is a constellation of neurological deficits that include agraphia, acalculia, left-right discrimination and finger agnosia. Despite a growing interest in this clinical phenomenon, there remains controversy regarding the specific neuroanatomic substrates involved. Advancements in data-driven, computational modelling provides an opportunity to create a unified cortical model with greater anatomic precision based on underlying structural and functional connectivity across complex cognitive domains. A literature search was conducted for healthy task-based functional MRI and PET studies for the four cognitive domains underlying Gerstmann's tetrad using the electronic databases PubMed, Medline, and BrainMap Sleuth (2.4). Coordinate-based, meta-analytic software was utilized to gather relevant regions of interest from included studies to create an activation likelihood estimation (ALE) map for each cognitive domain. Machine-learning was used to match activated regions of the ALE to the corresponding parcel from the cortical parcellation scheme previously published under the Human Connectome Project (HCP). Diffusion spectrum imaging-based tractography was performed to determine the structural connectivity between relevant parcels in each domain on 51 healthy subjects from the HCP database. Ultimately 102 functional MRI studies met our inclusion criteria. A frontoparietal network was found to be involved in the four cognitive domains: calculation, writing, finger gnosis, and left-right orientation. There were three parcels in the left hemisphere, where the ALE of at least three cognitive domains were found to be overlapping, specifically the anterior intraparietal area, area 7 postcentral (7PC) and the medial intraparietal sulcus. These parcels surround the anteromedial portion of the intraparietal sulcus. Area 7PC was found to be involved in all four domains. These regions were extensively connected in the intraparietal sulcus, as well as with a number of surrounding large-scale brain networks involved in higher-order functions. We present a tractographic model of the four neural networks involved in the functions which are impaired in Gerstmann syndrome. We identified a 'Gerstmann Core' of extensively connected functional regions where at least three of the four networks overlap. These results provide clinically actionable and precise anatomic information which may help guide clinical translation in this region, such as during resective brain surgery in or near the intraparietal sulcus, and provides an empiric basis for future study.
Collapse
Affiliation(s)
- Qazi S. Shahab
- School of Medicine, University of New South Wales, 2052 Sydney, Australia
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney 2000, Australia
| | | | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - R. Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Jacky T. Yeung
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Michael Y. Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | | | | |
Collapse
|
8
|
Chai WJ, Abd Hamid AI, Omar H, Abdul Rahman MR, Fitzrol DN, Idris Z, Ghani ARI, Wan Mohamad WNA, Mustafar F, Hanafi MH, Kandasamy R, Abdullah MZ, Amaruchkul K, Valdes-Sosa PA, Bringas-Vega ML, Biswal B, Songsiri J, Yaacob H, Ibrahim H, Sumari P, Noh NA, Musa KI, Ahmad AH, Azman A, Jamir Singh PS, Othman A, Abdullah JM. Neural alterations in working memory of mild-moderate TBI: An fMRI study in Malaysia. J Neurosci Res 2022; 100:915-932. [PMID: 35194817 DOI: 10.1002/jnr.25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023]
Abstract
Working memory (WM) encompasses crucial cognitive processes or abilities to retain and manipulate temporary information for immediate execution of complex cognitive tasks in daily functioning such as reasoning and decision-making. The WM of individuals sustaining traumatic brain injury (TBI) was commonly compromised, especially in the domain of WM. The current study investigated the brain responses of WM in a group of participants with mild-moderate TBI compared to their healthy counterparts employing functional magnetic resonance imaging. All consented participants (healthy: n = 26 and TBI: n = 15) performed two variations of the n-back WM task with four load conditions (0-, 1-, 2-, and 3-back). The respective within-group effects showed a right hemisphere-dominance activation and slower reaction in performance for the TBI group. Random-effects analysis revealed activation difference between the two groups in the right occipital lobe in the guided n-back with cues, and in the bilateral occipital lobe, superior parietal region, and cingulate cortices in the n-back without cues. The left middle frontal gyrus was implicated in the load-dependent processing of WM in both groups. Further group analysis identified that the notable activation changes in the frontal gyri and anterior cingulate cortex are according to low and high loads. Though relatively smaller in scale, this study was eminent as it clarified the neural alterations in WM in the mild-moderate TBI group compared to healthy controls. It confirmed the robustness of the phenomenon in TBI with the reproducibility of the results in a heterogeneous non-Western sample.
Collapse
Affiliation(s)
- Wen Jia Chai
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Aini Ismafairus Abd Hamid
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hazim Omar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Riddha Abdul Rahman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
| | - Diana Noma Fitzrol
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wan Nor Azlen Wan Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Faiz Mustafar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Hafiz Hanafi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Mohd Zaid Abdullah
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Kannapha Amaruchkul
- Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,The Cuban Neurosciences Center, La Habana, Cuba
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,The Cuban Neurosciences Center, La Habana, Cuba
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jitkomut Songsiri
- EE410 Control Systems Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hamwira Yaacob
- Department of Computer Science, Kulliyyah of Information and Communication Technology, Kuala Lumpur, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Haidi Ibrahim
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Putra Sumari
- School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nor Azila Noh
- Department of Medical Science 1, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Azlinda Azman
- School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia.,School of Social Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Azizah Othman
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
9
|
McKee GB, Perrin PB, Rodriguez-Agudelo Y, Plaza SLO, Quijano-Martinez MC, Kuzu D, Ohayagha C, Pugh M, Arango-Lasprilla JC. Suicidal ideation after acute traumatic brain injury: A longitudinal actor-partner interdependence model of patients and caregivers in Latin America. Rehabil Psychol 2021; 66:433-441. [PMID: 34871029 DOI: 10.1037/rep0000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE/OBJECTIVE Traumatic brain injury (TBI) is associated with depression, anxiety, and even suicidality in individuals with TBI and in caregivers. Moreover, emotional functioning in individuals with TBI is linked with caregiver functioning. However, no known studies to date have examined linkages in suicidal ideation in individuals with TBI and family caregivers. This is especially important in Latin America, where TBI rates are high, and where cultural norms influence family caregiving. This study examined associations among self-reported suicidal ideation in individuals with TBI and their primary caregivers over time in Mexico and Colombia. Research Method/Design: A total of 109 individuals and their primary caregivers completed measures during hospitalization for TBI and at 2- and 4-months posthospitalization. The primary outcome was Item 9 from the Spanish version of the Patient Health Questionnaire-9, assessing for thoughts of death or suicide in the previous 2 weeks. RESULTS Patients and caregivers reported high levels of suicidal ideation (18.3%-22.4% and 12.4%-15.7%, respectively) at each time point, and suicidal ideation at one time point strongly predicted ideation at the next. When patients endorsed suicidal ideation in the hospital, their caregivers tended to endorse suicidal ideation 2 months later. Although unaccounted for variables could be driving these relationships, they may also provide possible evidence of causal preponderance between patient and caregiver suicidal ideation post-TBI. CONCLUSIONS/IMPLICATIONS Clinicians and rehabilitation specialists can use these findings to inform suicide risk assessment by expanding these practices to caregivers of patients who endorsed suicidal ideation. Interventions after TBI should incorporate caregivers given this study showed significant interdependence of suicidality between patients and caregivers. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Grace B McKee
- Advanced Fellowship Program in Mental Illness Research and Treatment
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Iverson GL, Cook NE, Gilman IG, Maxwell B, Mannix R, Zafonte R, Berkner PD, Brooks BL. Multiple Past Concussions in High School Hockey Players: Examining Cognitive Functioning and Symptom Reporting. Clin J Sport Med 2021; 31:e313-e320. [PMID: 32941379 DOI: 10.1097/jsm.0000000000000806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 10/21/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate (1) if there are meaningful differences in baseline preseason cognitive functioning or symptom reporting between high school ice hockey players with and without prior concussions and (2) determine which health history variables predict symptom reporting. DESIGN Cross-sectional study. SETTING High schools across the state of Maine. PARTICIPANTS Participants were 1616 male high school ice hockey players (mean age = 15.6 years; SD = 1.5 years) who completed baseline testing between 2009 and 2015. INDEPENDENT VARIABLES Athletes were grouped according to their self-reported concussion history [0 (n = 1136), 1 (n = 321), 2 (n = 112), or 3+ (n = 47) previous concussions]. MAIN OUTCOME MEASURES Cognitive functioning was measured by the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) battery, and symptom ratings were obtained from the Post-Concussion Symptom Scale. RESULTS There were no statistically significant differences between groups in cognitive functioning as measured by ImPACT. The group with ≥3 prior concussions endorsed higher total symptom scores, but the effect sizes were small and not statistically significant. In a multivariate model, prior treatment for headaches (not necessarily migraines), prior treatment for a psychiatric condition, and prior treatment for substance/alcohol use all significantly predicted total symptom scores, with concussion history being the weakest independent predictor. CONCLUSIONS Players with a history of prior concussions performed similarly to players with no prior concussions on cognitive testing. Health history factors were more strongly associated with symptom reporting than concussion history.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Spaulding Rehabilitation Hospital and Spaulding Research Institute, Charlestown, Massachusetts
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts
- MassGeneral Hospital for Children Sports Concussion Program, Boston, Massachusetts
| | - Nathan E Cook
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- MassGeneral Hospital for Children Sports Concussion Program, Boston, Massachusetts
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Isabelle G Gilman
- Department of Psychological and Brain Sciences, Villanova University, Villanova, Pennsylvania
| | - Bruce Maxwell
- Department of Computer Science, Colby College, Waterville, Maine
| | - Rebekah Mannix
- Division of Emergency Medicine, Brain Injury Center, Boston Children's Hospital, Boston, Massachusetts
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul D Berkner
- Health Services and the Department of Biology, Colby College, Waterville, Maine
| | - Brian L Brooks
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary, Calgary, AB, Canada ; and
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Jahed S, Daneshvari NO, Liang AL, Richey LN, Bryant BR, Krieg A, Bray MJC, Pradeep T, Luna LP, Trapp NT, Jones MB, Stevens DA, Roper C, Goldwaser EL, Berich-Anastasio E, Pletnikova A, Lobner K, Lee DJ, Lauterbach M, Sair HI, Peters ME. Neuroimaging Correlates of Syndromal Anxiety Following Traumatic Brain Injury: A Systematic Review of the Literature. J Acad Consult Liaison Psychiatry 2021; 63:119-132. [PMID: 34534701 DOI: 10.1016/j.jaclp.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) can precipitate new-onset psychiatric symptoms or worsen existing psychiatric conditions. To elucidate specific mechanisms for this interaction, neuroimaging is often used to study both psychiatric conditions and TBI. This systematic review aims to synthesize the existing literature of neuroimaging findings among patients with anxiety after TBI. METHODS We conducted a Preferred Reporting Items for Systematic Review and Meta-Analyses-compliant literature search via PubMed (MEDLINE), PsychINFO, EMBASE, and Scopus databases before May, 2019. We included studies that clearly defined TBI, measured syndromic anxiety as a primary outcome, and statistically analyzed the relationship between neuroimaging findings and anxiety symptoms. RESULTS A total of 5982 articles were retrieved from the systematic search, of which 65 studied anxiety and 13 met eligibility criteria. These studies were published between 2004 and 2017, collectively analyzing 764 participants comprised of 470 patients with TBI and 294 non-TBI controls. Imaging modalities used included magnetic resonance imaging, functional magnetic resonance imaging, diffusion tensor imaging, electroencephalogram, magnetic resonance spectrometry, and magnetoencephalography. Eight of 13 studies presented at least one significant finding and together reflect a complex set of changes that lead to anxiety in the setting of TBI. The left cingulate gyrus in particular was found to be significant in 2 studies using different imaging modalities. Two studies also revealed perturbances in functional connectivity within the default mode network. CONCLUSIONS This is the first systemic review of neuroimaging changes associated with anxiety after TBI, which implicated multiple brain structures and circuits, such as the default mode network. Future research with consistent, rigorous measurements of TBI and syndromic anxiety, as well as attention to control groups, previous TBIs, and time interval between TBI and neuroimaging, are warranted. By understanding neuroimaging correlates of psychiatric symptoms, this work could inform future post-TBI screening and surveillance, preventative efforts, and early interventions to improve neuropsychiatric outcomes.
Collapse
Affiliation(s)
- Sahar Jahed
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas O Daneshvari
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angela L Liang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lisa N Richey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barry R Bryant
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael J C Bray
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tejus Pradeep
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Licia P Luna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas T Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Melissa B Jones
- Menninger Department of Psychiatry and Behavioral Sciences, Michael E. DeBakey VA Medical Center & Baylor College of Medicine, Houston, TX
| | - Daniel A Stevens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Eric L Goldwaser
- Sheppard Pratt, Baltimore, MD; University of Maryland School of Medicine, Baltimore, MD
| | | | - Alexandra Pletnikova
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katie Lobner
- Welch Medical Library, Johns Hopkins University, Baltimore, MD
| | - Daniel J Lee
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease & Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Margo Lauterbach
- Sheppard Pratt, Baltimore, MD; University of Maryland School of Medicine, Baltimore, MD
| | - Haris I Sair
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
12
|
Taing AS, Mundy ME, Ponsford JL, Spitz G. Aberrant modulation of brain activity underlies impaired working memory following traumatic brain injury. Neuroimage Clin 2021; 31:102777. [PMID: 34343728 PMCID: PMC8350067 DOI: 10.1016/j.nicl.2021.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
Impaired working memory is a common and disabling consequence of traumatic brain injury (TBI) that is caused by aberrant brain processing. However, little is known about the extent to which deficits are perpetuated by specific working memory subprocesses. Using a combined functional magnetic resonance imaging (fMRI) and working memory paradigm, we tested the hypothesis that the pattern of brain activation subserving working memory following TBI would interact with both task demands and specific working memory subcomponents: encoding, maintenance, and retrieval. Forty-three patients with moderate-severe TBI, of whom 25 were in the acute phase of recovery (M = 2.16 months, SD = 1.48 months, range = 0.69 - 6.64 months) and 18 in the chronic phase of recovery (M = 23.44 months, SD = 6.76 months, range = 13.35 - 34.82 months), were compared with 38 demographically similar healthy controls. Behaviourally, we found that working memory deficits were confined to the high cognitive load trials in both acute (P = 0.006) and chronic (P = 0.024) cohorts. Furthermore, results for a subset of the sample (18 chronic TBI and 17 healthy controls) who underwent fMRI revealed that the TBI group showed reduced brain activation when simply averaged across all task trials (regardless of cognitive load or subcomponent). However, interrogation of the subcomponents of working memory revealed a more nuanced pattern of activation. When examined more closely, patterns of brain activity following TBI were found to interact with both task demands and the working memory subcomponent: increased activation was observed during encoding in the left inferior occipital gyrus whereas decreased activation was apparent during maintenance in the bilateral cerebellum and left calcarine sulcus. Taken together, findings indicate an inability to appropriately modulate brain activity according to task demand that is specific to working memory encoding and maintenance.
Collapse
Affiliation(s)
- Abbie S Taing
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia.
| | - Matthew E Mundy
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jennie L Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia; Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
13
|
Paul S, Bhattacharyya S. Cannabis use-related working memory deficit mediated by lower left hippocampal volume. Addict Biol 2021; 26:e12984. [PMID: 33155343 DOI: 10.1111/adb.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
The association between cannabis exposure and working memory impairment and its neural substrates remain unclear. In this cross-sectional observational study, we investigated this by examining the relationship between frequency of exposure to cannabis, working memory performance and regional brain volumes and tested whether lower volumes of cortical and subcortical structures mediate the association between cannabis exposure and working memory deficit using the Human Connectome Project data from 234 individuals with self-reported cannabis exposure and 174 individuals unexposed to cannabis. We tested the relationship between self-reported frequency of cannabis exposure and list-sorting working memory task performance (total number of correct responses), between T1 weighted MRI-derived regional grey-matter volumes and working memory task performance as well as between frequency of cannabis exposure and brain volumes after controlling for potential confounders. Finally, mediation analysis was carried out to test whether deficit in working memory performance associated with cannabis use was mediated by its association with lower grey-matter volume. Participants who reported higher frequency of cannabis use tended to have lower number of correct responses in the list-sorting working memory task and lower bilateral hippocampal volumes. Association between severity of cannabis exposure as indexed by frequency of cannabis use and impairment in working memory was mediated by lower left hippocampal volume in cannabis users. We report evidence in support of the left hippocampus volume-mediated working memory impairment associated with recreational cannabis exposure. Future studies employing prospective longitudinal design are necessary to examine the cause-effect relationships of cannabis exposure on working memory and brain volumes.
Collapse
Affiliation(s)
- Subhadip Paul
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
Montivero AJ, Ghersi MS, Silvero C MJ, Artur de la Villarmois E, Catalan-Figueroa J, Herrera M, Becerra MC, Hereñú CB, Pérez MF. Early IGF-1 Gene Therapy Prevented Oxidative Stress and Cognitive Deficits Induced by Traumatic Brain Injury. Front Pharmacol 2021; 12:672392. [PMID: 34234671 PMCID: PMC8255687 DOI: 10.3389/fphar.2021.672392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality in adults under 40 years old. Once primary injury occurs after TBI, neuroinflammation and oxidative stress (OS) are triggered, contributing to the development of many TBI-induced neurological deficits, and reducing the probability of critical trauma patients´ survival. Regardless the research investment on the development of anti-inflammatory and neuroprotective treatments, most pre-clinical studies have failed to report significant effects, probably because of the limited blood brain barrier permeability of no-steroidal or steroidal anti-inflammatory drugs. Lately, neurotrophic factors, such as the insulin-like growth factor 1 (IGF-1), are considered attractive therapeutic alternatives for diverse neurological pathologies, as they are neuromodulators linked to neuroprotection and anti-inflammatory effects. Considering this background, the aim of the present investigation is to test early IGF-1 gene therapy in both OS markers and cognitive deficits induced by TBI. Male Wistar rats were injected via Cisterna Magna with recombinant adenoviral vectors containing the IGF-1 gene cDNA 15 min post-TBI. Animals were sacrificed after 60 min, 24 h or 7 days to study the advanced oxidation protein products (AOPP) and malondialdehyde (MDA) levels, to recognize the protein oxidation damage and lipid peroxidation respectively, in the TBI neighboring brain areas. Cognitive deficits were assessed by evaluating working memory 7 days after TBI. The results reported significant increases of AOPP and MDA levels at 60 min, 24 h, and 7 days after TBI in the prefrontal cortex, motor cortex and hippocampus. In addition, at day 7, TBI also reduced working memory performance. Interestingly, AOPP, and MDA levels in the studied brain areas were significantly reduced after IGF-1 gene therapy that in turn prevented cognitive deficits, restoring TBI-animals working memory performance to similar values regarding control. In conclusion, early IGF-1 gene therapy could be considered a novel therapeutic approach to targeting neuroinflammation as well as to preventing some behavioral deficits related to TBI.
Collapse
Affiliation(s)
- Agustín J Montivero
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - M Jazmín Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Emilce Artur de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Johanna Catalan-Figueroa
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina.,Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Macarena Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de, Córdoba, Argentina
| |
Collapse
|
15
|
Sameh G, Islem F, Samar A, Hedi C, Mounir B, Habib EM. Neuropsychological and behavioral disorders, functional outcomes and quality of life in traumatic brain injury victims. Pan Afr Med J 2021; 38:346. [PMID: 34367425 PMCID: PMC8308941 DOI: 10.11604/pamj.2021.38.346.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION the assessment of neuropsychological and behavioral disorders outcomes, functional outcomes and quality of life in traumatic brain injury victims. It was also to evaluate initial means of care provided to these patients. Finally, to study correlations between neuropsychological and behavioral disorders with demographic characteristics, injury severity, functional status and quality of life. METHODS it was a cross-sectional study including 50 patients with traumatic brain injury conducted in the physical medicine and rehabilitation department of Sfax. Memory disorders were tested by the mini mental state and the Glaveston orientation and amnesia tests. Executive functions were evaluated by the dysexecutive function scale. The psychological profile was evaluated using the hospital anxiety and depression scale and behavioral disorders were tested by the agitated behavior scale. Glasgow outcome scale has allowed the assessment of traumatic brain injury severity in terms of disability. Otherwise, functional capacity was measured by functional independence measure scale. Finally, health-related quality of life was measured using a generic measure (short-form-36) and the QOLIBRI scales. RESULTS abnormal executive functions were noted in 41 patients (82%) with a dysexcutive function average score of 33.20 ± 22.74. About psychological profile, depressive symptoms were found in 32 patients (64%). Moreover anxiety was noted in 20 patients (40%). Behavioral disorders such as aggressiveness and agitation were noted respectively in 32 (64%) and 8 patients (16%). The global social functional evolution was considered as unfavorable in 42% of the patients and favorable in 58%. Regarding to functional independence measure scale, 92% of the victims showed impairment. Memory impairment and abnormal executive functions were statistically correlated with traumatic brain injury severity. Elementary brain injury lesions shown on computed tomography were correlated with memory disorders especially for temporal, cortical brain contusion and diffuse axonal injury. Our study showed that patients with severe memory impairment, abnormal executive functions and depressive mood had significant functional. CONCLUSION the executive function disorders, depressed mood and the memory disorders seemed to be the most frequent among neuropsychological disorders in traumatic brain injury. We noted that it is so important to evaluate neuropsychological disorders in traumatic brain injury because they were underestimated. We have already started this experience despite the lack of means in our department. The evaluation of the executive function in addition to the classic neuropsychological assessment is essential to propose efficient means of rehabilitation.
Collapse
Affiliation(s)
- Ghroubi Sameh
- Physical Medicine and Rehabilitation Department, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Feki Islem
- Physical Medicine and Rehabilitation Department, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Alila Samar
- Physical Medicine and Rehabilitation Department, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Chelly Hedi
- Reanimation Department, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Bouaziz Mounir
- Reanimation Department, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| | - Elleuch Mohamed Habib
- Physical Medicine and Rehabilitation Department, University Hospital Center Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
16
|
Stein A, Iyer KK, Khetani AM, Barlow KM. Changes in working memory-related cortical responses following pediatric mild traumatic brain injury: A longitudinal fMRI study. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211006541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistent post-concussion symptoms (PPCS) lasting longer than 4 weeks affect 25% of children with mild traumatic brain injury (mTBI) or concussion. Working memory (WM) problems are a common complaint in children with PPCS. Despite normal function on traditional neuropsychological tests, these children exhibit aberrant cortical responses within the dorsolateral prefrontal cortex (dlPFC) and default mode network (DMN) regions – both of which are implicated in WM. Using a prospective, longitudinal cohort study design, we investigated changes in cortical fMRI responses within the dlPFC and DMN during an nback WM task at two timepoints: one and two months post-injury. Across these timepoints, the primary outcome was change in cortical activations (increase in BOLD) and deactivations (decrease in BOLD) of both dlPFC and DMN. Twenty-nine children (mean age 15.49 ± 2.15; 48.3% male) with fMRI scans at both timepoints were included, following data quality control. Student’s t-tests were used to examine cortical activations across time and task difficulty. ANCOVA F-tests examined cortical responses after removal of baseline across time, task difficulty and recovery. Volumes of interest (5 mm sphere) were placed in peak voxel regions of the DMN and dlPFC to compare cortical responses between recovered and unrecovered participants over time (one-way ANOVA). Between one and two months post-injury, we found significant increases in dlPFC activations and significant activations and deactivations in the DMN with increasing task difficulty, alongside improved task performance. Cortical responses of the DMN and bilateral dlPFC displayed increased intensity in recovered participants, together with improved attention and behavioural symptoms. Overall, our findings suggest evidence of neural compensation and ongoing cognitive recovery from pediatric TBI over time between one and two months post injury in children with PPCS. These results highlight the wider and persisting implications of mTBI in children, whose maturing brains are particularly vulnerable to TBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kartik K Iyer
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Aneesh M Khetani
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|
17
|
Assecondi S, Hu R, Eskes G, Read M, Griffiths C, Shapiro K. BRAINSTORMING: A study protocol for a randomised double-blind clinical trial to assess the impact of concurrent brain stimulation (tDCS) and working memory training on cognitive performance in Acquired Brain Injury (ABI). BMC Psychol 2020; 8:125. [PMID: 33243286 PMCID: PMC7694939 DOI: 10.1186/s40359-020-00454-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 11/11/2022] Open
Abstract
Background Acquired Brain Injury (ABI) admissions have an incidence of 385 per 100,000 of the population in the UK, and as brain injury often involves the frontal networks, cognitive domains affected are likely to be executive control, working memory, and problem-solving deficits, resulting in difficulty with everyday activities. The above observations make working memory, and related constructs such as attention and executive functioning attractive targets for neurorehabilitation. We propose a combined home-based rehabilitation protocol involving the concurrent administration of a working memory training program (adaptive N-back task) with non-invasive transcranial direct current stimulation (tDCS) of the right dorsolateral prefrontal cortex to promote long-lasting modification of brain areas underlying working memory function. Method Patients with a working memory deficit will be recruited and assigned to two age-matched groups receiving working memory training for 2 weeks: an active group, receiving tDCS (2 mA for 20 min), and a control group, receiving sham stimulation. After the end of the first 2 weeks, both groups will continue the working memory training for three more weeks. Outcome measures will be recorded at timepoints throughout the intervention, including baseline, after the 2 weeks of stimulation, at the end of the working memory training regimen and 1 month after the completion of the training. Discussion The aim of the study is to assess if non-invasive tDCS stimulation has an impact on performance and benefits of a working memory training regimen. Specifically, we will examine the impact of brain stimulation on training gains, if changes in gains would last, and whether changes in training performance transfer to other cognitive domains. Furthermore, we will explore whether training improvements impact on everyday life activities and how the home-based training regimen is received by participants, with the view to develop an effective home healthcare tool that could enhance working memory and daily functioning. Trial registration This study was registered with clinicaltrials.gov: NCT04010149 on July 8, 2019.
Collapse
Affiliation(s)
- Sara Assecondi
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, UK. .,Center for Human Brian Health (CHBH), University of Birmingham, Birmingham, UK.
| | - Rong Hu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Gail Eskes
- Departments of Psychiatry and Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Michelle Read
- Northamptonshire Healthcare NHS Foundation Trust, Northampton, UK
| | - Chris Griffiths
- Northamptonshire Healthcare NHS Foundation Trust, Northampton, UK
| | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, UK.,Center for Human Brian Health (CHBH), University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Huang MX, Nichols S, Robb-Swan A, Angeles-Quinto A, Harrington DL, Drake A, Huang CW, Song T, Diwakar M, Risbrough VB, Matthews S, Clifford R, Cheng CK, Huang JW, Sinha A, Yurgil KA, Ji Z, Lerman I, Lee RR, Baker DG. MEG Working Memory N-Back Task Reveals Functional Deficits in Combat-Related Mild Traumatic Brain Injury. Cereb Cortex 2020; 29:1953-1968. [PMID: 29668852 DOI: 10.1093/cercor/bhy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022] Open
Abstract
Combat-related mild traumatic brain injury (mTBI) is a leading cause of sustained cognitive impairment in military service members and Veterans. However, the mechanism of persistent cognitive deficits including working memory (WM) dysfunction is not fully understood in mTBI. Few studies of WM deficits in mTBI have taken advantage of the temporal and frequency resolution afforded by electromagnetic measurements. Using magnetoencephalography (MEG) and an N-back WM task, we investigated functional abnormalities in combat-related mTBI. Study participants included 25 symptomatic active-duty service members or Veterans with combat-related mTBI and 20 healthy controls with similar combat experiences. MEG source-magnitude images were obtained for alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. Compared with healthy combat controls, mTBI participants showed increased MEG signals across frequency bands in frontal pole (FP), ventromedial prefrontal cortex, orbitofrontal cortex (OFC), and anterior dorsolateral prefrontal cortex (dlPFC), but decreased MEG signals in anterior cingulate cortex. Hyperactivations in FP, OFC, and anterior dlPFC were associated with slower reaction times. MEG activations in lateral FP also negatively correlated with performance on tests of letter sequencing, verbal fluency, and digit symbol coding. The profound hyperactivations from FP suggest that FP is particularly vulnerable to combat-related mTBI.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Sharon Nichols
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Ashley Robb-Swan
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Deborah L Harrington
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Angela Drake
- Cedar Sinai Medical Group Chronic Pain Program, Beverly Hills, CA, USA
| | - Charles W Huang
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Tao Song
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mithun Diwakar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Victoria B Risbrough
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Scott Matthews
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, CA, USA
| | - Royce Clifford
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Chung-Kuan Cheng
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | | | - Anusha Sinha
- California Institute of Technology, Pasadena, CA, USA
| | - Kate A Yurgil
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA.,Loyola University New Orleans, LA, USA
| | - Zhengwei Ji
- Department of Radiology, University of California, San Diego, CA, USA
| | - Imanuel Lerman
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Roland R Lee
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Radiology, University of California, San Diego, CA, USA
| | - Dewleen G Baker
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, CA, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| |
Collapse
|
19
|
Morton SU, Maleyeff L, Wypij D, Yun HJ, Newburger JW, Bellinger DC, Roberts AE, Rivkin MJ, Seidman JG, Seidman CE, Grant PE, Im K. Abnormal Left-Hemispheric Sulcal Patterns Correlate with Neurodevelopmental Outcomes in Subjects with Single Ventricular Congenital Heart Disease. Cereb Cortex 2020; 30:476-487. [PMID: 31216004 PMCID: PMC7306172 DOI: 10.1093/cercor/bhz101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental abnormalities are the most common noncardiac complications in patients with congenital heart disease (CHD). Prenatal brain abnormalities may be due to reduced oxygenation, genetic factors, or less commonly, teratogens. Understanding the contribution of these factors is essential to improve outcomes. Because primary sulcal patterns are prenatally determined and under strong genetic control, we hypothesized that they are influenced by genetic variants in CHD. In this study, we reveal significant alterations in sulcal patterns among subjects with single ventricle CHD (n = 115, 14.7 ± 2.9 years [mean ± standard deviation]) compared with controls (n = 45, 15.5 ± 2.4 years) using a graph-based pattern-analysis technique. Among patients with CHD, the left hemisphere demonstrated decreased sulcal pattern similarity to controls in the left temporal and parietal lobes, as well as the bilateral frontal lobes. Temporal and parietal lobes demonstrated an abnormally asymmetric left-right pattern of sulcal basin area in CHD subjects. Sulcal pattern similarity to control was positively correlated with working memory, processing speed, and executive function. Exome analysis identified damaging de novo variants only in CHD subjects with more atypical sulcal patterns. Together, these findings suggest that sulcal pattern analysis may be useful in characterizing genetically influenced, atypical early brain development and neurodevelopmental risk in subjects with CHD.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lara Maleyeff
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David C Bellinger
- Department of Neurology
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael J Rivkin
- Department of Neurology
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology
- Stroke and Cerebrovascular Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology
| | - Kiho Im
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
20
|
Algethamy H. Baseline Predictors of Survival, Neurological Recovery, Cognitive Function, Neuropsychiatric Outcomes, and Return to Work in Patients after a Severe Traumatic Brain Injury: an Updated Review. Mater Sociomed 2020; 32:148-157. [PMID: 32843865 PMCID: PMC7428895 DOI: 10.5455/msm.2020.32.148-157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Introduction Severe traumatic brain injury (sTBI) is a common cause of death and disability worldwide, with long-term squeal among survivors that include cognitive deficits, psychosocial and neuropsychiatric dysfunction, failure to return to pre-injury levels of work, school and inter-personal relationships, and overall reduced quality of and satisfaction with life. Aim The aim of this work is to review the current literature on baseline predictors of outcomes in adults post sTBI. Method Most of available literature on baseline predictors of outcomes in adults post sTBI were reviewed and summarized in this work. Results Currently, a sizeable number of composite predictors of mortality and overall function exists; however, these instruments tend to over-estimate poor outcomes and fail to address issues like cognition, psychosocial/ neuropsychiatric dysfunction, and return to work or school. Conclusion This article reviews currently-identified predictors of all these outcomes.
Collapse
Affiliation(s)
- Haifa Algethamy
- Department of Anaesthesia and Critical Care, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Tuerk C, Dégeilh F, Catroppa C, Dooley JJ, Kean M, Anderson V, Beauchamp MH. Altered resting-state functional connectivity within the developing social brain after pediatric traumatic brain injury. Hum Brain Mapp 2019; 41:561-576. [PMID: 31617298 PMCID: PMC7267957 DOI: 10.1002/hbm.24822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) in childhood and adolescence can interrupt expected development, compromise the integrity of the social brain network (SBN) and impact social skills. Yet, no study has investigated functional alterations of the SBN following pediatric TBI. This study explored functional connectivity within the SBN following TBI in two independent adolescent samples. First, 14 adolescents with mild complex, moderate or severe TBI and 16 typically developing controls (TDC) underwent resting‐state functional magnetic resonance imaging 12–24 months post‐injury. Region of interest analyses were conducted to compare the groups' functional connectivity using selected SBN seeds. Then, replicative analysis was performed in an independent sample of adolescents with similar characteristics (9 TBI, 9 TDC). Results were adjusted for age, sex, socioeconomic status and total gray matter volume, and corrected for multiple comparisons. Significant between‐group differences were detected for functional connectivity in the dorsomedial prefrontal cortex and left fusiform gyrus, and between the left fusiform gyrus and left superior frontal gyrus, indicating positive functional connectivity for the TBI group (negative for TDC). The replication study revealed group differences in the same direction between the left superior frontal gyrus and right fusiform gyrus. This study indicates that pediatric TBI may alter functional connectivity of the social brain. Frontal‐fusiform connectivity has previously been shown to support affect recognition and changes in the function of this network could relate to more effortful processing and broad social impairments.
Collapse
Affiliation(s)
- Carola Tuerk
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Fanny Dégeilh
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Cathy Catroppa
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Science and Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian J Dooley
- Cuyahoga County Juvenile Court, Diagnostic Clinic, Cleveland, Ohio
| | - Michael Kean
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Science and Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Kouvatsou Z, Masoura E, Kiosseoglou G, Kimiskidis VK. Working memory profiles of patients with multiple sclerosis: Where does the impairment lie? J Clin Exp Neuropsychol 2019; 41:832-844. [PMID: 31204607 DOI: 10.1080/13803395.2019.1626805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Previous studies have mostly provided general estimations regarding Working Memory impairment in patients with Multiple Sclerosis. The aim of the present study was to investigate the relative degree of impairment in the four Working Memory components in Multiple Sclerosis. Method: Thirty-eight patients diagnosed with MS and 27 matched controls were assessed using 12 different cognitive tasks of the four components, i.e. phonological loop, visuospatial sketchpad, central executive and episodic buffer. More precisely, Greek translated and adapted versions of the following tasks were administered: Digit recall, Word recall, Non-word recall, Block recall, Mazes recall, Visual Patterns recall, Backward Digit recall, Backward Block recall, Listening recall, Logical Memory I-Immediate Story recall and Greek Verbal Learning Test, which is based on the California Verbal Learning Test. Results: The phonological loop, the central executive and the spatial subcomponent of the visuospatial sketchpad were found to be equally disrupted in MS patients. The episodic buffer was found to be more heavily affected. On the other hand, the visual subcomponent of the visuospatial sketchpad proved to be preserved. Conclusions: WM subcomponents are differentially affected in patients with MS. This novel finding is discussed within the framework of existing knowledge regarding WM impairment in MS.
Collapse
Affiliation(s)
- Zoe Kouvatsou
- a School of Psychology, Department of Experimental Cognitive Psychology, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Elvira Masoura
- a School of Psychology, Department of Experimental Cognitive Psychology, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Grigoris Kiosseoglou
- a School of Psychology, Department of Experimental Cognitive Psychology, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Vasilios K Kimiskidis
- b Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
23
|
Maia PD, Raj A, Kutz JN. Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries. J Comput Neurosci 2019; 47:1-16. [PMID: 31165337 DOI: 10.1007/s10827-019-00714-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/02/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
We introduce a computational model for the cellular level effects of firing rate filtering due to the major forms of neuronal injury, including demyelination and axonal swellings. Based upon experimental and computational observations, we posit simple phenomenological input/output rules describing spike train distortions and demonstrate that slow-gamma frequencies in the 38-41 Hz range emerge as the most robust to injury. Our signal-processing model allows us to derive firing rate filters at the cellular level for impaired neural activity with minimal assumptions. Specifically, we model eight experimentally observed spike train transformations by discrete-time filters, including those associated with increasing refractoriness and intermittent blockage. Continuous counterparts for the filters are also obtained by approximating neuronal firing rates from spike trains convolved with causal and Gaussian kernels. The proposed signal processing framework, which is robust to model parameter calibration, is an abstraction of the major cellular-level pathologies associated with neurodegenerative diseases and traumatic brain injuries that affect spike train propagation and impair neuronal network functionality. Our filters are well aligned with the spectrum of dynamic memory fields including working memory, visual consciousness, and other higher cognitive functions that operate in a frequency band that is - at a single cell level - optimally guarded against common types of pathological effects. In contrast, higher-frequency neural encoding, such as is observed with short-term memory, are susceptible to neurodegeneration and injury.
Collapse
Affiliation(s)
- Pedro D Maia
- Weill Cornell Medicine, Department of Radiology, New York, NY, USA. .,Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, USA.
| | - Ashish Raj
- Weill Cornell Medicine, Department of Radiology, New York, NY, USA.,Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, 98195-2420, USA
| |
Collapse
|
24
|
Svingos AM, Asken BM, Jaffee MS, Bauer RM, Heaton SC. Predicting long-term cognitive and neuropathological consequences of moderate to severe traumatic brain injury: Review and theoretical framework. J Clin Exp Neuropsychol 2019; 41:775-785. [DOI: 10.1080/13803395.2019.1620695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Adrian M. Svingos
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Breton M. Asken
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Michael S. Jaffee
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Russell M. Bauer
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Shelley C. Heaton
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Wadhawan A, Stiller JW, Potocki E, Okusaga O, Dagdag A, Lowry CA, Benros ME, Postolache TT. Traumatic Brain Injury and Suicidal Behavior: A Review. J Alzheimers Dis 2019; 68:1339-1370. [DOI: 10.3233/jad-181055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - John W. Stiller
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Neurology Consultation Service, Washington, DC, USA
- Maryland State Athletic Commission, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Olaoluwa Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, MD, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
| | - Michael E. Benros
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
26
|
Kaltiainen H, Liljeström M, Helle L, Salo A, Hietanen M, Renvall H, Forss N. Mild Traumatic Brain Injury Affects Cognitive Processing and Modifies Oscillatory Brain Activity during Attentional Tasks. J Neurotrauma 2019; 36:2222-2232. [PMID: 30896274 PMCID: PMC6653790 DOI: 10.1089/neu.2018.6306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite the high prevalence of mild traumatic brain injury (mTBI), current diagnostic tools to objectively assess cognitive complaints after mTBI continue to be inadequate. Our aim was to identify neuronal correlates for cognitive difficulties in mTBI patients by evaluating the possible alterations in oscillatory brain activity during a behavioral task known to be sensitive to cognitive impairment after mTBI. We compared oscillatory brain activity during rest and cognitive tasks (Paced Auditory Serial Addition Test [PASAT] and a vigilance test [VT]) with magnetoencephalography between 25 mTBI patients and 20 healthy controls. Whereas VT induced no significant differences compared with resting state in either group, patients exhibited stronger attenuation of 8- to 14-Hz oscillatory activity during PASAT than healthy controls in the left parietotemporal cortex (p ≤ 0.05). Further, significant task-related modulation in the left superior frontal gyrus and right prefrontal cortex was detected only in patients. The ∼10-Hz (alpha) peak frequency declined in frontal, temporal, and parietal regions during PASAT compared with rest (p < 0.016) in patients, whereas in controls it remained the same or showed a tendency to increase. In patients, the ∼10-Hz peak amplitude was negatively correlated with behavioral performance in the Trail Making Test. The observed alterations in the cortical oscillatory activity during cognitive load may provide measurable neurophysiological correlates of cognitive difficulties in mTBI patients, even at the individual level.
Collapse
Affiliation(s)
- Hanna Kaltiainen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Aalto Neuroimaging, MEG Core, Aalto University, Espoo, Finland.,3 Lohja District Hospital, Department of Neurology, Lohja, Finland.,5 Clinical Neurosciences, University of Helsinki, and Department of Neurology, Helsinki University Hospital, BioMag Laboratory, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mia Liljeström
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Aalto Neuroimaging, MEG Core, Aalto University, Espoo, Finland
| | - Liisa Helle
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Aalto Neuroimaging, MEG Core, Aalto University, Espoo, Finland.,4 MEGIN (Elekta Oy), Helsinki, Finland
| | - Anne Salo
- 5 Clinical Neurosciences, University of Helsinki, and Department of Neurology, Helsinki University Hospital, BioMag Laboratory, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marja Hietanen
- 5 Clinical Neurosciences, University of Helsinki, and Department of Neurology, Helsinki University Hospital, BioMag Laboratory, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Renvall
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Aalto Neuroimaging, MEG Core, Aalto University, Espoo, Finland.,5 Clinical Neurosciences, University of Helsinki, and Department of Neurology, Helsinki University Hospital, BioMag Laboratory, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,6 HUS Medical Imaging Center, BioMag Laboratory, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nina Forss
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Aalto Neuroimaging, MEG Core, Aalto University, Espoo, Finland.,5 Clinical Neurosciences, University of Helsinki, and Department of Neurology, Helsinki University Hospital, BioMag Laboratory, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Abstract
Over 1.4 million people in the United States experience traumatic brain injury (TBI) each year and approximately 52,000 people die annually due to complications related to TBI. Traditionally, TBI has been viewed as a static injury with significant consequences for frontal lobe functioning that plateaus after some window of recovery, remaining relatively stable thereafter. However, over the past decade there has been growing consensus that the consequences of TBI are dynamic, with unique characteristics expressed at the individual level and over the life span. This chapter first discusses the pathophysiology of TBI in order to understand its dynamic process and then describes the behavioral changes that are the result of injury with focus on frontal lobe functions. It integrates a historical perspective on structural and functional brain-imaging approaches used to understand how TBI impacts the frontal lobes, as well as more recent approaches to examine large-scale network changes after TBI. The factors most useful for outcome prediction are surveyed, along with how the theoretical frameworks used to predict recovery have developed over time. In this chapter, the authors argue for the need to understand outcome after TBI as a dynamic process with individual trajectories, taking a network theory perspective to understand the consequences of disrupting frontal systems in TBI. Within this framework, understanding frontal lobe dysfunction within a larger coordinated neural network to study TBI may provide a novel perspective in outcome prediction and in developing individualized treatments.
Collapse
Affiliation(s)
- Rachel A Bernier
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States.
| |
Collapse
|
28
|
Complementary topology of maintenance and manipulation brain networks in working memory. Sci Rep 2018; 8:17827. [PMID: 30546042 PMCID: PMC6292901 DOI: 10.1038/s41598-018-35887-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023] Open
Abstract
Working memory (WM) is assumed to consist of a process that sustains memory representations in an active state (maintenance) and a process that operates on these activated representations (manipulation). We examined evidence for two distinct, concurrent cognitive functions supporting maintenance and manipulation abilities by testing brain activity as participants performed a WM alphabetization task. Maintenance was investigated by varying the number of letters held in WM and manipulation by varying the number of moves required to sort the list alphabetically. We found that both maintenance and manipulation demand had significant effects on behavior that were associated with different cortical regions: maintenance was associated with bilateral prefrontal and left parietal cortex, and manipulation with right parietal activity, a link that is consistent with the role of parietal cortex in symbolic computations. Both structural and functional architecture of these systems suggested that these cognitive functions are supported by two dissociable brain networks. Critically, maintenance and manipulation functional networks became increasingly segregated with increasing demand, an effect that was positively associated with individual WM ability. These results provide evidence that network segregation may act as a protective mechanism to enable successful performance under increasing WM demand.
Collapse
|
29
|
Gibert C, Mojtahedi D. A preliminary investigation on the performance of brain-injured witnesses on target-absent line-up procedures. PSYCHIATRY, PSYCHOLOGY, AND LAW : AN INTERDISCIPLINARY JOURNAL OF THE AUSTRALIAN AND NEW ZEALAND ASSOCIATION OF PSYCHIATRY, PSYCHOLOGY AND LAW 2018; 26:480-495. [PMID: 31984091 PMCID: PMC6763118 DOI: 10.1080/13218719.2018.1507847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/01/2018] [Indexed: 06/10/2023]
Abstract
The current study was a preliminary investigation that aimed to compare the performance of eyewitnesses with and without a brain injury on two target-absent line-up procedures: a simultaneous procedure and a sequential procedure with confidence ratings. A 2 × 2 design (N = 25) was employed, where both brain-injured (n = 15) and non-brain-injured (n = 10) participants were shown a short video of a non-violent crime taking place before taking part in either a simultaneous or sequential target-absent line-up. Participants' general cognitive abilities and memory recall accuracy were also measured. Results found no significant differences in false identification rates between brain-injured and non-brain-injured witnesses. It was also found that participants with a greater memory accuracy were in fact more likely to make a false identification. The implications and limitations of the study are discussed.
Collapse
Affiliation(s)
| | - Dara Mojtahedi
- International Research Centre for Investigative Psychology,
Department of Psychology, School of Human and Health Sciences, University of
Huddersfield, Huddersfield, UK
| |
Collapse
|
30
|
Gilbert N, Bernier RA, Calhoun VD, Brenner E, Grossner E, Rajtmajer SM, Hillary FG. Diminished neural network dynamics after moderate and severe traumatic brain injury. PLoS One 2018; 13:e0197419. [PMID: 29883447 PMCID: PMC5993261 DOI: 10.1371/journal.pone.0197419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/02/2018] [Indexed: 12/04/2022] Open
Abstract
Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.
Collapse
Affiliation(s)
- Nicholas Gilbert
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States of America
- Social and Life and Engineering Sciences Imaging Center, University Park, PA, United States of America
| | - Rachel A. Bernier
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States of America
- Social and Life and Engineering Sciences Imaging Center, University Park, PA, United States of America
| | - Vincent D. Calhoun
- The Mind Research Network, Albuquerque, NM, United States of America
- Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, United States of America
| | - Einat Brenner
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States of America
- Social and Life and Engineering Sciences Imaging Center, University Park, PA, United States of America
| | - Emily Grossner
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States of America
- Social and Life and Engineering Sciences Imaging Center, University Park, PA, United States of America
| | - Sarah M. Rajtmajer
- College of Information Science and Technology, The Pennsylvania State University, University Park, PA, United States of America
| | - Frank G. Hillary
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States of America
- Social and Life and Engineering Sciences Imaging Center, University Park, PA, United States of America
- Department of Neurology, Hershey Medical Center, Hershey, PA, United States of America
| |
Collapse
|
31
|
Mas MF, Mathews A, Gilbert-Baffoe E. Rehabilitation Needs of the Elder with Traumatic Brain Injury. Phys Med Rehabil Clin N Am 2018; 28:829-842. [PMID: 29031347 DOI: 10.1016/j.pmr.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The incidence of traumatic brain injury (TBI) in older adults is increasing. As the expected life expectancy increases, there is a heightened need for comprehensive rehabilitation for this population. Elderly patients with TBI benefit from rehabilitation interventions at all stages of injury and can achieve functional gains during acute inpatient rehabilitation. Clinicians should be vigilant of unique characteristics of this population during inpatient rehabilitation, including vulnerability to polypharmacy, posttraumatic hydrocephalus, neuropsychiatric sequelae, sleep disturbances, and sensory deficits. Long-term care should include fall prevention, assessment of cognitive deficits, aerobic activity, community reintegration, and caretaker support. Life expectancy is reduced after TBI.
Collapse
Affiliation(s)
- Manuel F Mas
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, TIRR Memorial Hermann, 1333 Moursund Street, Houston, TX 77030, USA.
| | - Amy Mathews
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 7200 Cambridge Street, Suite 10C, Houston, TX 77030, USA
| | - Ekua Gilbert-Baffoe
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 7200 Cambridge Street, Suite 10C, Houston, TX 77030, USA
| |
Collapse
|
32
|
van der Kuil MNA, Visser-Meily JMA, Evers AWM, van der Ham IJM. A Usability Study of a Serious Game in Cognitive Rehabilitation: A Compensatory Navigation Training in Acquired Brain Injury Patients. Front Psychol 2018; 9:846. [PMID: 29922196 PMCID: PMC5996119 DOI: 10.3389/fpsyg.2018.00846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Acquired brain injury patients often report navigation impairments. A cognitive rehabilitation therapy has been designed in the form of a serious game. The aim of the serious game is to aid patients in the development of compensatory navigation strategies by providing exercises in 3D virtual environments on their home computers. The objective of this study was to assess the usability of three critical gaming attributes: movement control in 3D virtual environments, instruction modality and feedback timing. Thirty acquired brain injury patients performed three tasks in which objective measures of usability were obtained. Mouse controlled movement was compared to keyboard controlled movement in a navigation task. Text-based instructions were compared to video-based instructions in a knowledge acquisition task. The effect of feedback timing on performance and motivation was examined in a navigation training game. Subjective usability ratings of all design options were assessed using questionnaires. Results showed that mouse controlled interaction in 3D environments is more effective than keyboard controlled interaction. Patients clearly preferred video-based instructions over text-based instructions, even though video-based instructions were not more effective in context of knowledge acquisition and comprehension. No effect of feedback timing was found on performance and motivation in games designed to train navigation abilities. Overall appreciation of the serious game was positive. The results provide valuable insights in the design choices that facilitate the transfer of skills from serious games to real-life situations.
Collapse
Affiliation(s)
| | - Johanna M. A. Visser-Meily
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, Netherlands
- Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Andrea W. M. Evers
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
33
|
Wili Wilu A, Coello Y, El Haj M. Destination memory in traumatic brain injuries. Neurol Sci 2018; 39:1035-1040. [DOI: 10.1007/s10072-018-3321-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/09/2018] [Indexed: 11/28/2022]
|
34
|
Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT. Eur J Radiol 2017; 95:197-201. [DOI: 10.1016/j.ejrad.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022]
|
35
|
Wylie GR, Dobryakova E, DeLuca J, Chiaravalloti N, Essad K, Genova H. Cognitive fatigue in individuals with traumatic brain injury is associated with caudate activation. Sci Rep 2017; 7:8973. [PMID: 28827779 PMCID: PMC5567054 DOI: 10.1038/s41598-017-08846-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/18/2017] [Indexed: 01/09/2023] Open
Abstract
We investigated differences in brain activation associated with cognitive fatigue between persons with traumatic brain injury (TBI) and healthy controls (HCs). Twenty-two participants with moderate-severe TBI and 20 HCs performed four blocks of a difficult working memory task and four blocks of a control task during fMRI imaging. Cognitive fatigue, assessed before and after each block, was used as a covariate to assess fatigue-related brain activation. The TBI group reported more fatigue than the HCs, though their performance was comparable. Regarding brain activation, the TBI group showed a Task X Fatigue interaction in the caudate tail resulting from a positive correlation between fatigue and brain activation for the difficult task and a negative relationship for the control task. The HC group showed the same Task X Fatigue interaction in the caudate head. Because we had prior hypotheses about the caudate, we performed a confirmatory analysis of a separate dataset in which the same subjects performed a processing speed task. A relationship between Fatigue and brain activation was evident in the caudate for this task as well. These results underscore the importance of the caudate nucleus in relation to cognitive fatigue.
Collapse
Affiliation(s)
- G R Wylie
- Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey, 07936, USA. .,Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA. .,The War Related Illness and Injury Study Center, The Department of Veterans' Affairs, New Jersey Healthcare System, East Orange Campus, East Orange, NJ, 07018, USA.
| | - E Dobryakova
- Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey, 07936, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| | - J DeLuca
- Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey, 07936, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA.,Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| | - N Chiaravalloti
- Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey, 07936, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| | - K Essad
- Dartmouth College, Dartmouth College Medical School, Hanover, NH, 03755, USA
| | - H Genova
- Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey, 07936, USA.,Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, 07101, USA
| |
Collapse
|
36
|
Galetto V, Sacco K. Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review. Neurorehabil Neural Repair 2017; 31:800-813. [DOI: 10.1177/1545968317723748] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Cognitive deficits are among the most disabling consequences of traumatic brain injury (TBI), leading to long-term outcomes and interfering with the individual’s recovery. One of the most effective ways to reduce the impact of cognitive disturbance in everyday life is cognitive rehabilitation, which is based on the principles of brain neuroplasticity and restoration. Although there are many studies in the literature focusing on the effectiveness of cognitive interventions in reducing cognitive deficits following TBI, only a few of them focus on neural modifications induced by cognitive treatment. The use of neuroimaging or neurophysiological measures to evaluate brain changes induced by cognitive rehabilitation may have relevant clinical implications, since they could add individualized elements to cognitive assessment. Nevertheless, there are no review studies in the literature investigating neuroplastic changes induced by cognitive training in TBI individuals. Objective. Due to lack of data, the goal of this article is to review what is currently known on the cerebral modifications following rehabilitation programs in chronic TBI. Methods. Studies investigating both the functional and structural neural modifications induced by cognitive training in TBI subjects were identified from the results of database searches. Forty-five published articles were initially selected. Of these, 34 were excluded because they did not meet the inclusion criteria. Results. Eleven studies were found that focused solely on the functional and neurophysiological changes induced by cognitive rehabilitation. Conclusions. Outcomes showed that cerebral activation may be significantly modified by cognitive rehabilitation, in spite of the severity of the injury.
Collapse
Affiliation(s)
- Valentina Galetto
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Turin, Italy
- Centro Puzzle, Turin, Italy
| | - Katiuscia Sacco
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Scheibel RS. Functional Magnetic Resonance Imaging of Cognitive Control following Traumatic Brain Injury. Front Neurol 2017; 8:352. [PMID: 28824524 PMCID: PMC5543081 DOI: 10.3389/fneur.2017.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Novel and non-routine tasks often require information processing and behavior to adapt from moment to moment depending on task requirements and current performance. This ability to adapt is an executive function that is referred to as cognitive control. Patients with moderate-to-severe traumatic brain injury (TBI) have been reported to exhibit impairments in cognitive control and functional magnetic resonance imaging (fMRI) has provided evidence for TBI-related alterations in brain activation using various fMRI cognitive control paradigms. There is some support for greater and more extensive cognitive control-related brain activation in patients with moderate-to-severe TBI, relative to comparison subjects without TBI. In addition, some studies have reported a correlation between these activation increases and measures of injury severity. Explanations that have been proposed for increased activation within structures that are thought to be directly involved in cognitive control, as well as the extension of this over-activation into other brain structures, have included compensatory mechanisms, increased demand upon normal processes required to maintain adequate performance, less efficient utilization of neural resources, and greater vulnerability to cognitive fatigue. Recent findings are also consistent with the possibility that activation increases within some structures, such as the posterior cingulate gyrus, may reflect a failure to deactivate components of the default mode network (DMN) and that some cognitive control impairment may result from ineffective coordination between the DMN and components of the salience network. Functional neuroimaging studies examining cognitive control-related activation following mild TBI (mTBI) have yielded more variable results, with reports of increases, decreases, and no significant change. These discrepancies may reflect differences among the various mTBI samples under study, recovery of function in some patients, different task characteristics, and the presence of comorbid conditions such as depression and posttraumatic stress disorder that also alter brain activation. There may be mTBI populations with activation changes that overlap with those found following more severe injuries, including symptomatic mTBI patients and those with acute injuries, but future research to address such dysfunction will require well-defined samples with adequate controls for injury characteristics, comorbid disorders, and severity of post-concussive symptoms.
Collapse
Affiliation(s)
- Randall S Scheibel
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
38
|
Wood RL. Accelerated cognitive aging following severe traumatic brain injury: A review. Brain Inj 2017; 31:1270-1278. [DOI: 10.1080/02699052.2017.1332387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rodger Ll. Wood
- Neuropsychology Clinic, Institute of Life Sciences, College of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
39
|
Xiao H, Jacobsen A, Chen Z, Wang Y. Detecting social-cognitive deficits after traumatic brain injury: An ALE meta-analysis of fMRI studies. Brain Inj 2017. [DOI: 10.1080/02699052.2017.1319576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hui Xiao
- Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, China
| | - Andre Jacobsen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ziqian Chen
- Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, China
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
40
|
Hillary FG, Grafman JH. Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity. Trends Cogn Sci 2017; 21:385-401. [PMID: 28372878 PMCID: PMC6664441 DOI: 10.1016/j.tics.2017.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/15/2023]
Abstract
A common finding in human functional brain-imaging studies is that damage to neural systems paradoxically results in enhanced functional connectivity between network regions, a phenomenon commonly referred to as 'hyperconnectivity'. Here, we describe the various ways that hyperconnectivity operates to benefit a neural network following injury while simultaneously negotiating the trade-off between metabolic cost and communication efficiency. Hyperconnectivity may be optimally expressed by increasing connections through the most central and metabolically efficient regions (i.e., hubs). While adaptive in the short term, we propose that chronic hyperconnectivity may leave network hubs vulnerable to secondary pathological processes over the life span due to chronically elevated metabolic stress. We conclude by offering novel, testable hypotheses for advancing our understanding of the role of hyperconnectivity in systems-level brain plasticity in neurological disorders.
Collapse
Affiliation(s)
- Frank G Hillary
- Pennsylvania State University, University Park, PA, USA; Social Life and Engineering Sciences Imaging Center, University Park, PA, USA; Department of Neurology, Hershey Medical Center, Hershey, PA, USA.
| | - Jordan H Grafman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Manktelow AE, Menon DK, Sahakian BJ, Stamatakis EA. Working Memory after Traumatic Brain Injury: The Neural Basis of Improved Performance with Methylphenidate. Front Behav Neurosci 2017; 11:58. [PMID: 28424597 PMCID: PMC5380757 DOI: 10.3389/fnbeh.2017.00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) often results in cognitive impairments for patients. The aim of this proof of concept study was to establish the nature of abnormalities, in terms of activity and connectivity, in the working memory network of TBI patients and how these relate to compromised behavioral outcomes. Further, this study examined the neural correlates of working memory improvement following the administration of methylphenidate. We report behavioral, functional and structural MRI data from a group of 15 Healthy Controls (HC) and a group of 15 TBI patients, acquired during the execution of the N-back task. The patients were studied on two occasions after the administration of either placebo or 30 mg of methylphenidate. Between group tests revealed a significant difference in performance when HCs were compared to TBI patients on placebo [F(1, 28) = 4.426, p < 0.05, ηp2 = 0.136]. This difference disappeared when the patients took methylphenidate [F(1, 28) = 3.665, p = 0.66]. Patients in the middle range of baseline performance demonstrated the most benefit from methylphenidate. Changes in the TBI patient activation levels in the Left Cerebellum significantly and positively correlated with changes in performance (r = 0.509, df = 13, p = 0.05). Whole-brain connectivity analysis using the Left Cerebellum as a seed revealed widespread negative interactions between the Left Cerebellum and parietal and frontal cortices as well as subcortical areas. Neither the TBI group on methylphenidate nor the HC group demonstrated any significant negative interactions. Our findings indicate that (a) TBI significantly reduces the levels of activation and connectivity strength between key areas of the working memory network and (b) Methylphenidate improves the cognitive outcomes on a working memory task. Therefore, we conclude that methylphenidate may render the working memory network in a TBI group more consistent with that of an intact working memory network.
Collapse
Affiliation(s)
| | - David K Menon
- Division of Anaesthesia, University of CambridgeCambridge, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of CambridgeCambridge, UK.,Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of CambridgeCambridge, UK.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| |
Collapse
|
42
|
Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus. Behav Brain Res 2016; 340:137-146. [PMID: 28042008 DOI: 10.1016/j.bbr.2016.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Thalamic dysfunction has been implicated in overall chronic neurological dysfunction after traumatic brain injury (TBI), however little is known about the underlying histopathology. In experimental diffuse TBI (dTBI), we hypothesize that persisting histopathological changes in the ventral posteromedial (VPM) nucleus of the thalamus is indicative of progressive circuit reorganization. Since circuit reorganization in the VPM impacts the whisker sensory system, the histopathology could explain the development of hypersensitivity to whisker stimulation by 28days post-injury; similar to light and sound hypersensitivity in human TBI survivors. METHODS Adult, male Sprague-Dawley rats underwent craniotomy and midline fluid percussion injury (FPI) (moderate severity; 1.8-2.0atm) or sham surgery. At 1d, 7d, and 28days post-FPI (d FPI) separate experiments confirmed the cytoarchitecture (Giemsa stain) and evaluated neuropathology (silver stain), activated astrocytes (GFAP), neuron morphology (Golgi stain) and microglial morphology (Iba-1) in the VPM. RESULTS Cytoarchitecture was unchanged throughout the time course, similar to previously published data; however, neuropathology and astrocyte activation were significantly increased at 7d and 28d and activated microglia were present at all time points. Neuron morphology was dynamic over the time course with decreased dendritic complexity (fewer branch points; decreased length of processes) at 7d FPI and return to sham values by 28d FPI. CONCLUSIONS These data indicate that dTBI results in persisting thalamic histopathology out to a chronic time point. While these changes can be indicative of either adaptive (recovery) or maladaptive (neurological dysfunction) circuit reorganization, they also provide a potential mechanism by which maladaptive circuit reorganization could contribute to the development of chronic neurological dysfunction. Understanding the processes that mediate circuit reorganization is critical to the development of future therapies for TBI patients.
Collapse
|
43
|
Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology 2016; 279:693-707. [PMID: 27183405 DOI: 10.1148/radiol.16142535] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Xin Wu
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Ivan I Kirov
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Oded Gonen
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yulin Ge
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Robert I Grossman
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| | - Yvonne W Lui
- From the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016
| |
Collapse
|
44
|
Caeyenberghs K, Verhelst H, Clemente A, Wilson PH. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us? Neuroimage 2016; 160:113-123. [PMID: 27919750 DOI: 10.1016/j.neuroimage.2016.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is associated with cognitive and motor deficits, and poses a significant personal, societal, and economic burden. One mechanism by which TBI is thought to affect cognition and behavior is through changes in functional connectivity. Graph theory is a powerful framework for quantifying topological features of neuroimaging-derived functional networks. The objective of this paper is to review studies examining functional connectivity in TBI with an emphasis on graph theoretical analysis that is proving to be valuable in uncovering network abnormalities in this condition. METHODS We review studies that have examined TBI-related alterations in different properties of the functional brain network, including global integration, segregation, centrality and resilience. We focus on functional data using task-related fMRI or resting-state fMRI in patients with TBI of different severity and recovery phase, and consider how graph metrics may inform rehabilitation and enhance efficacy. Moreover, we outline some methodological challenges associated with the examination of functional connectivity in patients with brain injury, including the sample size, parcellation scheme used, node definition and subgroup analyses. RESULTS The findings suggest that TBI is associated with hyperconnectivity and a suboptimal global integration, characterized by increased connectivity degree and strength and reduced efficiency of functional networks. This altered functional connectivity, also evident in other clinical populations, is attributable to diffuse white matter pathology and reductions in gray and white matter volume. These functional alterations are implicated in post-concussional symptoms, posttraumatic stress and neurocognitive dysfunction after TBI. Finally, the effects of focal lesions have been found to depend critically on topological position and their role in the network. CONCLUSION Graph theory is a unique and powerful tool for exploring functional connectivity in brain-injured patients. One limitation is that its results do not provide specific measures about the biophysical mechanism underlying TBI. Continued work in this field will hopefully see graph metrics used as biomarkers to provide more accurate diagnosis and help guide treatment at the individual patient level.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia.
| | - Helena Verhelst
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Adam Clemente
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| | - Peter H Wilson
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, Australia
| |
Collapse
|
45
|
Scheibel RS, Newsome MR, Steinberg JL, Pearson DA, Rauch RA, Mao H, Troyanskaya M, Sharma RG, Levin HS. Altered Brain Activation During Cognitive Control in Patients With Moderate to Severe Traumatic Brain Injury. Neurorehabil Neural Repair 2016; 21:36-45. [PMID: 17172552 DOI: 10.1177/1545968306294730] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Persistent deficits in cognitive control have been documented following traumatic brain injury (TBI) but are inconsistently related to the presence and location of focal lesions. Objective. Functional magnetic resonance imaging (fMRI) was used to examine brain activation during a cognitive control task in patients with moderate to severe TBI or orthopedic injury (OI). Methods. Fourteen TBI patients and 10 OI patients underwent fMRI at 3 months postinjury using a stimulus-response compatibility task in which response accuracy and reaction time were measured. Performance between the groups was equated by individually adjusting the amount of training. Groups did not differ in age, gender, or education. Results. Brain activation during stimulus-response incompatibility was greater in TBI patients than in OI patients within the cingulate, medial frontal, middle frontal, and superior frontal gyri. However, the positive regression of activation with response accuracy during stimulus-response incompatibility indicated a stronger relationship for OI patients than the TBI group within the anterior cingulate gyrus, medial frontal, and parietal regions, as well as deep brain structures (eg, brainstem). The number of focal lesions within either the whole brain or within prefrontal areas was not related to brain activation, but there was a relationship between activation and TBI severity. Conclusions. These findings suggest that neural networks mediating cognitive control are altered after moderate to severe TBI, possibly as a result of diffuse axonal injury, and that the typical relationship of brain activation to performance is disrupted.
Collapse
Affiliation(s)
- Randall S Scheibel
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gooijers J, Beets IAM, Albouy G, Beeckmans K, Michiels K, Sunaert S, Swinnen SP. Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain 2016; 139:2469-85. [DOI: 10.1093/brain/aww177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/27/2016] [Indexed: 12/30/2022] Open
|
47
|
Gillis MM, Garcia S, Hampstead BM. Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory. Behav Brain Res 2016; 311:192-200. [PMID: 27233825 DOI: 10.1016/j.bbr.2016.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
A recent model by Postma and colleagues posits that the encoding of object location associations (OLAs) requires the coordination of several cognitive processes mediated by ventral (object perception) and dorsal (spatial perception) visual pathways as well as the hippocampus (feature binding) [1]. Within this model, frontoparietal network recruitment is believed to contribute to both the spatial processing and working memory task demands. The current study used functional magnetic resonance imaging (fMRI) to test each step of this model in 15 participants who encoded OLAs and performed standard n-back tasks. As expected, object processing resulted in activation of the ventral visual stream. Object in location processing resulted in activation of both the ventral and dorsal visual streams as well as a lateral frontoparietal network. This condition was also the only one to result in medial temporal lobe activation, supporting its role in associative learning. A conjunction analysis revealed areas of shared activation between the working memory and object in location phase within the lateral frontoparietal network, anterior insula, and basal ganglia; consistent with prior working memory literature. Overall, findings support Postma and colleague's model and provide clear evidence for the role of working memory during OLA encoding.
Collapse
Affiliation(s)
- M Meredith Gillis
- Department of Rehabilitation Medicine, Emory University School of Medicine, Center for Rehabilitation Medicine, 1441 Clifton Road NE, Atlanta, GA 30322, USA
| | - Sarah Garcia
- Department of Psychiatry-Neuropsychology Section, University of Michigan Health System, 2101 Commonwealth Blvd Suite C, Ann Arbor, MI 48105, USA
| | - Benjamin M Hampstead
- Rehabilitation R&D Center of Excellence, Atlanta VAMC, 1670 Clairmont Road (151R), Decatur, GA 30033, USA; Mental Health Service, VA Ann Arbor Health Care System, 2215 Fuller Road, Ann Arbor, MI 48105, USA; Department of Rehabilitation Medicine, Emory University School of Medicine, Center for Rehabilitation Medicine, 1441 Clifton Road NE, Atlanta, GA 30322, USA; Department of Psychiatry-Neuropsychology Section, University of Michigan Health System, 2101 Commonwealth Blvd Suite C, Ann Arbor, MI 48105, USA.
| |
Collapse
|
48
|
Li J, Gao L, Xie K, Zhan J, Luo X, Wang H, Zhang H, Zhao J, Zhou F, Zeng X, He L, He Y, Gong H. Detection of Functional Homotopy in Traumatic Axonal Injury. Eur Radiol 2016; 27:325-335. [PMID: 27048533 DOI: 10.1007/s00330-016-4302-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/01/2016] [Accepted: 02/23/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients. METHODS Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed. RESULTS We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively. CONCLUSION TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients. KEY POINTS • Traumatic axonal injury is associated with decreased interhemispheric connectivity • Traumatic axonal injury couples with widely disrupted functional connectivity • These alterations support the default, salience, integrative, and executive functions.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Lei Gao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China.
| | - Kai Xie
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Xiaoping Luo
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Huifang Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Huifang Zhang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Yulin He
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| |
Collapse
|
49
|
Falletta Caravasso C, de Pasquale F, Ciurli P, Catani S, Formisano R, Sabatini U. The Default Mode Network Connectivity Predicts Cognitive Recovery in Severe Acquired Brain Injured Patients: A Longitudinal Study. J Neurotrauma 2016; 33:1247-62. [PMID: 26559732 DOI: 10.1089/neu.2015.4003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To study the functional connectivity in patients with severe acquired brain injury is very challenging for their high level of disability because of a prolonged period of coma, extended lesions, and several cognitive and behavioral disorders. In this article, we investigated in these patients the default mode network and somatomotor connectivity changes at rest longitudinally, in the subacute and late phase after brain injury. The aim of the study is to characterize such connectivity patterns and relate the observed changes to clinical and neuropsychological outcomes of these patients after a period of intensive neurorehabilitation. Our findings show within the default mode network a disruption of connectivity of medial pre-frontal regions and a significant change of amplitude of internal connections. Notably, strongest changes in functional connectivity significantly correlated to consistent clinical and cognitive recovery. This evidence seems to indicate that the reorganization of the Default Mode Network may represent a valid biomarker for the cognitive recovery in patients with severe acquired brain injury.
Collapse
Affiliation(s)
| | - Francesco de Pasquale
- 1 Department of Radiology, IRCCS Santa Lucia Foundation , Rome, Italy
- 2 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Ciurli
- 3 Post-Coma Unit, IRCCS Santa Lucia Foundation , Rome, Italy
| | - Sheila Catani
- 3 Post-Coma Unit, IRCCS Santa Lucia Foundation , Rome, Italy
| | - Rita Formisano
- 3 Post-Coma Unit, IRCCS Santa Lucia Foundation , Rome, Italy
| | - Umberto Sabatini
- 1 Department of Radiology, IRCCS Santa Lucia Foundation , Rome, Italy
| |
Collapse
|
50
|
Stojanovic-Radic J, Wylie G, Voelbel G, Chiaravalloti N, DeLuca J. Neuroimaging and cognition using functional near infrared spectroscopy (fNIRS) in multiple sclerosis. Brain Imaging Behav 2016; 9:302-11. [PMID: 24916919 DOI: 10.1007/s11682-014-9307-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study utilized functional near infrared spectroscopy (fNIRS) to detect neural activation differences in the orbitofrontal brain region between individuals with multiple sclerosis (MS) and healthy controls (HCs) during a working memory (WM) task. Thirteen individuals with MS and 12 HCs underwent fNIRS recording while performing the n-back WM task with four levels of difficulty (0-, 1-, 2-, and 3-back). Subjects were fitted with the fNIRS cap consisting of 30 'optodes' positioned over the forehead. The results revealed different patterns of brain activation in MS and HCs. The MS group showed an increase in brain activation, as measured by the concentration of oxygenated hemoglobin (oxyHb), in the left superior frontal gyrus (LSFG) at lower task difficulty levels (i.e. 1-back), followed by a decrease at higher task difficulty (2- and 3-back) as compared with the HC group. HC group achieved higher accuracy than the MS group on the lower task loads (i.e. 0- and 1-back), however there were no performance differences between the groups at the higher task loads (i.e. 2- and 3-back). Taken together, the results suggest that individuals with MS experience a task with the lower cognitive load as more difficult than the HC group, and the brain activation patterns observed during the task confirm some of the previous findings from functional magnetic resonance imaging (fMRI) studies. This study is the first to investigate brain activation by utilizing the method of fNIRS in MS during the performance of a cognitive task.
Collapse
Affiliation(s)
- Jelena Stojanovic-Radic
- Kessler Foundation, Neuropsychology and Neuroscience Laboratory, 300 Executive Drive, Suite 70, West Orange, NJ, 07052, USA
| | | | | | | | | |
Collapse
|