1
|
Pastore LV, Sudhakar SV, Mankad K, De Vita E, Biswas A, Tisdall MM, Chari A, Figini M, Tahir MZ, Adler S, Moeller F, Cross JH, Pujar S, Wagstyl K, Ripart M, Löbel U, Cirillo L, D'Arco F. Integrating standard epilepsy protocol, ASL-perfusion, MP2RAGE/EDGE and the MELD-FCD classifier in the detection of subtle epileptogenic lesions: a 3 Tesla MRI pilot study. Neuroradiology 2024:10.1007/s00234-024-03488-8. [PMID: 39441414 DOI: 10.1007/s00234-024-03488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Malformations of cortical development (MCDs) in children with focal epilepsy pose significant diagnostic challenges, and a precise radiological diagnosis is crucial for surgical planning. New MRI sequences and the use of artificial intelligence (AI) algorithms are considered very promising in this regard, yet studies evaluating the relative contribution of each diagnostic technique are lacking. METHODS The study was conducted using a dedicated "EPI-MCD MR protocol" with a 3 Tesla MRI scanner in patients with focal epilepsy and previously negative MRI. MRI sequences evaluated included 3D FLAIR, 3D T1 MPRAGE, T2 Turbo Spin Echo (TSE), 3D T1 MP2RAGE, and Arterial Spin Labelling (ASL). Two paediatric neuroradiologists scored each sequence for localisation and extension of the lesion. The MELD-FCD AI classifier's performance in identifying pathological findings was also assessed. We only included patients where a diagnosis of MCD was subsequently confirmed on histology and/or sEEG. RESULTS The 3D FLAIR sequence showed the highest yield in detecting epileptogenic lesions, with 3D T1 MPRAGE, T2 TSE, and 3D T1 MP2RAGE sequences showing moderate to low yield. ASL was the least useful. The MELD-FCD classifier achieved a 69.2% true positive rate. In one case, MELD identified a subtle area of cortical dysplasia overlooked by the neuroradiologists, changing the management of the patient. CONCLUSIONS The 3D FLAIR sequence is the most effective in the MRI-based diagnosis of subtle epileptogenic lesions, outperforming other sequences in localisation and extension. This pilot study emphasizes the importance of careful assessment of the value of additional sequences.
Collapse
Affiliation(s)
- Luigi Vincenzo Pastore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, 40138, Italy.
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.
| | - Sniya Valsa Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Enrico De Vita
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Martin M Tisdall
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Aswin Chari
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matteo Figini
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - M Zubair Tahir
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sophie Adler
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - J Helen Cross
- Neurology/Epilepsy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Suresh Pujar
- Neurology/Epilepsy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Konrad Wagstyl
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Mathilde Ripart
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Luigi Cirillo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, 40138, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Felice D'Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| |
Collapse
|
2
|
Yu HY, Tsai CJ, Lee TH, Tung H, Shih YC, Chou CC, Lee CC, Lin PT, Peng SJ. Machine learning localization to identify the epileptogenic side in mesial temporal lobe epilepsy. Magn Reson Imaging 2024; 115:110256. [PMID: 39426692 DOI: 10.1016/j.mri.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Mesial temporal sclerosis (MTS) is the most common pathology associated with drug-resistant mesial temporal lobe epilepsy (mTLE) in adults. Most atrophic hippocampi can be identified using MRI based on standard epilepsy protocols; however, difficulties can arise in cases where sclerotic changes in the hippocampus are subtle or non-epilepsy-specific protocols have been implemented. In such cases, quantitative methods, such as T1-weighted axial series MRIs, are valuable additional tools to complement epilepsy-specific protocols. In the current study, we applied machine learning (ML) techniques to the analysis of brain regions of interest (ROIs), including the hippocampus, thalamus, and cortical areas, to enhance the accuracy of lesion lateralization in MRI. METHODS This study included 104 patients diagnosed with mTLE, including 55 with lesions on the right side and 49 with lesions on the left side. FreeSurfer software was used to extract features from high-resolution T1-weighted axial brain MRI scans for use in computing lateralization indices (LI) for various brain regions. After using feature selection to pinpoint critical ROIs, the corresponding LI values were used as parameters in training the ML model. RESULTS The proposed ML model demonstrated exceptional performance in the lateralization of mTLE, achieving test accuracy of 92.38 % with an AUROC of 0.97. CONCLUSION This study demonstrated the efficacy of ML in detecting instances of MTS from thin-slice T1 images. The proposed method provides valuable insights for surgical planning and treatment. Nonetheless, additional research will be required to enhance the robustness of the model and rigorously validate its effectiveness and applicability in clinical settings.
Collapse
Affiliation(s)
- Hsiang-Yu Yu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng Jui Tsai
- Department of General Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tse-Hao Lee
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin Tung
- Center of faculty development, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Epilepsy, Neurological Institute, Taichung Veterans Gen, Taipei Veterans General Hospitaleral Hospital, Taichung, Taiwan
| | - Yen-Cheng Shih
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chen Chou
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Department of General Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Tso Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zuidhoek EN, Zwemmer JNP, Visser GH, Dankbaar JW, Widman G. MRI-quality and morphometric MRI analysis to identify focal cortical dysplasia: An exploratory study. Seizure 2024; 123:37-42. [PMID: 39454531 DOI: 10.1016/j.seizure.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In the pre-surgical evaluation of people with focal epilepsy and a normal MRI, Morphometric Analysis Program v2018 (MAP18) aids in detecting visually inconspicuous focal cortical dysplasia (FCD). We investigated the impact of MRI scans with reduced signal-to-noise ratio (SNR) and spatial resolution (SR) on FCD detection by MAP18, aiming to improve the chances of achieving seizure freedom through epilepsy surgery. METHODS Thirty MRI scans with the identified lesion using MAP18 radiologically confirmed as FCD by a neuroradiologist, were retrospective analysed. SNR and SR were artificially reduced in ten steps, and their impact on MAP18 outcomes was assessed using multilevel analysis. RESULTS There was a significant effect after reducing SR and SNR for z-score and volume of the FCD cluster, the total number of detected clusters, and volume of these clusters. After SNR reduction, there was also a significant effect for z-score of the total number of detected clusters. FCD became undetectable by MAP18 after six steps of SR reduction (voxel size 2.8 × 2.8 × 2.8 mm³) and after two steps of SNR reduction. CONCLUSIONS This exploratory study suggests that reduced SR and SNR negatively affect FCD detection with MRI post-processing (MAP18). The MAP18 evaluator should screen MRI quality before post-processing, particularly for scans with significant visual noise or voxel sizes of 2.8 × 2.8 × 2.8 mm³ and upwards, as repeating a low-quality MRI scan is less burdensome than the adverse effects of continued seizures due to failure to detect FCD.
Collapse
Affiliation(s)
- E N Zuidhoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Department of Clinical Neurophysiology, Heemstede, the Netherlands.
| | - J N P Zwemmer
- Stichting Epilepsie Instellingen Nederland (SEIN), Department of Clinical Neurophysiology, Heemstede, the Netherlands
| | - G H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Department of Clinical Neurophysiology, Heemstede, the Netherlands
| | - J W Dankbaar
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - G Widman
- Department of Neurology, University Medical Center, Aachen, Germany
| |
Collapse
|
4
|
Pastore LV, De Vita E, Sudhakar SV, Löbel U, Mankad K, Biswas A, Cirillo L, Pujar S, D’Arco F. Advances in magnetic resonance imaging for the assessment of paediatric focal epilepsy: a narrative review. Transl Pediatr 2024; 13:1617-1633. [PMID: 39399717 PMCID: PMC11467228 DOI: 10.21037/tp-24-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background and Objective Epilepsy affects approximately 50 million people worldwide, with 30-40% of patients not responding to medication, necessitating alternative therapies such as surgical intervention. However, the accurate localization of epileptogenic lesions, particularly in pediatric magnetic resonance imaging (MRI)-negative drug-resistant epilepsy, remains a challenge. This paper reviews advanced neuroimaging techniques aimed at improving the detection of such lesions to enhance surgical outcomes. Methods A comprehensive literature search was conducted using PubMed, focusing on advanced MRI sequences, focal epilepsy, and the integration of artificial intelligence (AI) in the diagnostic process. Key Content and Findings New MRI sequences, including magnetization prepared 2 rapid gradient echo (MP2RAGE), edge-enhancing gradient echo (EDGE), and fluid and white matter suppression (FLAWS), have demonstrated enhanced capabilities in detecting subtle epileptogenic lesions. Quantitative MRI techniques, notably magnetic resonance fingerprinting (MRF), alongside innovative post-processing methods, are emphasized for their effectiveness in delineating cortical malformations, whether used alone or in combination with ultra-high field MRI systems. Furthermore, the integration of AI in radiology is progressing, providing significant support in accurately localizing lesions, and potentially optimizing pre-surgical planning. Conclusions While advanced neuroimaging and AI offer significant improvements in the diagnostic process for epilepsy, some challenges remain. These include long acquisition times, the need for extensive data analysis, and a lack of large, standardized datasets for AI validation. However, the future holds promise as research continues to integrate these technologies into clinical practice. These efforts will improve the clinical applicability and effectiveness of these advanced techniques in epilepsy management, paving the way for more accurate diagnoses and better patient outcomes.
Collapse
Affiliation(s)
- Luigi Vincenzo Pastore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Enrico De Vita
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Valsa Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luigi Cirillo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Suresh Pujar
- Neurology/Epilepsy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Neurosciences Unit, University College London-Great Ormond Street Institute of Child Health, London, UK
| | - Felice D’Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Aaftink D, Reijneveld JC, de Lange F, Sander JW, Thijs RD. Grading objective diagnostic components in paroxysmal events: One-year follow-up at a tertiary epilepsy center. Epilepsia 2024. [PMID: 39056373 DOI: 10.1111/epi.18062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE This study was undertaken to develop a model and perform a preliminary internal validation study of the Scale for Objective Diagnostic Components of Paroxysmal Events (STAMP). METHODS We developed STAMP, which builds on the International League Against Epilepsy task force scale for functional seizures with additional categories for epileptic seizures and syncope. We included 200 consecutive referrals to a Dutch tertiary epilepsy center to evaluate seizurelike events. We recorded demographic and clinical data and collected the clinical evaluation at referral and after 3, 6, 9, and 12 months of follow-up. We ascertained the STAMP at each time point and evaluated factors predicting an improvement in STAMP grade during follow-up. RESULTS Of the 200 referrals at baseline, 131 were classified as having epileptic seizures, 17 as functional seizures, and three as syncope, and 49 were unclassifiable. STAMP grade at baseline was 4 (absent) in 56 individuals, 3 (circumstantial) in 78, 2 (clinically established) in six, and 1 (documented) in 11. Over time, 62 cases STAMP grades improved, and 23 remained unclassifiable. A refinement of STAMP grade during follow-up was due to successful event recordings in 34 people (30 video-electroencephalographic [EEG] recordings, four tilt table testing), home videos or clinician-witnessed events in 13, and identification of interictal EEG or magnetic resonance imaging abnormalities in seven. An improved STAMP grade after 12 months of follow-up was significantly more likely in those with higher event frequency, unclassifiable events, longer event duration, and a shorter time since the first event and less likely in those with a history suggestive of seizures. SIGNIFICANCE This epilepsy service evaluation underscores the crucial role of event recording in improving diagnostic certainty. STAMP may be used to monitor diagnostic performance over time but requires further validation.
Collapse
Affiliation(s)
- Daniel Aaftink
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Medische Kliniek Velsen, Velsen-Noord, the Netherlands
| | - Jaap C Reijneveld
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Frederik de Lange
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- UCL Queen Square Institute of Neurology and Chalfont Centre for Epilepsy, London, UK
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- UCL Queen Square Institute of Neurology and Chalfont Centre for Epilepsy, London, UK
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Macdonald-Laurs E, Dzau W, Warren AEL, Coleman M, Mignone C, Stephenson SEM, Howell KB. Identification and treatment of surgically-remediable causes of infantile epileptic spasms syndrome. Expert Rev Neurother 2024; 24:661-680. [PMID: 38814860 DOI: 10.1080/14737175.2024.2360117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Infantile epileptic spasms syndrome (IESS) is a common developmental and epileptic encephalopathy with poor long-term outcomes. A substantial proportion of patients with IESS have a potentially surgically remediable etiology. Despite this, epilepsy surgery is underutilized in this patient group. Some surgically remediable etiologies, such as focal cortical dysplasia and malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), are under-diagnosed in infants and young children. Even when a surgically remediable etiology is recognised, for example, tuberous sclerosis or focal encephalomalacia, epilepsy surgery may be delayed or not considered due to diffuse EEG changes, unclear surgical boundaries, or concerns about operating in this age group. AREAS COVERED In this review, the authors discuss the common surgically remediable etiologies of IESS, their clinical and EEG features, and the imaging techniques that can aid in their diagnosis. They then describe the surgical approaches used in this patient group, and the beneficial impact that early epilepsy surgery can have on developing brain networks. EXPERT OPINION Epilepsy surgery remains underutilized even when a potentially surgically remediable cause is recognized. Overcoming the barriers that result in under-recognition of surgical candidates and underutilization of epilepsy surgery in IESS will improve long-term seizure and developmental outcomes.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Winston Dzau
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Aaron E L Warren
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
- Brigham and Women's Hospital, Harvard Medical School, Massachusetts, USA
| | - Matthew Coleman
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Cristina Mignone
- Department of Medical Imaging, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Sarah E M Stephenson
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Katherine B Howell
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
7
|
Kotov AS, Firsov KV. [Long-term follow-up of adult patients with serial and status course of epileptic seizures]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:63-68. [PMID: 38676679 DOI: 10.17116/jnevro202412404163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To study the follow-up of adult patients with status epilepticus or a history of serial seizures, assessing the likelihood of achieving long-term remission and identifying predictors of treatment effectiveness. MATERIAL AND METHODS The study included 280 patients divided into 137 patients with epilepsy with a series of seizures or a history of status epilepticus (group 1) and 143 patients, who had not previously received therapy and did not have a series of seizures or a history of status epilepticus (group 2). A clinical and neurological examination, analysis of medical documentation data, electroencephalography, and MRI were performed. RESULTS After correction of therapy, remission in patients in group 1 was achieved in 21.9%, improvement in 30%, no effect was observed in 48.1%; in group 2 the indicators were 51%, 28.7%, 20.3%, respectively. The onset of epilepsy in childhood, frequent seizures, and regional epileptiform activity were associated with the lack of treatment effect. CONCLUSION The results confirm the main role of the clinical examination in determining the prognosis of epilepsy in a particular patient. Currently available instrumental techniques have limited predictive value.
Collapse
Affiliation(s)
- A S Kotov
- Vladimirsky Moscow Regional Scientific Research Clinical Institute, Moscow, Russia
| | - K V Firsov
- Vladimirsky Moscow Regional Scientific Research Clinical Institute, Moscow, Russia
| |
Collapse
|
8
|
Mann L, Rosenow F, Strzelczyk A, Hattingen E, Willems LM, Harter PN, Weber K, Mann C. The impact of referring patients with drug-resistant focal epilepsy to an epilepsy center for presurgical diagnosis. Neurol Res Pract 2023; 5:65. [PMID: 38093325 PMCID: PMC10720126 DOI: 10.1186/s42466-023-00288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/13/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Epilepsy surgery is an established treatment for drug-resistant focal epilepsy (DRFE) that results in seizure freedom in about 60% of patients. Correctly identifying an epileptogenic lesion in magnetic resonance imaging (MRI) is challenging but highly relevant since it improves the likelihood of being referred for presurgical diagnosis. The epileptogenic lesion's etiology directly relates to the surgical intervention's indication and outcome. Therefore, it is vital to correctly identify epileptogenic lesions and their etiology presurgically. METHODS We compared the final histopathological diagnoses of all patients with DRFE undergoing epilepsy surgery at our center between 2015 and 2021 with their MRI diagnoses before and after presurgical diagnosis at our epilepsy center, including MRI evaluations by expert epilepsy neuroradiologists. Additionally, we analyzed the outcome of different subgroups. RESULTS This study included 132 patients. The discordance between histopathology and MRI diagnoses significantly decreased from 61.3% for non-expert MRI evaluations (NEMRIs) to 22.1% for epilepsy center MRI evaluations (ECMRIs; p < 0.0001). The MRI-sensitivity improved significantly from 68.6% for NEMRIs to 97.7% for ECMRIs (p < 0.0001). Identifying focal cortical dysplasia (FCD) and amygdala dysplasia was the most challenging for both subgroups. 65.5% of patients with negative NEMRI were seizure-free 12 months postoperatively, no patient with negative ECMRI achieved seizure-freedom. The mean duration of epilepsy until surgical intervention was 13.6 years in patients with an initial negative NEMRI and 9.5 years in patients with a recognized lesion in NEMRI. CONCLUSIONS This study provides evidence that for patients with DRFE-especially those with initial negative findings in a non-expert MRI-an early consultation at an epilepsy center, including an ECMRI, is important for identifying candidates for epilepsy surgery. NEMRI-negative findings preoperatively do not preclude seizure freedom postoperatively. Therefore, patients with DRFE that remain MRI-negative after initial NEMRI should be referred to an epilepsy center for presurgical evaluation. Nonreferral based on NEMRI negativity may harm such patients and delay surgical intervention. However, ECMRI-negative patients have a reduced chance of becoming seizure-free after epilepsy surgery. Further improvements in MRI technique and evaluation are needed and should be directed towards improving sensitivity for FCDs and amygdala dysplasias.
Collapse
Affiliation(s)
- Leonhard Mann
- Epilepsy Center Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
- Department of Neuroradiology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Felix Rosenow
- Epilepsy Center Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Laurent M Willems
- Epilepsy Center Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Centre for Neuropathology and Prion-Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Katharina Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Center for Tumor Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Catrin Mann
- Epilepsy Center Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Rebsamen M, Jin BZ, Klail T, De Beukelaer S, Barth R, Rezny-Kasprzak B, Ahmadli U, Vulliemoz S, Seeck M, Schindler K, Wiest R, Radojewski P, Rummel C. Clinical Evaluation of a Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis. Clin Neuroradiol 2023; 33:1045-1053. [PMID: 37358608 PMCID: PMC10654177 DOI: 10.1007/s00062-023-01308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To evaluate the influence of quantitative reports (QReports) on the radiological assessment of hippocampal sclerosis (HS) from MRI of patients with epilepsy in a setting mimicking clinical reality. METHODS The study included 40 patients with epilepsy, among them 20 with structural abnormalities in the mesial temporal lobe (13 with HS). Six raters blinded to the diagnosis assessed the 3T MRI in two rounds, first using MRI only and later with both MRI and the QReport. Results were evaluated using inter-rater agreement (Fleiss' kappa [Formula: see text]) and comparison with a consensus of two radiological experts derived from clinical and imaging data, including 7T MRI. RESULTS For the primary outcome, diagnosis of HS, the mean accuracy of the raters improved from 77.5% with MRI only to 86.3% with the additional QReport (effect size [Formula: see text]). Inter-rater agreement increased from [Formula: see text] to [Formula: see text]. Five of the six raters reached higher accuracies, and all reported higher confidence when using the QReports. CONCLUSION In this pre-use clinical evaluation study, we demonstrated clinical feasibility and usefulness as well as the potential impact of a previously suggested imaging biomarker for radiological assessment of HS.
Collapse
Affiliation(s)
- Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Baudouin Zongxin Jin
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tomas Klail
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie De Beukelaer
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rike Barth
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beata Rezny-Kasprzak
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uzeyir Ahmadli
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland.
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
10
|
Honke J, Hoffmann L, Coras R, Kobow K, Leu C, Pieper T, Hartlieb T, Bien CG, Woermann F, Cloppenborg T, Kalbhenn T, Gaballa A, Hamer H, Brandner S, Rössler K, Dörfler A, Rampp S, Lemke JR, Baldassari S, Baulac S, Lal D, Nürnberg P, Blümcke I. Deep histopathology genotype-phenotype analysis of focal cortical dysplasia type II differentiates between the GATOR1-altered autophagocytic subtype IIa and MTOR-altered migration deficient subtype IIb. Acta Neuropathol Commun 2023; 11:179. [PMID: 37946310 PMCID: PMC10633947 DOI: 10.1186/s40478-023-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.
Collapse
Affiliation(s)
- Jonas Honke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
- Research Institute for Rehabilitation, Transition, and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Friedrich Woermann
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, Germany
| | - Ahmed Gaballa
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Hajo Hamer
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
- Epilepsy Center, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Arnd Dörfler
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sara Baldassari
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Stéphanie Baulac
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA.
| |
Collapse
|
11
|
Sklenarova B, Zatloukalova E, Cimbalnik J, Klimes P, Dolezalova I, Pail M, Kocvarova J, Hendrych M, Hermanova M, Gotman J, Dubeau F, Hall J, Pana R, Frauscher B, Brazdil M. Interictal high-frequency oscillations, spikes, and connectivity profiles: A fingerprint of epileptogenic brain pathologies. Epilepsia 2023; 64:3049-3060. [PMID: 37592755 DOI: 10.1111/epi.17749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD), hippocampal sclerosis (HS), nonspecific gliosis (NG), and normal tissue (NT) comprise the majority of histopathological results of surgically treated drug-resistant epilepsy patients. Epileptic spikes, high-frequency oscillations (HFOs), and connectivity measures are valuable biomarkers of epileptogenicity. The question remains whether they could also be utilized for preresective differentiation of the underlying brain pathology. This study explored spikes and HFOs together with functional connectivity in various epileptogenic pathologies. METHODS Interictal awake stereoelectroencephalographic recordings of 33 patients with focal drug-resistant epilepsy with seizure-free postoperative outcomes were analyzed (15 FCD, 8 HS, 6 NT, and 4 NG). Interictal spikes and HFOs were automatically identified in the channels contained in the overlap of seizure onset zone and resected tissue. Functional connectivity measures (relative entropy, linear correlation, cross-correlation, and phase consistency) were computed for neighboring electrode pairs. RESULTS Statistically significant differences were found between the individual pathologies in HFO rates, spikes, and their characteristics, together with functional connectivity measures, with the highest values in the case of HS and NG/NT. A model to predict brain pathology based on all interictal measures achieved up to 84.0% prediction accuracy. SIGNIFICANCE The electrophysiological profile of the various epileptogenic lesions in epilepsy surgery patients was analyzed. Based on this profile, a predictive model was developed. This model offers excellent potential to identify the nature of the underlying lesion prior to resection. If validated, this model may be particularly valuable for counseling patients, as depending on the lesion type, different outcomes are achieved after epilepsy surgery.
Collapse
Affiliation(s)
- Barbora Sklenarova
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Eva Zatloukalova
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Jan Cimbalnik
- International Clinical Research Center, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Petr Klimes
- International Clinical Research Center, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irena Dolezalova
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jitka Kocvarova
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Michal Hendrych
- First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marketa Hermanova
- First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jeffery Hall
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Milan Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Urbach H, Scheiwe C, Shah MJ, Nakagawa JM, Heers M, San Antonio-Arce MV, Altenmueller DM, Schulze-Bonhage A, Huppertz HJ, Demerath T, Doostkam S. Diagnostic Accuracy of Epilepsy-dedicated MRI with Post-processing. Clin Neuroradiol 2023; 33:709-719. [PMID: 36856785 PMCID: PMC10449992 DOI: 10.1007/s00062-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE To evaluate the diagnostic accuracy of epilepsy-dedicated 3 Tesla MRI including post-processing by correlating MRI, histopathology, and postsurgical seizure outcomes. METHODS 3 Tesla-MRI including a magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) sequence for post-processing using the morphometric analysis program MAP was acquired in 116 consecutive patients with drug-resistant focal epilepsy undergoing resection surgery. The MRI, histopathology reports and postsurgical seizure outcomes were recorded from the patient's charts. RESULTS The MRI and histopathology were concordant in 101 and discordant in 15 patients, 3 no hippocampal sclerosis/gliosis only lesions were missed on MRI and 1 of 28 focal cortical dysplasia (FCD) type II associated with a glial scar was considered a glial scar only on MRI. In another five patients, MRI was suggestive of FCD, the histopathology was uneventful but patients were seizure-free following surgery. The MRI and histopathology were concordant in 20 of 21 glioneuronal tumors, 6 cavernomas, and 7 glial scars. Histopathology was negative in 10 patients with temporal lobe epilepsy, 4 of them had anteroinferior meningoencephaloceles. Engel class IA outcome was reached in 71% of patients. CONCLUSION The proposed MRI protocol is highly accurate. No hippocampal sclerosis/gliosis only lesions are typically MRI negative. Small MRI positive FCD can be histopathologically missed, most likely due to sampling errors resulting from insufficient harvesting of tissue.
Collapse
Affiliation(s)
- Horst Urbach
- Dept. of Neuroradiology, Medical Center, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Christian Scheiwe
- Dept. of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Muskesh J Shah
- Dept. of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Julia M Nakagawa
- Dept. of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Marcel Heers
- Dept. of Epileptology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | | | | | - Theo Demerath
- Dept. of Neuroradiology, Medical Center, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Soroush Doostkam
- Dept. of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Maslarova A, Zhao Y, Rösch J, Dörfler A, Coras R, Blümcke I, Lang J, Schmidt M, Hamer HM, Reindl C, Welte TM, Rampp S, Rössler K, Buchfelder M, Brandner S. Surgical planning, histopathology findings and postoperative outcome in MR-negative extra-temporal epilepsy using intracranial EEG, functional imaging, magnetoencephalography, neuronavigation and intraoperative MRI. Clin Neurol Neurosurg 2023; 226:107603. [PMID: 36706680 DOI: 10.1016/j.clineuro.2023.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE MRI-negative drug-resistant epilepsy presents a challenge when it comes to surgical planning, and surgical outcome is worse than in cases with an identified lesion. Although increasing implementation of more powerful MRI scanners and artificial intelligence has led to the detection of previously unrecognizable lesions, in some cases even postoperative pathological evaluation of electrographically epileptogenic zones shows no structural alterations. While in temporal lobe epilepsy a standardized resection approach can usually be performed, the surgical management of extra-temporal lesions is always individual. Here we present a strategy for treating patients with extra-temporal MRI-negative epilepsy focus and report our histological findings and patient outcome. METHODS Patients undergoing epilepsy surgery in the Department of Neurosurgery at the University Hospital Erlangen between 2012 and 2020 were included in the study. Inclusion criteria were: (1) failure to identify a structural lesion on preoperative high-resolution 3 Tesla MRI with a standardized epilepsy protocol and (2) preoperative intracranial EEG (iEEG) diagnostics. RESULTS We identified 8 patients corresponding to the inclusion criteria. Second look MRI analysis by an experienced neuroradiologist including the most recent analysis algorithm utilized in our clinic revealed a possible lesion in two patients. One of the patients with a clear focal cortical dysplasia (FCD) finding on a second look was excluded from further analysis. Of the other 7 patients, in one patient iEEG was performed with subdural electrodes, whereas the other 6 were evaluated with depth electrodes. MEG was performed preoperatively in all but one patient. An MEG focus was implemented in resection planning in 3 patients. FDG PET was performed in all, but only implemented in one patient. Histopathological evaluation revealed one non-lesional case, 4 cases of FCD and 2 cases with mild developmental malformation. All patients were free from permanent neurological deficits and presented with Engel 1A or 1B outcome on the last follow-up. CONCLUSION We demonstrate that extra-temporal MRI-negative epilepsy can be treated successfully provided an extensive preoperative planning is performed. The most important diagnostic was stereo-EEG, whereas additional data from MEG was helpful and FDG PET was rarely useful in our cohort.
Collapse
Affiliation(s)
- Anna Maslarova
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yining Zhao
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Rösch
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Lang
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hajo M Hamer
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Caroline Reindl
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tamara M Welte
- Department of Neurology, Epilepsy Center Erlangen, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Neurosurgery, University Hospital Halle (Saale), Halle, Germany
| | - Karl Rössler
- Neurosurgical Clinic, Vienna Medical University, Vienna, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
14
|
Passaro EA. Neuroimaging in Adults and Children With Epilepsy. Continuum (Minneap Minn) 2023; 29:104-155. [PMID: 36795875 DOI: 10.1212/con.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article discusses the fundamental importance of optimal epilepsy imaging using the International League Against Epilepsy-endorsed Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS) protocol and the use of multimodality imaging in the evaluation of patients with drug-resistant epilepsy. It outlines a methodical approach to evaluating these images, particularly in the context of clinical information. LATEST DEVELOPMENTS Epilepsy imaging is rapidly evolving, and a high-resolution epilepsy protocol MRI is essential in evaluating newly diagnosed, chronic, and drug-resistant epilepsy. The article reviews the spectrum of relevant MRI findings in epilepsy and their clinical significance. Integrating multimodality imaging is a powerful tool in the presurgical evaluation of epilepsy, particularly in "MRI-negative" cases. For example, correlation of clinical phenomenology, video-EEG with positron emission tomography (PET), ictal subtraction single-photon emission computerized tomography (SPECT), magnetoencephalography (MEG), functional MRI, and advanced neuroimaging such as MRI texture analysis and voxel-based morphometry enhances the identification of subtle cortical lesions such as focal cortical dysplasias to optimize epilepsy localization and selection of optimal surgical candidates. ESSENTIAL POINTS The neurologist has a unique role in understanding the clinical history and seizure phenomenology, which are the cornerstones of neuroanatomic localization. When integrated with advanced neuroimaging, the clinical context has a profound impact on identifying subtle MRI lesions or finding the "epileptogenic" lesion when multiple lesions are present. Patients with an identified lesion on MRI have a 2.5-fold improved chance of achieving seizure freedom with epilepsy surgery compared with those without a lesion. This clinical-radiographic integration is essential to accurate classification, localization, determination of long-term prognosis for seizure control, and identification of candidates for epilepsy surgery to reduce seizure burden or attain seizure freedom.
Collapse
|
15
|
Miller KJ, Fine AL. Decision-making in stereotactic epilepsy surgery. Epilepsia 2022; 63:2782-2801. [PMID: 35908245 PMCID: PMC9669234 DOI: 10.1111/epi.17381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022]
Abstract
Surgery can cure or significantly improve both the frequency and the intensity of seizures in patients with medication-refractory epilepsy. The set of diagnostic and therapeutic interventions involved in the path from initial consultation to definitive surgery is complex and includes a multidisciplinary team of neurologists, neurosurgeons, neuroradiologists, and neuropsychologists, supported by a very large epilepsy-dedicated clinical architecture. In recent years, new practices and technologies have emerged that dramatically expand the scope of interventions performed. Stereoelectroencephalography has become widely adopted for seizure localization; stereotactic laser ablation has enabled more focal, less invasive, and less destructive interventions; and new brain stimulation devices have unlocked treatment of eloquent foci and multifocal onset etiologies. This article articulates and illustrates the full framework for how epilepsy patients are considered for surgical intervention, with particular attention given to stereotactic approaches.
Collapse
Affiliation(s)
- Kai J. Miller
- Neurosurgery, Mayo Clinic, 200 First St., Rochester, MN, 55902
| | | |
Collapse
|
16
|
Adin ME, Durand D, Zucconi WB, Huttner AJ, Spencer DD, Bronen RA. The changing landscape in epilepsy imaging: Unmasking subtle and unique entities. Diagn Interv Radiol 2022; 28:503-515. [PMID: 35997478 PMCID: PMC9682800 DOI: 10.5152/dir.2022.21339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dramatic changes have occurred recently in the field of epilepsy, including a fundamental shift in the etiology of epileptogenic substrates found at surgery. Hippocampal sclerosis is no longer the most common etiology found at epilepsy surgery and this decrease has been associated with an increase in the incidence of focal cortical dysplasia and encephaloceles. Significant advances have been made in molecular biology and genetics underlying the basis of malformations of cortical development, and our ability to detect epileptogenic abnormalities with MR imaging has markedly improved. This article begins with a discussion of these trends and reviews imaging techniques essential for detecting of subtle epilepsy findings. Representative examples of subtle imaging findings are presented, which are often overlooked but should not be missed. These include temporal lobe encephaloceles, malformations of cortical development (and especially focal cortical dysplasia), hippocampal sclerosis, hippocampal malformation (also known as HIMAL), ulegyria, autoimmune encephalitis, and Rasmussen's encephalitis. Recent findings on the pathophysiology and genetic underpinnings of several causes of localization-related epilepsy are incorporated. For instance, it has been recently found that focal cortical dysplasia IIb, tuberous sclerosis, hemimegalencephaly, and gangliogliomas are all the result of mutations of the mTOR pathway for cell growth.
Collapse
Affiliation(s)
- Mehmet E Adin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Durand
- Department of Radiology Abbott Northwestern Hospital, Minneapolis, Mminnesota, USA
| | - William B Zucconi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anita J Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard A Bronen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Hainc N, McAndrews MP, Valiante T, Andrade DM, Wennberg R, Krings T. Imaging in medically refractory epilepsy at 3 Tesla: a 13-year tertiary adult epilepsy center experience. Insights Imaging 2022; 13:99. [PMID: 35661273 PMCID: PMC9167324 DOI: 10.1186/s13244-022-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives MRI negative epilepsy has evolved through increased usage of 3 T and insights from surgically correlated studies. The goal of this study is to describe dedicated 3 T epilepsy MRI findings in medically refractory epilepsy (MRE) patients at a tertiary epilepsy center to familiarize radiologists with an updated spectrum and frequency of potential imaging findings in the adult MRE population. Methods Included were all patients with MRE admitted to the epilepsy monitoring unit who were discussed at weekly interdisciplinary imaging conferences at Toronto Western Hospital with MRI studies (3 T with dedicated epilepsy protocol) performed between January 2008 and January 2021. Lesion characterization was performed by two readers based on most likely imaging diagnosis in consensus. Lobes involved per case were recorded. Results A total of 738 patients (386 female; mean age 35 years, range 15–77) were included. A total of 262 patients (35.5%) were MRI negative. The most common imaging finding was mesial temporal sclerosis, seen in 132 patients (17.9%), followed by encephalomalacia and gliosis, either posttraumatic, postoperative, postischemic, or postinfectious in nature, in 79 patients (10.7%). The most common lobar involvement (either partially or uniquely) was temporal (341 cases, 58.6%). MRE patients not candidates for surgical resection were included in the study, as were newly described pathologies from surgically correlated studies revealing findings seen retrospectively on reported MRI negative exams (isolated enlargement of the amygdala, temporal pole white matter abnormality, temporal encephalocele). Conclusion This study provides an updated description of the spectrum of 3 T MRI findings in adult MRE patients from a tertiary epilepsy center.
Collapse
Affiliation(s)
- Nicolin Hainc
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada. .,Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Mary Pat McAndrews
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Taufik Valiante
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Danielle M Andrade
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Timo Krings
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Rebsamen M, Radojewski P, McKinley R, Reyes M, Wiest R, Rummel C. A Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis Derived From Deep Learning-Based Segmentation of T1w-MRI. Front Neurol 2022; 13:812432. [PMID: 35250818 PMCID: PMC8894898 DOI: 10.3389/fneur.2022.812432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeHippocampal volumetry is an important biomarker to quantify atrophy in patients with mesial temporal lobe epilepsy. We investigate the sensitivity of automated segmentation methods to support radiological assessments of hippocampal sclerosis (HS). Results from FreeSurfer and FSL-FIRST are contrasted to a deep learning (DL)-based segmentation method.Materials and MethodsWe used T1-weighted MRI scans from 105 patients with epilepsy and 354 healthy controls. FreeSurfer, FSL, and a DL-based method were applied for brain anatomy segmentation. We calculated effect sizes (Cohen's d) between left/right HS and healthy controls based on the asymmetry of hippocampal volumes. Additionally, we derived 14 shape features from the segmentations and determined the most discriminating feature to identify patients with hippocampal sclerosis by a support vector machine (SVM).ResultsDeep learning-based segmentation of the hippocampus was the most sensitive to detecting HS. The effect sizes of the volume asymmetries were larger with the DL-based segmentations (HS left d= −4.2, right = 4.2) than with FreeSurfer (left= −3.1, right = 3.7) and FSL (left= −2.3, right = 2.5). For the classification based on the shape features, the surface-to-volume ratio was identified as the most important feature. Its absolute asymmetry yielded a higher area under the curve (AUC) for the deep learning-based segmentation (AUC = 0.87) than for FreeSurfer (0.85) and FSL (0.78) to dichotomize HS from other epilepsy cases. The robustness estimated from repeated scans was statistically significantly higher with DL than all other methods.ConclusionOur findings suggest that deep learning-based segmentation methods yield a higher sensitivity to quantify hippocampal sclerosis than atlas-based methods and derived shape features are more robust. We propose an increased asymmetry in the surface-to-volume ratio of the hippocampus as an easy-to-interpret quantitative imaging biomarker for HS.
Collapse
Affiliation(s)
- Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- *Correspondence: Michael Rebsamen
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Richard McKinley
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mauricio Reyes
- ARTORG Center for Biomedical Research, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Wang ZM, Wei PH, Zhang M, Wu C, Shan Y, Yeh FC, Shan Y, Lu J. Diffusion spectrum imaging predicts hippocampal sclerosis in mesial temporal lobe epilepsy patients. Ann Clin Transl Neurol 2022; 9:242-252. [PMID: 35166461 PMCID: PMC8935311 DOI: 10.1002/acn3.51503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Epileptic patients suffer from seizure recurrence after surgery due to the challenging localization. Improvement of the noninvasive imaging‐based approach for a better definition of the abnormalities would be helpful for a better outcome. Methods The quantitative anisotropy (QA) of diffusion spectrum imaging (DSI) is a quantitative scalar of evaluating the water diffusivity. Herein, we investigated the association between neuronal diameters or density acquired in literature and QA of DSI as well as the seizure localization in temporal lobe epilepsy. Thirty healthy controls (HCs) and 30 patients with hippocampal sclerosis (HS) were retrospectively analyzed. QA values were calculated and interactively compared between the areas with different neuronal diameter/density acquired from literature in the HCP‐1021 template. Diagnostic tests were performed on Z‐transformed asymmetry indices (AIs) of QA (which exclude physical asymmetry) among HS patients to evaluate its clinical value. Results The QA values in HCs conformed with different pyramidal cell distributions ranged from giant to small; corresponding groups were the motor‐sensory, associative, and limbic groups, respectively. Additionally, the QA value was correlated with the neuronal diameter/density in cortical layer IIIc (correlation coefficient with diameter: 0.529, p = 0.035; density: −0.678, p = 0.011). Decreases in cingulum hippocampal segments (Chs) were consistently observed on the sclerosed side in patients. The area under the curve of the Z‐transformed AI in Chs to the lateralization of HS was 0.957 (sensitivity: 0.909, specificity: 0.895). Interpretation QA based on DSI is likely to be useful to provide information to reflect the neuronal diameter/density and further facilitate localization of epileptic tissues.
Collapse
Affiliation(s)
- Zhen-Ming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Chunxue Wu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
20
|
Zhou H, Zhang W, Tan Z, Zhou Z, Li Y, Zhang S, Zhang L, Gan J, Wu H, Tang Y, Cheng Y, Ling X, Guo Q, Xu H. Localizing Epileptic Foci Before Surgery in Patients With MRI-Negative Refractory Epilepsy Using Statistical Parameter Mapping and Three-Dimensional Stereotactic Surface Projection Based on 18F-FDG PET. Front Bioeng Biotechnol 2022; 9:810890. [PMID: 35071215 PMCID: PMC8766976 DOI: 10.3389/fbioe.2021.810890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with refractory epilepsy are not only free of seizures after resecting epileptic foci, but also experience significantly improved quality of life. Fluorine-18-fluorodeoxyglucose positron-emission tomography (18F-FDG PET) is a promising avenue for detecting epileptic foci in patients with magnetic resonance imaging (MRI)-negative refractory epilepsy. However, the detection of epileptic foci by visual assessment based on 18F-FDG PET is often complicated by a variety of factors in clinical practice. Easy imaging methods based on 18F-FDG PET images, such as statistical parameter mapping (SPM) and three-dimensional stereotactic surface projection (3D-SSP), can objectively detect epileptic foci. In this study, the regions of surgical resection of patients with over 1 year follow-up and no seizures were defined as standard epileptic foci. We retrospectively analyzed the sensitivity of visual assessment, SPM and 3D-SSP based on 18F-FDG PET to detect epileptic foci in MRI-negative refractory epilepsy patients and obtained the sensitivities of visual assessment, SPM and 3D-SSP are 57, 70 and 60% respectively. Visual assessment combined with SPM or 3D-SSP can improve the sensitivity of detecting epileptic foci. The sensitivity was highest when the three methods were combined, but decreased consistency, in localizing epileptic foci. We conclude that SPM and 3D-SSP can be used as objective methods to detect epileptic foci before surgery in patients with MRI-negative refractory epilepsy. Visual assessment is the preferred method for PET image analysis in MRI-negative refractory epilepsy. When the visual assessment is inconsistent with the patient's electroclinical information, SPM or 3D-SSP was further selected to assess the epileptic foci. If the combination of the two methods still fails to accurately locate the epileptic foci, comprehensive evaluation can be performed by combining the three methods.
Collapse
Affiliation(s)
- Hailing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ziqing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Li
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingling Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiefeng Gan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huanhua Wu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjin Tang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Cheng
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueying Ling
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain Hospital, Affiliated Brain Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Alshehri F. Magnetic resonance imaging and intractable epilepsy: A systematic review. Int J Health Sci (Qassim) 2022; 16:64-69. [PMID: 35949699 PMCID: PMC9288133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Epilepsy is a chronic neurological disorder that occurs due to irregular neuronal activity in the central nervous system. The main job of a radiologist is to investigate the structural etiology in epilepsy patients. This study was undertaken to find out the importance of magnetic resonance imaging (MRI) in the screening of intractable epilepsy through a systematic search of literature. METHODS A systematic review was performed using the PRISMA guidelines. Peer-reviewed studies on MRI and intractable epilepsy were retrieved from MEDLINE, ScienceDirect and Google Scholar. Moreover, studies cited in the key articles were also screened to increase the sensitivity and specificity of the systematic search. RESULTS The database search till March 2022 found a total of 112610 articles. Out of them, only 10 highly selected articles were included in the study. The pooled data point out that the rapid development in MRI techniques and the functional MRI (fMRI) has now become more and more critical in the diagnosis and management of patients with epilepsy. In addition, the data also pointed out that MRI-based approaches are also very useful for post-operative epilepsy patients as it gives information about the quality of the surgery. The data collected showed that the MRI is the choice technique for the evaluation of patients with epilepsy. CONCLUSIONS The applicability of MRI in epilepsy diagnosis is highly accessible in all over the globe. The pooled data concluded that the MRI-based surgical approaches are extremely useful for the surgeons to provide three-dimensional imaging with superimposed real-time pointer details that have proved successful for epilepsy patients.
Collapse
Affiliation(s)
- Fahad Alshehri
- Department of Radiology, College of Medicine, Qassim University, Buraydah, Saudi Arabia,Address for correspondence: Dr. Fahad Alshehri, Department of Radiology, College of Medicine, Qassim University, Buraydah, Saudi Arabia. E-mail:
| |
Collapse
|
22
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
23
|
Aly MAA, Saleh TM, Elfatatry AMA, Montasser MM. The value of double inversion recovery MRI sequence in assessment of epilepsy patients. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The double inversion recovery (DIR) pulse sequence was introduced several years ago and since that it grew important value in clinical neuroimaging. We aimed to assess the added value of double inversion recovery in evaluation of epileptic patients.
Results
In mesial temporal sclerosis, the measured contrast parameters (SNR, CR, CNR and AI) were found to be significantly higher in DIR than in FLAIR and T2 sequences. In cases of focal cortical dysplasia, significantly higher CNR and AI in DIR than in T2 and FLAIR. Also DIR showed higher detection of the increased cortical thickness and cortical signal intensity than the T2 and FLAIR sequences. In tuberous sclerosis cases, the DIR showed higher visibility of the lesions than the T2 and FLAIR. Also DIR showed higher ability to detected grey-white matters junction blurring.
Conclusions
Our study concluded that the greatest value of the double inversion recovery sequence is its higher ability in detecting multiple characteristics of the lesions in a one sequence.
Collapse
|
24
|
Deep learning-based diagnosis of temporal lobe epilepsy associated with hippocampal sclerosis: An MRI study. Epilepsy Res 2021; 178:106815. [PMID: 34837826 DOI: 10.1016/j.eplepsyres.2021.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE The currently available indicators-sensitivity and specificity of expert radiological evaluation of MRIs-to identify mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are deficient, as they cannot be easily assessed. We developed and investigated the use of a novel convolutional neural network trained on preoperative MRIs to aid diagnosis of these conditions. SUBJECTS AND METHODS We enrolled 141 individuals: 85 with clinically diagnosed mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis International League Against Epilepsy (HS ILAE) type 1 who had undergone anterior temporal lobe hippocampectomy were assigned to the MTLE-HS group, and 56 epilepsy clinic outpatients diagnosed as nonepileptic were assigned to the normal group. We fine-tuned a modified CNN (mCNN) to classify the fully connected layers of ImageNet-pretrained VGG16 network models into the MTLE-HS and control groups. MTLE-HS was diagnosed using MRI both by the fine-tuned mCNN and epilepsy specialists. Their performances were compared. RESULTS The fine-tuned mCNN achieved excellent diagnostic performance, including 91.1% [85%, 96%] mean sensitivity and 83.5% [75%, 91%] mean specificity. The area under the resulting receiver operating characteristic curve was 0.94 [0.90, 0.98] (DeLong's method). Expert interpretation of the same image data achieved a mean sensitivity of 73.1% [65%, 82%] and specificity of 66.3% [50%, 82%]. These confidence intervals were located entirely under the receiver operating characteristic curve of the fine-tuned mCNN. CONCLUSIONS Deep learning-based diagnosis of MTLE-HS from preoperative MR images using our fine-tuned mCNN achieved a performance superior to the visual interpretation by epilepsy specialists. Our model could serve as a useful preoperative diagnostic tool for ascertaining hippocampal atrophy in patients with MTLE.
Collapse
|
25
|
Demerath T, Kaller CP, Heers M, Staack A, Schwarzwald R, Kober T, Reisert M, Schulze-Bonhage A, Huppertz HJ, Urbach H. Fully automated detection of focal cortical dysplasia: Comparison of MPRAGE and MP2RAGE sequences. Epilepsia 2021; 63:75-85. [PMID: 34800337 DOI: 10.1111/epi.17127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The detection of focal cortical dysplasia (FCD) in magnetic resonance imaging is challenging. Voxel-based morphometric analysis and automated FCD detection using an artificial neural network (ANN) integrated into the Morphometric Analysis Program (MAP18) have been shown to facilitate FCD detection. This study aimed to evaluate whether the detection of FCD can be further improved by feeding this approach with magnetization prepared two rapid acquisition gradient echoes (MP2RAGE) instead of magnetization-prepared rapid acquisition gradient echo (MPRAGE) datasets. METHODS MPRAGE and MP2RAGE datasets were acquired in a consecutive sample of 32 patients with FCD and postprocessed using MAP18. Visual analysis and, if available, histopathology served as the gold standard for assessing the sensitivity and specificity of FCD detection. Out-of-sample specificity was evaluated in a cohort of 32 healthy controls. RESULTS The sensitivity and specificity of FCD detection were 82.4% and 62.5% for the MPRAGE and 97.1% and 34.4% for the MP2RAGE sequences, respectively. Median volumes of true-positive voxel clusters were .16 ml for the MPRAGE and .52 ml for the MP2RAGE sequences compared to .08- and .04-ml volumes of false-positive clusters. With regard to cluster volumes, FCD detection was substantially improved for the MP2RAGE data when the estimated optimal threshold of .23 ml was applied (sensitivity = 72.9%, specificity = 83.0%). In contrast, the estimated optimal threshold of .37 ml for the MPRAGE data did not improve FCD lesion detection (sensitivity = 42.9%, specificity = 79.5%). SIGNIFICANCE In this study, the sensitivity of FCD detection by morphometric analysis and an ANN integrated into MAP18 was higher for MP2RAGE than for MPRAGE sequences. Additional usage of cluster volume information helped to discriminate between true- and false-positive MP2RAGE results.
Collapse
Affiliation(s)
- Theo Demerath
- Department of Neuroradiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Marcel Heers
- Epilepsy Center, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | | | - Ralf Schwarzwald
- Department of Neuroradiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - Marco Reisert
- Department of Medical Physics, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | | | - Horst Urbach
- Department of Neuroradiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Abdennadher M, Saxena A, Pavlova MK. Evaluation and Management of First-Time Seizure in Adults. Semin Neurol 2021; 41:477-482. [PMID: 34619775 DOI: 10.1055/s-0041-1735143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
First seizures are often perceived as devastating events by patients and their families due to the fear of having a life-long disease. One in 10 people experiences one or more seizures during their lifetime, while 1 in 26 people develops epilepsy. Acute symptomatic seizures are often related to a provoking factor or an acute brain insult and typically do not recur. Careful history and clinical examination should guide clinicians' management plans. Electroencephalography and brain imaging, preferably with epilepsy-specific magnetic resonance imaging, may help characterize both etiology and risk of seizure recurrence. Antiepileptic drugs should be initiated in patients with newly diagnosed epilepsy. In patients without an epilepsy diagnosis, the decision to prescribe drugs depends on individual risk factors for seizure recurrence and possible complications from seizures, which should be discussed with the patient. Counseling about driving and lifestyle modifications should be provided early, often at the first seizure encounter.
Collapse
Affiliation(s)
- Myriam Abdennadher
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Aneeta Saxena
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Milena K Pavlova
- Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
27
|
Parlak S, Coban G, Gumeler E, Karakaya J, Soylemezoglu F, Tezer I, Bilginer B, Saygi S, Oguz KK. Reduced myelin in patients with isolated hippocampal sclerosis as assessed by SyMRI. Neuroradiology 2021; 64:99-107. [PMID: 34611716 PMCID: PMC8492040 DOI: 10.1007/s00234-021-02824-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
Purpose Synthetic MRI (SyMRI) enables to quantify brain tissue and morphometry. We aimed to investigate the WM and myelin alterations in patients with unilateral hippocampal sclerosis (HS) with SyMRI. Methods Adult patients with isolated unilateral HS and age-matched control subjects (CSs) were included in this study. The SyMRI sequence QRAPMASTER in the coronal plane perpendicular to the hippocampi was obtained from the whole brain. Automatic segmentation of the whole brain was processed by SyMRI Diagnostic software (Version 11.2). Two neuroradiologists also performed quantitative analyses independently from symmetrical 14 ROIs placed in temporal and extratemporal WM, hippocampi, and amygdalae in both hemispheres. Results Sixteen patients (F/M = 6/10, mean age = 32.5 ± 11.3 years; right/left HS: 8/8) and 10 CSs (F/M = 5/5, mean age = 30.7 ± 7 years) were included. Left HS patients had significantly lower myelin and WM volumes than CSs (p < .05). Myelin was reduced significantly in the ipsilateral temporal lobe of patients than CSs, greater in left HS (p < .05). Histopathological examination including luxol fast blue stain also revealed myelin pallor in all of 6 patients who were operated. Ipsilateral temporal pole and sub-insular WM had significantly reduced myelin than the corresponding contralateral regions in patients (p < .05). No significant difference was found in WM values. GM values were significantly lower in hippocampi in patients than CSs (p < .05). Conclusion SyMRI revealed myelin reduction in the ipsilateral temporal lobe and sub-insular WM of patients with HS. Whether this finding correlates with electrophysiological features and SyMRI could serve as lateralization of temporal lobe epilepsy need to be investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02824-6.
Collapse
Affiliation(s)
- Safak Parlak
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Gokcen Coban
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Gumeler
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Jale Karakaya
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Irsel Tezer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burcak Bilginer
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Serap Saygi
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kader K Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
28
|
Tóth M, Barsi P, Tóth Z, Borbély K, Lückl J, Emri M, Repa I, Janszky J, Dóczi T, Horváth Z, Halász P, Juhos V, Gyimesi C, Bóné B, Kuperczkó D, Horváth R, Nagy F, Kelemen A, Jordán Z, Újvári Á, Hagiwara K, Isnard J, Pál E, Fekésházy A, Fabó D, Vajda Z. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 2021; 21:363. [PMID: 34537017 PMCID: PMC8449490 DOI: 10.1186/s12883-021-02352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background When MRI fails to detect a potentially epileptogenic lesion, the chance of a favorable outcome after epilepsy surgery becomes significantly lower (from 60 to 90% to 20–65%). Hybrid FDG-PET/MRI may provide additional information for identifying the epileptogenic zone. We aimed to investigate the possible effect of the introduction of hybrid FDG-PET/MRI into the algorithm of the decision-making in both lesional and non-lesional drug-resistant epileptic patients. Methods In a prospective study of patients suffering from drug-resistant focal epilepsy, 30 nonlesional and 30 lesional cases with discordant presurgical results were evaluated using hybrid FDG-PET/MRI. Results The hybrid imaging revealed morphological lesion in 18 patients and glucose hypometabolism in 29 patients within the nonlesional group. In the MRI positive group, 4 patients were found to be nonlesional, and in 9 patients at least one more epileptogenic lesion was discovered, while in another 17 cases the original lesion was confirmed by means of hybrid FDG-PET/MRI. As to the therapeutic decision-making, these results helped to indicate resective surgery instead of intracranial EEG (iEEG) monitoring in 2 cases, to avoid any further invasive diagnostic procedures in 7 patients, and to refer 21 patients for iEEG in the nonlesional group. Hybrid FDG-PET/MRI has also significantly changed the original therapeutic plans in the lesional group. Prior to the hybrid imaging, a resective surgery was considered in 3 patients, and iEEG was planned in 27 patients. However, 3 patients became eligible for resective surgery, 6 patients proved to be inoperable instead of iEEG, and 18 cases remained candidates for iEEG due to the hybrid FDG-PET/MRI. Two patients remained candidates for resective surgery and one patient became not eligible for any further invasive intervention. Conclusions The results of hybrid FDG-PET/MRI significantly altered the original plans in 19 of 60 cases. The introduction of hybrid FDG-PET/MRI into the presurgical evaluation process had a potential modifying effect on clinical decision-making. Trial registration Trial registry: Scientific Research Ethics Committee of the Medical Research Council of Hungary. Trial registration number: 008899/2016/OTIG. Date of registration: 08 February 2016.
Collapse
Affiliation(s)
- Márton Tóth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.
| | - Péter Barsi
- Department of Medical Imaging, Semmelweis University, Balassa út 6, Budapest, H-1083, Hungary
| | - Zoltán Tóth
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Katalin Borbély
- PET/CT Ambulance, National Institute of Oncology, Ráth György u.7-9, Budapest, H-1122, Hungary
| | - János Lückl
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Miklós Emri
- MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Imre Repa
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.,MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary
| | - Tamás Dóczi
- MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Péter Halász
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Vera Juhos
- Epihope Non-Profit Kft, Szilágyi Erzsébet fasor 17-21, Budapest, 1026, Hungary
| | - Csilla Gyimesi
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Beáta Bóné
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Diána Kuperczkó
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Réka Horváth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Ferenc Nagy
- Department of Neurology, Somogy County Moritz Kaposi Teaching Hospital, Sándor u. 40, Guba, H-7400, Hungary
| | - Anna Kelemen
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Ákos Újvári
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, 3-6-45, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery Pierre Wertheimer, 59 Boulevard Pinel, 69500, Lyon, France
| | - Endre Pál
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Attila Fekésházy
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsolt Vajda
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| |
Collapse
|
29
|
[Imaging in the presurgical evaluation of epilepsy]. DER NERVENARZT 2021; 93:592-598. [PMID: 34491376 PMCID: PMC9200687 DOI: 10.1007/s00115-021-01180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
Während zwei Drittel der PatientInnen mit Epilepsie durch Medikamente anfallsfrei werden, ist die Erkrankung bei 30 % pharmakoresistent. Bei pharmakoresistenter fokaler Epilepsie bietet die Epilepsiechirurgie eine etwa 65 %ige Chance auf Anfallsfreiheit. Vorab muss der Anfallsfokus exakt eingegrenzt werden, wofür bildgebende Methoden unverzichtbar sind. In den letzten Jahren hat sich in der Prächirurgie der Anteil von PatientInnen mit unauffälliger konventioneller Magnetresonanztomographie (MRT) erhöht. Allerdings konnte die Sensitivität der MRT durch spezielle Aufnahmesequenzen und Techniken der Postprozessierung gesteigert werden. Die Quellenlokalisation des Signals von Elektro- und Magnetenzephalographie (EEG und MEG) verortet den Ursprung iktaler und interiktaler epileptischer Aktivität im Gehirn. Nuklearmedizinische Untersuchungen wie die interiktale Positronen-Emissions-Tomographie (PET) und die iktale Einzelphotonen-Emissionscomputertomographie (SPECT) detektieren chronische oder akute anfallsbezogene Veränderungen des Hirnmetabolismus und können auch bei nichtlokalisierendem MRT auf den epileptogenen Fokus hinweisen. Alle Befunde zusammengenommen werden zur Planung eventueller invasiver EEG-Ableitungen und letztlich der chirurgischen Operation eingesetzt. Konkordante Befunde sind mit besseren chirurgischen Ergebnissen assoziiert und zeigen auch im Langzeitverlauf signifikant höhere Anfallsfreiheitsraten.
Collapse
|
30
|
Schmidt MH, Crocker CE, Abdolell M, Ghuman MS, Pohlmann-Eden B. Toward individualized prediction of seizure recurrence: Hippocampal neuroimaging features in a cohort of patients from a first seizure clinic. Epilepsy Behav 2021; 122:108118. [PMID: 34144462 DOI: 10.1016/j.yebeh.2021.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE We performed an exploratory analysis of electroencephalography (EEG) and neuroimaging data from a cohort of 51 patients with first seizure (FS) and new-onset epilepsy (NOE) to identify variables, or combinations of variables, that might discriminate between clinical trajectories over a one-year period and yield potential biomarkers of epileptogenesis. METHODS Patients underwent EEG, hippocampal and whole brain structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) within six weeks of the index seizure, and repeat neuroimaging one year later. We classified patients with FS as having had a single seizure (FS-SS) or having converted to epilepsy (FS-CON) after one year and performed logistic regression to identify combinations of variables that might discriminate between FS-SS and FS-CON, and between FS-SS and the combined group FS-CON + NOE. We performed paired t-tests to assess changes in quantitative variables over time. RESULTS Several combinations of variables derived from hippocampal structural MRI, DTI, and MRS provided excellent discrimination between FS-SS and FS-CON in our sample, with areas under the receiver operating curve (AUROC) ranging from 0.924 to 1. They also provided excellent discrimination between FS-SS and the combined group FS-CON + NOE in our sample, with AUROC ranging from 0.902 to 1. After one year, hippocampal fractional anisotropy (FA) increased bilaterally, hippocampal radial diffusivity (RD) decreased on the side with the larger initial measurement, and whole brain axial diffusivity (AD) increased in patients with FS-SS; hippocampal volume decreased on the side with the larger initial measurement, hippocampal FA increased bilaterally, hippocampal RD decreased bilaterally and whole brain AD, FA and mean diffusivity increased in the combined group FS-CON + NOE (corrected threshold for significance, q = 0.017). CONCLUSION We propose a prospective, multicenter study to develop and test models for the prediction of seizure recurrence in patients after a first seizure, based on hippocampal neuroimaging. Further longitudinal neuroimaging studies in patients with a first seizure and new-onset epilepsy may provide clues to the microstructural changes occurring at the earliest stages of epilepsy and yield biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Matthias H Schmidt
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada; Division of Neurosurgery, Dalhousie University, Halifax, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Canada; Brain Repair Centre, Dalhousie University, Halifax, Canada.
| | - Candice E Crocker
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada; Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Mohamed Abdolell
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada; Department of Community Health and Epidemiology, Dalhousie University, Halifax, Canada
| | - Mandeep S Ghuman
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Centre, Dalhousie University, Halifax, Canada; Division of Neurology, Dalhousie University, Halifax, Canada
| |
Collapse
|
31
|
Abstract
BACKGROUND A large number of patients have epilepsy that is intractable and adversely affects a child's lifelong experience with addition societal burden that is disabling and expensive. The last two decades have seen a major explosion of new antiseizure medication options. Despite these advances, children with epilepsy continue to have intractable seizures. An option that has been long available but little used is epilepsy surgery to control intractable epilepsy. METHODS This article is a review of the literature as well as published opinions. RESULTS Epilepsy surgery in pediatrics is an underused modality to effectively treat children with epilepsy. Adverse effects of medication should be weighed against risks of surgery as well as risks of nonefficacy. CONCLUSIONS We discuss an approach to selecting the appropriate pediatric patient for consideration, a detailed evaluation including necessary evaluation, and the creation of an algorithm to approach patients with both generalized and focal epilepsy. We then discuss surgical options available including outcome data. New modalities are also addressed including high-frequency ultrasound and co-registration techniques including magnetic resonance imaging-guided laser therapy.
Collapse
|
32
|
Wehner T, Weckesser P, Schulz S, Kowoll A, Fischer S, Bosch J, Weinhold L, Fimmers R, Schmid M, Wellmer J. Factors influencing the detection of treatable epileptogenic lesions on MRI. A randomized prospective study. Neurol Res Pract 2021; 3:41. [PMID: 34365971 PMCID: PMC8351149 DOI: 10.1186/s42466-021-00142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background To prospectively analyze factors associated with detecting epileptogenic lesions on MRI within the work-sharing process of neurologists, epileptologists, radiologists and neuroradiologists. Methods We assembled four sets of six MRI scans, each set representing five typical epileptogenic lesions (hippocampal sclerosis or limbic encephalitis; focal cortical dysplasias; periventricular nodular or other heterotopias; long-term epilepsy associated tumors; gliotic scar, hemosiderin or cavernoma), and non - lesional epilepsy. At professional conferences, we invited neurologists, epileptologists, radiologists, and neuroradiologists to read two out of four MRI sets, one of which was presented with a clinical focus hypothesis. Participants were randomly assigned to MRI sets. Effects of examiners’ specialty, duration of training and professional experience on detection rate of epileptogenic lesions were investigated. Results Fourty-eight neurologists, 22 epileptologists, 20 radiologists and 21 neuroradiologists read 1323 MRI scans. Overall, 613 of 1101 (55.7%) epileptogenic lesions were detected. Long-term epilepsy associated tumors (182/221, 82.4%) were found more frequently than gliotic scar, hemosiderin or cavernoma (157/220, 71.4%), hippocampal sclerosis or limbic encephalitis (141/220, 64.1%), nodular heterotopia (68/220, 30.9%) and focal cortical dysplasias (65/220, 29.5%, p < 0.001). Provision of a focus hypothesis improved the detection of hippocampal sclerosis or limbic encephalitis (86/110, 78.2% vs 55/110, 50%, p < 0.001) and focal cortical dysplasias (40/110, 36.4% vs 25/110, 22.7%, p = 0.037). Neuroradiologists and epileptologists were more likely than radiologists and neurologists to be amongst the most successful readers. In multivariable analysis, type of epileptogenic lesion, specialty of MRI reader, and provision of focus hypothesis predicted correct identification of epileptogenic lesions. Conclusions Epileptogenic lesions are often not recognized on MRI even by expert readers. Their detection can be improved by providing a focus hypothesis. These results stress the need for training in the MRI characteristics of epilepsy - specific pathology, and, most importantly, interdisciplinary communication between neurologists/epileptologists and (neuro)radiologists to improve detection of epileptogenic lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s42466-021-00142-z.
Collapse
Affiliation(s)
- Tim Wehner
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Philippe Weckesser
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Steven Schulz
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Annika Kowoll
- Department of Neuroradiology, University Hospital Knappschaftskrankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Sebastian Fischer
- Department of Neuroradiology, University Hospital Knappschaftskrankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Jessica Bosch
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg Campus 1, Gebäude 11, 53127, Bonn, Germany
| | - Rolf Fimmers
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg Campus 1, Gebäude 11, 53127, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg Campus 1, Gebäude 11, 53127, Bonn, Germany
| | - Jörg Wellmer
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany.
| |
Collapse
|
33
|
Blumcke I, Cendes F, Miyata H, Thom M, Aronica E, Najm I. Toward a refined genotype-phenotype classification scheme for the international consensus classification of Focal Cortical Dysplasia. Brain Pathol 2021; 31:e12956. [PMID: 34196989 PMCID: PMC8412090 DOI: 10.1111/bpa.12956] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Focal Cortical Dysplasia (FCD) is the most common cause of drug-resistant focal epilepsy in children and young adults. The diagnosis of currently defined FCD subtypes relies on a histopathological assessment of surgical brain tissue. The many ongoing challenges in the diagnosis of FCD and their various subtypes mandate, however, continuous research and consensus agreement to develop a reliable classification scheme. Advanced neuroimaging and genetic studies have proven to augment the diagnosis of FCD subtypes and should be considered for an integrated clinico-pathological and molecular classification. In this review, we will discuss the histopathological foundation of the current FCD classification and potential advancements when using genetic analysis of somatic brain mutations in neurosurgically resected brain specimens and postprocessing of presurgical neuroimaging data. Combining clinical, imaging, histopathology, and molecular studies will help to define the disease spectrum better and finally unveil FCD-specific treatment options.
Collapse
Affiliation(s)
- Ingmar Blumcke
- Department of NeuropathologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Epilepsy CenterCleveland Clinic FoundationClevelandOHUSA
| | - Fernando Cendes
- Department of NeurologyUniversity of Campinas—UNICAMPCampinasSPBrazil
| | - Hajime Miyata
- Department of NeuropathologyResearch Institute for Brain and Blood VesselsAkita Cerebrospinal and Cardiovascular CenterAkitaJapan
| | - Maria Thom
- Department of NeuropathologyInstitute of Neurology, University College LondonLondonUK
| | - Eleonora Aronica
- Department of (Neuro)PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam
- Stichting Epilepsie Instellingen Nederland (SEINHeemstedeThe Netherlands
| | - Imad Najm
- Epilepsy CenterCleveland Clinic FoundationClevelandOHUSA
| |
Collapse
|
34
|
Kerr WT, Lee JK, Karimi AH, Tatekawa H, Hickman LB, Connerney M, Sreenivasan SS, Dubey I, Allas CH, Smith JM, Savic I, Silverman DHS, Hadjiiski LM, Beimer NJ, Stacey WC, Cohen MS, Engel J, Feusner JD, Salamon N, Stern JM. A minority of patients with functional seizures have abnormalities on neuroimaging. J Neurol Sci 2021; 427:117548. [PMID: 34216975 DOI: 10.1016/j.jns.2021.117548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Functional seizures often are managed incorrectly as a diagnosis of exclusion. However, a significant minority of patients with functional seizures may have abnormalities on neuroimaging that typically are associated with epilepsy, leading to diagnostic confusion. We evaluated the rate of epilepsy-associated findings on MRI, FDG-PET, and CT in patients with functional seizures. METHODS We studied radiologists' reports from neuroimages at our comprehensive epilepsy center from a consecutive series of patients diagnosed with functional seizures without comorbid epilepsy from 2006 to 2019. We summarized the MRI, FDG-PET, and CT results as follows: within normal limits, incidental findings, unrelated findings, non-specific abnormalities, post-operative study, epilepsy risk factors (ERF), borderline epilepsy-associated findings (EAF), and definitive EAF. RESULTS Of the 256 MRIs, 23% demonstrated ERF (5%), borderline EAF (8%), or definitive EAF (10%). The most common EAF was hippocampal sclerosis, with the majority of borderline EAF comprising hippocampal atrophy without T2 hyperintensity or vice versa. Of the 87 FDG-PETs, 26% demonstrated borderline EAF (17%) or definitive EAF (8%). Epilepsy-associated findings primarily included focal hypometabolism, especially of the temporal lobes, with borderline findings including subtle or questionable hypometabolism. Of the 51 CTs, only 2% had definitive EAF. SIGNIFICANCE This large case series provides further evidence that, while uncommon, EAF are seen in patients with functional seizures. A significant portion of these abnormal findings are borderline. The moderately high rate of these abnormalities may represent framing bias from the indication of the study being "seizures," the relative subtlety of EAF, or effects of antiseizure medications.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Internal Medicine, University of California at Irvine, Irvine, CA, USA
| | - Michael Connerney
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Ishita Dubey
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Corinne H Allas
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mark S Cohen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Departments of Bioengineering, Psychology and Biomedical Physics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Noriko Salamon
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
35
|
Kassiri J, Elliott C, Liu N, Mailo J, Rajapakse T, Schmitt L, Wheatley M, Sinclair DB. Neuroimaging in pediatric temporal lobe epilepsy: Does neuroimaging accurately predict pathology and surgical outcome? Epilepsy Res 2021; 175:106680. [PMID: 34102391 DOI: 10.1016/j.eplepsyres.2021.106680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Temporal lobe epilepsy (TLE) in children is considered different from that in adults. As such, characterizing the structural lesions present in pediatric patients with TLE and their association with long-term seizure control is important. Here, we aimed to assess the concordance between preoperative imaging and postoperative histopathological diagnoses and their associations with seizure outcomes in pediatric patients with TLE undergoing temporal lobe surgery. We retrospectively reviewed the charts of pediatric patients with TLE who underwent surgical treatment between 1988 and 2020 as a part of the Comprehensive Epilepsy Program at the University of Alberta. Demographic, age at seizure onset, age at surgery, preoperative electroencephalography (EEG), long-term video EEG, imaging (magnetic resonance imaging [MRI] and computed tomography), neuropathology, and long-term seizure outcome data were acquired and analyzed. One hundred and seventeen patients underwent surgery for refractory TLE; the preoperative MRI diagnosis was concordant with the histopathological diagnosis in 76 % of cases. Tumors were identified with high accuracy (91 %). Mesial temporal sclerosis (MTS) was strongly associated with an excellent outcome after surgery (94 %). Patients with normal imaging results or non-specific pathologies were more likely to experience poor seizure outcomes after surgery (50 %). The radiological identification of lesions was associated with good long-term seizure outcomes, whereas normal MRI results were associated with significantly poorer long-term seizure outcomes. An accurate preoperative MRI is essential to epilepsy surgery since it impacts all stages of management; these results will thereafter help inform practitioners' efforts to predict seizure outcome.
Collapse
Affiliation(s)
- Janani Kassiri
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada.
| | - Cameron Elliott
- Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| | - Natarie Liu
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| | - Janette Mailo
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Thilinie Rajapakse
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Schmitt
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew Wheatley
- Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| | - D Barry Sinclair
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Tsalouchidou PE, Mintziras I, Biermann L, Krause K, Bergmann MP, Belke M, Nimsky C, Schulze M, Strzelczyk A, Rosenow F, Menzler K, Knake S. Temporal encephaloceles in epilepsy patients and asymptomatic cases: Size may indicate epileptogenicity. Epilepsia 2021; 62:1354-1361. [PMID: 33939185 DOI: 10.1111/epi.16900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was undertaken to identify temporal encephaloceles (TEs) and examine their characteristics in patients with temporal lobe epilepsy (TLE) and extratemporal lobe epilepsy (ETLE), as well as in asymptomatic cases. METHODS Four hundred fifty-eight magnetic resonance imaging scans were examined retrospectively to identify TE in 157 patients with TLE, 150 patients with ETLE, and 151 healthy controls (HCs). RESULTS At least one TE was identified in 9.6% of the TLE patients (n = 15, 95% confidence interval [CI] = 5.3%-15.3%), in 3.3% of patients with ETLE (n = 5, 95% CI = 1.1%-7.6%), and in 2.0% of the HCs (n = 3, 95% CI = .4%-5.7%), indicating a significantly higher frequency in patients with TLE compared to ETLE and HC subjects (p = .027, p = .005). Examining the characteristics of TEs in both asymptomatic and epilepsy patients, we found that TEs with a diameter of less than 6.25 mm were more likely to be asymptomatic, with a sensitivity of 91.7% and a specificity of 73.3% (area under the curve = .867, 95% CI = .723-1.00, p = .001). SIGNIFICANCE Temporal encephaloceles may occur without presenting any clinical symptoms. Patients with TLE show a higher frequency of TEs compared to the ETLE and HC groups. According to our study, TE size could be used to suggest potential epileptogenicity.
Collapse
Affiliation(s)
| | - Ioannis Mintziras
- Department of Visceral, Thoracic, and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Louise Biermann
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Kristina Krause
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Marc-Philipp Bergmann
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Marcus Belke
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Maximilian Schulze
- Division of Neuroradiology, Philipps University Marburg, Marburg, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katja Menzler
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Susanne Knake
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
37
|
De Vito A, Mankad K, Pujar S, Chari A, Ippolito D, D’Arco F. Narrative review of epilepsy: getting the most out of your neuroimaging. Transl Pediatr 2021; 10:1078-1099. [PMID: 34012857 PMCID: PMC8107872 DOI: 10.21037/tp-20-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging represents an important step in the evaluation of pediatric epilepsy. The crucial role of brain imaging in the diagnosis, follow-up and presurgical assessment of patients with epilepsy is noted and has to be familiar to all neuroradiologists and trainees approaching pediatric brain imaging. Morphological qualitative imaging shows the majority of cerebral lesions/alterations underlying focal epilepsy and can highlight some features which are useful in the differential diagnosis of the different types of epilepsy. Recent advances in MRI acquisitions including diffusion-weighted imaging (DWI), post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection during the last decades. Functional MRI (fMRI) can be really useful and helps to identify cortical eloquent areas that are essential for language, motor function, and memory, and diffusion tensor imaging (DTI) can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. Also positron emission tomography (PET), single photon emission computed tomography (SPECT), simultaneous electroencephalogram (EEG) and fMRI, and electrical and magnetic source imaging can be used to assess the exact localization of epileptic foci and help in the design of intracranial EEG recording strategies. The main role of these "hybrid" techniques is to obtain quantitative and qualitative informations, a necessary step to evaluate and demonstrate the complex relationship between abnormal structural and functional data and to manage a "patient-tailored" surgical approach in epileptic patients.
Collapse
Affiliation(s)
- Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Aswin Chari
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | | | - Felice D’Arco
- Department of Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
38
|
Samanta D, Ostendorf AP, Willis E, Singh R, Gedela S, Arya R, Scott Perry M. Underutilization of epilepsy surgery: Part I: A scoping review of barriers. Epilepsy Behav 2021; 117:107837. [PMID: 33610461 PMCID: PMC8035287 DOI: 10.1016/j.yebeh.2021.107837] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
One-third of persons with epilepsy have seizures despite appropriate medical therapy. Drug resistant epilepsy (DRE) is associated with neurocognitive and psychological decline, poor quality of life, increased risk of premature death, and greater economic burden. Epilepsy surgery is an effective and safe treatment for a subset of people with DRE but remains one of the most underutilized evidence-based treatments in modern medicine. The reasons for this quality gap are insufficiently understood. In this comprehensive review, we compile known significant barriers to epilepsy surgery, originating from both patient/family-related factors and physician/health system components. Important patient-related factors include individual and epilepsy characteristics which bias towards continued preferential use of poorly effective medications, as well as patient perspectives and misconceptions of surgical risks and benefits. Health system and physician-related barriers include demonstrable knowledge gaps among physicians, inadequate access to comprehensive epilepsy centers, complex presurgical evaluations, insufficient research, and socioeconomic bias when choosing appropriate surgical candidates.
Collapse
Affiliation(s)
- Debopam Samanta
- Neurology Division, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Adam P Ostendorf
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Erin Willis
- Neurology Division, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rani Singh
- Department of Pediatrics, Atrium Health/Levine Children's Hospital, USA
| | - Satyanarayana Gedela
- Department of Pediatrics, Emory University College of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, USA
| | - Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
39
|
Samanta D, Singh R, Gedela S, Scott Perry M, Arya R. Underutilization of epilepsy surgery: Part II: Strategies to overcome barriers. Epilepsy Behav 2021; 117:107853. [PMID: 33678576 PMCID: PMC8035223 DOI: 10.1016/j.yebeh.2021.107853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Interventions focused on utilization of epilepsy surgery can be divided into groups: those that improve patients' access to surgical evaluation and those that facilitate completion of the surgical evaluation and treatment. Educational intervention, technological innovation, and effective coordination and communication can significantly improve patients' access to surgery. Patient and public facing, individualized (analog and/or digital) communication can raise awareness and acceptance of epilepsy surgery. Educational interventions aimed at providers may mitigate knowledge gaps using practical and concise consensus statements and guidelines, while specific training can improve awareness around implicit bias. Innovative technology, such as clinical decision-making toolkits within the electronic medical record (EMR), machine learning techniques, online decision-support tools, nomograms, and scoring algorithms can facilitate timely identification of appropriate candidates for epilepsy surgery with individualized guidance regarding referral appropriateness, postoperative seizure freedom rate, and risks of complication after surgery. There are specific strategies applicable for epilepsy centers' success: building a multidisciplinary setup, maintaining/tracking volume and complexity of cases, collaborating with other centers, improving surgical outcome with reduced complications, utilizing advanced diagnostics tools, and considering minimally invasive surgical techniques. Established centers may use other strategies, such as multi-stage procedures for multifocal epilepsy, advanced functional mapping with tailored surgery for epilepsy involving the eloquent cortex, and generation of fresh hypotheses in cases of surgical failure. Finally, improved access to epilepsy surgery can be accomplished with policy changes (e.g., anti-discrimination policy, exemption in transportation cost, telehealth reimbursement policy, patient-centered epilepsy care models, pay-per-performance models, affordability and access to insurance, and increased funding for research). Every intervention should receive regular evaluation and feedback-driven modification to ensure appropriate utilization of epilepsy surgery.
Collapse
Affiliation(s)
- Debopam Samanta
- Neurology Division, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Rani Singh
- Department of Pediatrics, Atrium Health/Levine Children's Hospital, United States
| | - Satyanarayana Gedela
- Department of Pediatrics, Emory University College of Medicine, Atlanta, GA, United States; Children's Healthcare of Atlanta, United States
| | - M Scott Perry
- Cook Children's Medical Center, Fort Worth, TX, United States
| | - Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
40
|
Alsumaili M, Alkhateeb M, Khoja A, Alkhaja M, Alsulami A, Alqadi K, Baz S, Abalkhail T, Babtain F, Althubaiti I, Abu-Ata M, Alotaibi F. Seizure outcome after epilepsy surgery for patients with normal MRI: A Single center experience. Epilepsy Res 2021; 173:106620. [PMID: 33780709 DOI: 10.1016/j.eplepsyres.2021.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To analyze the surgical outcome in non-lesional intractable focal epilepsies in our center and to find possible predictors for better outcome. METHODS This is a retrospective study for 40 adult patients with intractable focal epilepsy following at KFSHRC-Riyadh, who underwent presurgical evaluation followed by resective surgery and continued follow up for a minimum of 2 years. The surgery outcome was evaluated based on the type of surgical procedure and histopathology results. RESULTS Out of all 40 patients studied, seizure freedom was achieved in 19 (47.5 %) and 17 (42.5 %) patients at the first and second year respectively in all non-lesional cases. Seizure freedom in non-lesional temporal lobe surgery was achieved in 10 (45 %) of patients at 2 years, 5 (38 %) in non-lesional frontal lobe patients at 2 years and 8 (44 %), 7 (38 %) for all extratemporal at 1 and 2 years respectively. Good prognosis was seen in patients with localized positron emission tomography (PET), had no aura and had a clear ictal onset either on scalp electroencephalogram (EEG) or subdural invasive electroencephalogram. SIGNIFICANCE The best surgical outcome is achievable in patients with non-lesional focal epilepsy. This study highlights the prognostic value of the PET scan and ictal scalp/subdural invasive EEG.
Collapse
Affiliation(s)
- Mohammad Alsumaili
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Pediatric Department, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia.
| | - Mashael Alkhateeb
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Abeer Khoja
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Neurology Section, Medical Department, King Abdulaziz University, Building 10, Second Floor, Jeddah, Saudi Arabia.
| | - Mohammed Alkhaja
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Department of Internal Medicine, King Hamad University Hospital, House 2811, Road 445, Block 1204, Hamad Town, Busaiteen, Bahrain.
| | - Ashwaq Alsulami
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Khalid Alqadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| | - Salah Baz
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Tariq Abalkhail
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Fawzi Babtain
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| | - Ibrahim Althubaiti
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Mahmoud Abu-Ata
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Faisal Alotaibi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Neurology Section, Medical Department, Aldara Hospital and Medical Center, Riyadh, Saudi Arabia.
| |
Collapse
|
41
|
Nezami A, Tarhani F, Shoshtari NK. Organic Lesions in the Brain MRI of Children with Febrile Seizure. Curr Med Imaging 2021; 17:148-154. [PMID: 32101131 DOI: 10.2174/1573405616666200226103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Seizure is the most common neurological disorders in children, where 4-10% of the cases experience at least one seizure before the age of 16. The most frequent causes of seizures in children are fever, epilepsy, infection and brain damage. The aim of this study was to investigate the frequency of organic lesions in MRI of children with seizures unrelated to fever. MATERIALS AND METHODS This cross-sectional study included children presented with fever-unrelated seizures. The MRI was examined by a radiologist to identify abnormal findings in each patient. A researcher-made questionnaire including general information, history of head trauma, obstructed labor and the history of seizure was completed for the patients. RESULTS Of 287 children with fever-related seizure, 127 (45.7%) were male and 151 (54.3%) were female. History of seizure, history of obstructed labor, abnormal MRI, complete delay, use of antiepileptic drug and history of trauma were 22(9.9%), 1 (0.4%), 11(4%), 5(1.8%), 259(93.2%) and 12 (4.3%), respectively. Of 11 patients with abnormal MRI, 4 had MTS lesions, 2 had tumor lesions, 2 had scarring trauma, 1 had an epidural abscess and 1 had meningitis. The frequency of organic lesions had no significant differences based on gender, use of antiepileptic drug and traumatic history, but it had a significant relation with obstructed labor andthehistory of seizure. CONCLUSION The results showed that organic brain lesions in children with fever-unrelated seizure had a significant relationship with the history of seizure and obstructed maternal labor.
Collapse
Affiliation(s)
- Alireza Nezami
- Department of Cardiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fariba Tarhani
- Department of Cardiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
42
|
Assessment of localization accuracy and postsurgical prediction of simultaneous 18F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 2021; 31:6974-6982. [PMID: 33638688 DOI: 10.1007/s00330-021-07738-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the accuracies of simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) in preoperative localization and the postsurgical prediction. METHODS This retrospective study was performed on ninety-eight patients diagnosed with refractory epilepsy whose presurgical evaluation included [18F]-FDG PET/MRI, with 1-year post-surgery follow-up between August 2016 and December 2018. PET/MRI images were interpreted by two radiologists and a nuclear medicine physician to localize the EOZ using standard visual analysis and asymmetry index based on standard uptake value (SUV). The localization accuracy and predictive performance of simultaneous 18F-FDG PET/MRI based on the surgial pathology and postsurgical outcome were evaluated. RESULTS A total of 41.8% (41/98) patients were found to have a definitely structural abnormality on the MR portion of PET/MRI; 93.9% (92/98) were shown hypometabolism on the PET portion of the hybrid PET/MRI. PET/MRI identified 18 cases with subtle structural abnormalities on MRI re-read. Six percent (6/98) of patients PET/MRI were negative. A total of 65.3% (64/98) patients showed seizure-free at 1-year follow-up after epilepsy surgery. The sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI was 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. Multivariate regression analysis indicated that concordant of EOZ localization between PET/MRI and surgical resection range, which was a good positive predictor of seizure freedom (Engel I) (OR = 14.741, 95% CI 3.934-55.033, p < 0.001). CONCLUSIONS [18F]-FDG PET/MRI used as two combined modalities providing additional sensitivity when detecting possible epileptic foci and will probably improve the surgical outcome. KEY POINTS • Sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI were 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. • Concordance of EOZ localization between PET/MRI and surgical resection range was a good positive predictor of seizure freedom; presurgical [18F]-FDG PET/MRI will probably improve the surgical outcome.
Collapse
|
43
|
van Lanen RHGJ, Colon AJ, Wiggins CJ, Hoeberigs MC, Hoogland G, Roebroeck A, Ivanov D, Poser BA, Rouhl RPW, Hofman PAM, Jansen JFA, Backes W, Rijkers K, Schijns OEMG. Ultra-high field magnetic resonance imaging in human epilepsy: A systematic review. Neuroimage Clin 2021; 30:102602. [PMID: 33652376 PMCID: PMC7921009 DOI: 10.1016/j.nicl.2021.102602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE Resective epilepsy surgery is an evidence-based curative treatment option for patients with drug-resistant focal epilepsy. The major preoperative predictor of a good surgical outcome is detection of an epileptogenic lesion by magnetic resonance imaging (MRI). Application of ultra-high field (UHF) MRI, i.e. field strengths ≥ 7 Tesla (T), may increase the sensitivity to detect such a lesion. METHODS A keyword search strategy was submitted to Pubmed, EMBASE, Cochrane Database and clinicaltrials.gov to select studies on UHF MRI in patients with epilepsy. Follow-up study selection and data extraction were performed following PRISMA guidelines. We focused on I) diagnostic gain of UHF- over conventional MRI, II) concordance of MRI-detected lesion, seizure onset zone and surgical decision-making, and III) postoperative histopathological diagnosis and seizure outcome. RESULTS Sixteen observational cohort studies, all using 7T MRI were included. Diagnostic gain of 7T over conventional MRI ranged from 8% to 67%, with a pooled gain of 31%. Novel techniques to visualize pathological processes in epilepsy and lesion detection are discussed. Seizure freedom was achieved in 73% of operated patients; no seizure outcome comparison was made between 7T MRI positive, 7T negative and 3T positive patients. 7T could influence surgical decision-making, with high concordance of lesion and seizure onset zone. Focal cortical dysplasia (54%), hippocampal sclerosis (12%) and gliosis (8.1%) were the most frequently diagnosed histopathological entities. SIGNIFICANCE UHF MRI increases, yet variably, the sensitivity to detect an epileptogenic lesion, showing potential for use in clinical practice. It remains to be established whether this results in improved seizure outcome after surgical treatment. Prospective studies with larger cohorts of epilepsy patients, uniform scan and sequence protocols, and innovative post-processing technology are equally important as further increasing field strengths. Besides technical ameliorations, improved correlation of imaging features with clinical semiology, histopathology and clinical outcome has to be established.
Collapse
Affiliation(s)
- R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - A J Colon
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - C J Wiggins
- Scannexus, Ultra High Field MRI Research Center, Maastricht, The Netherlands
| | - M C Hoeberigs
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R P W Rouhl
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| |
Collapse
|
44
|
Assadsangabi R, Ozturk A, Kantamneni T, Azizi N, Asaikar SM, Hacein-Bey L. Neuroimaging of Childhood Epilepsy: Focal versus Generalized Epilepsy. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0040-1722301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractNeuroimaging plays an increasingly crucial role in delineating the pathophysiology, and guiding the evaluation, management and monitoring of epilepsy. Imaging contributes to adequately categorizing seizure/epilepsy types in complex clinical situations by demonstrating anatomical and functional changes associated with seizure activity. This article reviews the current status of multimodality neuroimaging in the pediatric population, including focal lesions which may result in focal epileptic findings, focal structural abnormalities that may manifest as generalized epileptiform discharges, and generalized epilepsy without evidence of detectable focal abnormalities.
Collapse
Affiliation(s)
- Reza Assadsangabi
- Department of Neuroradiology, Radiology, University of California Davis School of Medicine, Sacramento, California, United States
| | - Arzu Ozturk
- Department of Neuroradiology, Radiology, University of California Davis School of Medicine, Sacramento, California, United States
| | - Trishna Kantamneni
- Department of Neurology, University of California Davis School of Medicine, Sacramento, California, United States
| | - Nazarin Azizi
- Department of Neuroradiology, Radiology, University of California Davis School of Medicine, Sacramento, California, United States
| | - Shailesh M. Asaikar
- Child & Adolescent Neurology Consultants, Sacramento, California, United States
| | - Lotfi Hacein-Bey
- Department of Neuroradiology, Radiology, University of California Davis School of Medicine, Sacramento, California, United States
| |
Collapse
|
45
|
Drexlin JC, Schweizer D, Stein VM. [Diagnostics in epilepsy - potential of magnetic resonance imaging]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2021; 49:29-42. [PMID: 33588463 DOI: 10.1055/a-1322-9439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epilepsy is a common neurologic disease frequently encountered by small animal practitioners. The disease comprises a multiplicity of clinical presentations and etiologies and often necessitates a comprehensive as well as cost-intensive diagnostic workup. This is mandatory in order to be able to diagnose or exclude a metabolic cause of the seizures and to distinguish between idiopathic and structural epilepsy. The examination by means of magnetic resonance imaging (MRI) represents a central component of the diagnostic workup, which in turn has essential effects on treatment and prognosis. In order to achieve standardized examination and comparable results, it is of utmost importance to use defined MRI protocols. Accordingly, communication and interaction between clinical institutions may be facilitated and as of yet undetected structural changes might be recorded in future MRI techniques. This review article sets particularly emphasis on the definition and classification of epilepsy as well as its diagnostic imaging procedures and refers to statistics and specialists' recommendations for the diagnostic workup in dogs.
Collapse
Affiliation(s)
- Jana C Drexlin
- Abteilung für Klinische Neurologie, Departement für klinische Veterinärmedizin, Vetsuisse Fakultät, Universität Bern
| | - Daniela Schweizer
- Abteilung für Klinische Radiologie, Departement für klinische Veterinärmedizin, Vetsuisse Fakultät, Universität Bern
| | - Veronika M Stein
- Abteilung für Klinische Neurologie, Departement für klinische Veterinärmedizin, Vetsuisse Fakultät, Universität Bern
| |
Collapse
|
46
|
Bujan Kovac A, Petelin Gadze Z, Rados M, Krbot Skoric M, Mrak G, Nemir J, Milosevic M, Hajnsek S. Brain MRI post-processing with MAP07 in the preoperative evaluation of patients with pharmacoresistant epilepsy - Croatian single centre experience. Clin Neurol Neurosurg 2020; 201:106426. [PMID: 33341458 DOI: 10.1016/j.clineuro.2020.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aimed to determine the role of brain MRI post-processing method MAP07 (Morphometric Analysis Program) in detecting epileptogenic brain lesions in patients with pharmacoresistant epilepsy (PE). MAP07 is a sophisticated diagnostic program that offers several morphometric maps and facilitates the detection and localization of hippocampal sclerosis (HS), focal cortical dysplasias (FCD), and other types of cortical malformations, which could be undetected by conventional visual MRI analysis (CVA). METHODS 120 patients aged > 16 years with PE have been recruited. 3 T MRI was performed according to epilepsy imaging protocol followed by image postprocessing with a fully automated MATLAB script, MAP07, by applying SPM5 algorithms. Statistical analysis was performed in IBM SPSS Statistics, version 25.0. RESULTS Analysis in our patients showed a high sensitivity of MAP07 with low specificity and with a high proportion of false-positive patients. After MRI analysis, out of 120 patients, 32 were found to have no structural abnormalities by conventional visual analysis in whom after MAP07 in 5 patients structural lesions were found (in one HS, in one FCD, in two perinatal vascular lesions, and in one hippocampal hyperintensity). There was a quite high overall coincidence of the findings of MAP07 and MRI for the detection of FCD, HS, perinatal ischemia/chronic vascular lesions, heterotopias, and polymicrogyria (kappa coefficient above 0.700). CONCLUSIONS MAP07 analysis is a useful, additional, and automated method that may guide re-evaluation of MRI by highlighting suspicious cortical regions, as a complementary method to CVA, by enhancing the visualization of cortical malformations and lesions.
Collapse
Affiliation(s)
- Andreja Bujan Kovac
- Department of Neurology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Referral Centre of the Ministry of Health of the Republic of Croatia for Epilepsy, Affiliated Partner of the ERN EpiCARE, Zagreb, Croatia.
| | - Zeljka Petelin Gadze
- Department of Neurology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Referral Centre of the Ministry of Health of the Republic of Croatia for Epilepsy, Affiliated Partner of the ERN EpiCARE, Zagreb, Croatia
| | - Milan Rados
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Magdalena Krbot Skoric
- Department of Neurology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Referral Centre of the Ministry of Health of the Republic of Croatia for Epilepsy, Affiliated Partner of the ERN EpiCARE, Zagreb, Croatia; University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Goran Mrak
- Department of Neurosurgery, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Affiliated Partner of EUROCAN, Zagreb, Croatia
| | - Jakob Nemir
- Department of Neurosurgery, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Affiliated Partner of EUROCAN, Zagreb, Croatia
| | - Milan Milosevic
- Andrija Stampar School of Public Health, Department for Environmental Health, Occupational and Sports Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Sanja Hajnsek
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
47
|
Graf W, Kasper BS, Sharma S, Kasper EM. Lost in Transition: The Long and Winding Road Toward Epilepsy Surgery—An Analysis of Obstacles Prior to Surgery and Call for Orchestrated Health Care Efforts in Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0040-1715503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractDifficult-to-treat epilepsy is defined as ongoing seizures despite adequate pharmacological treatment. This condition is affecting a significant percentage of epilepsy patients and is estimated to be as high as one-third of all patients. Epilepsy surgery, targeting the removal of the key parts of cerebral convolutions responsible for seizure generation and often including a structural lesion, can be a very successful approach. However, this necessitates careful patient selection by comprehensive investigations, proving the localization of the epileptogenic zone as well as measures to make such surgeries safe. With careful selection as a prerequisite, the percentage of patients achieving seizure freedom by neurosurgical intervention is high, approximating two-thirds of all epilepsy surgeries performed. In contrast, the average duration of a patient's pharmacoresistant focal epilepsy prior to surgery anywhere around the globe is around 20 years. Given that typical patients are ∼30 to 40 years of age at the time of surgery, many patients have been living with chronic seizures since childhood or adolescence. This means that most of these patients have been going through several stages of medical care for years or even decades, both as children and adults, without ever being fully investigated and/or selected for surgery which is concerning. Yet, there is no set standard for a timeline leading toward successful surgery in epilepsy. It is obvious that the average transit period from the moment of first seizure manifestation until the day of successful surgery takes much too long. This is the reason why we see these patients lost in transition.
Collapse
Affiliation(s)
- Wolfgang Graf
- Department of Neurology, Epilepsy Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Burkhard S. Kasper
- Department of Neurology, Epilepsy Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sunjay Sharma
- Division of Neurosurgery, McMaster University, Hamilton, Canada
| | | |
Collapse
|
48
|
Mesraoua B, Koepp M, Schuknecht B, Deleu D, Al Hail HJ, Melikyan G, Elsheikh L, Asadi-Pooya AA. Unexpected brain imaging findings in patients with seizures. Epilepsy Behav 2020; 111:107241. [PMID: 32590182 DOI: 10.1016/j.yebeh.2020.107241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
New imaging technologies have advanced our ability to localize the epileptogenic zone in patients with epilepsy. As a result of the constant improvement of the image quality, magnetic resonance imaging (MRI) has become the most important ancillary tool in the management of patients with epilepsy. Magnetic resonance imaging for the evaluation of patients with epilepsy should be done using a special temporal lobe protocol and read by physicians experienced with the findings in patients with epilepsy. On the other hand, in the healthy populations, incidental structural brain abnormalities have been reported in 18% of people. Incidental, subtle, or unexpected structural brain abnormalities have also been reported in many patients who were investigated because of having seizures. In the current narrative review, we will discuss some of these instances, where structural brain abnormalities are discovered unexpectedly, are subtle (but important) and/or may be considered as incidental.
Collapse
Affiliation(s)
- Boulenouar Mesraoua
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | | | | | - Dirk Deleu
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | - Hassan J Al Hail
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | - Gayane Melikyan
- Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medical College, Doha, Qatar.
| | | | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
49
|
Diagnosis of Hippocampal Sclerosis in Children: Comparison of Automated Brain MRI Volumetry and Readers of Varying Experience. AJR Am J Roentgenol 2020; 217:223-234. [PMID: 32903057 DOI: 10.2214/ajr.20.23990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND. Hippocampal sclerosis (HS) is a leading cause of medically refractory temporal lobe epilepsy in children. The diagnosis is clinically important because most patients with HS have good postsurgical outcomes. OBJECTIVE. This study aimed to compare the performance of a fully automated brain MRI volumetric tool and readers of varying experience in the diagnosis of pediatric HS. METHODS. This retrospective study included 22 children with HS diagnosed between January 2009 and January 2020 who underwent surgery and an age- and sex-matched control group of 44 patients with normal MRI findings and extratemporal epilepsy diagnosed between January 2009 and January 2020. Regional brain MRI volumes were calculated from a high-resolution 3D T1-weighted sequence using an automated volumetric tool. Four readers (two pediatric radiologists [experienced] and two radiology residents [inexperienced]) visually assessed each MRI examination to score the likelihood of HS. One inexperienced reader repeated the evaluations using the volumetric tool. The area under the ROC curve (AUROC), sensitivity, and specificity for HS were computed for the volumetric tool and the readers. Diagnostic performances were compared using McNemar tests. RESULTS. In the HS group, the hippocampal volume (affected vs unaffected, 3.54 vs 4.59 cm3) and temporal lobe volume (affected vs unaffected, 5.66 vs 6.89 cm3) on the affected side were significantly lower than on the unaffected side (p < .001) using the volu-metric tool. AUROCs of the volumetric tool were 0.813-0.842 in patients with left HS and 0.857-0.980 in patients with right HS (sensitivity, 81.8-90.9%; specificity, 70.5-95.5%). No significant difference (p = .63 to > .99) was observed between the performance of the volumetric tool and the performance of the two experienced readers as well as one inexperienced reader (AUROCs for these three readers, 0.968-0.999; sensitivity, 86.4-90.9%; specificity, 100.0%). The volumetric tool had better performance (p < .001) than the other inexperienced reader (AUROC, 0.806; sensitivity, 81.8%; specificity, 47.7%). With subsequent use of the tool, this inexperienced reader showed a nonsignificant increase (p = .10) in AUROC (0.912) as well as in sensitivity (86.4%) and specificity (84.1%). CONCLUSION. A fully automated volumetric brain MRI tool outperformed one of two inexperienced readers and performed as well as two experienced readers in identifying and lateralizing HS in pediatric patients. The tool improved the performance of an inexperienced reader. CLINICAL IMPACT. A fully automated volumetric tool facilitates diagnosis of HS in pediatric patients, especially for an inexperienced reader.
Collapse
|
50
|
Shim HK, Lee HJ, Kim SE, Lee BI, Park S, Park KM. Alterations in the metabolic networks of temporal lobe epilepsy patients: A graph theoretical analysis using FDG-PET. Neuroimage Clin 2020; 27:102349. [PMID: 32702626 PMCID: PMC7374556 DOI: 10.1016/j.nicl.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study is to investigate changes in metabolic networks based on fluorodeoxyglucose positron emission tomography (FDG-PET) in patients with drug-resistant temporal lobe epilepsy (TLE) (with and without hippocampal sclerosis [HS]) when compared with healthy controls. METHODS We retrospectively enrolled 30 patients with drug-resistant temporal lobe epilepsy (17 patients with HS and 13 patients without HS) and 39 healthy controls. All subjects underwent interictal FDG-PET scans, which were analyzed to obtain metabolic connectivity using graph theoretical analysis. We investigated the differences in metabolic connectivity between patients with drug-resistant TLE (with and without HS) and healthy controls. RESULTS When compared with healthy controls, TLE patients with HS showed alterations of global and local metabolic connectivity. When considering global connectivity, TLE patients with HS had a decreased average degree with increased modularity. When considering local connectivity, TLE patients with HS displayed alterations of betweeness centrality in widespread regions. However, there were no alterations of global metabolic connectivity in TLE patients without HS when compared with healthy controls. In addition, when compared to TLE patients without HS, TLE patients with HS had increased modularity. SIGNIFICANCE Our study demonstrates more severe alterations in metabolic networks based on FDG-PET in TLE patients with HS than in those without HS and healthy controls. This may represent distinct epileptic networks in TLE patients with HS versus those without HS, although both are drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Hye-Kyung Shim
- Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Byung In Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seongho Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|