1
|
Hu Z, Gajavelli S, Spurlock MS, Mahavadi A, Quesada LS, Gajavelli GR, Andreoni CB, Di L, Janecki J, Lee SW, Rivera KN, Shear DA, Bullock RM. Human neural stem cell transplant location-dependent neuroprotection and motor deficit amelioration in rats with penetrating traumatic brain injury. J Trauma Acute Care Surg 2020; 88:477-485. [PMID: 31626023 PMCID: PMC7098436 DOI: 10.1097/ta.0000000000002510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Penetrating traumatic brain injury induces chronic inflammation that drives persistent tissue loss long after injury. Absence of endogenous reparative neurogenesis and effective neuroprotective therapies render injury-induced disability an unmet need. Cell replacement via neural stem cell transplantation could potentially rebuild the tissue and alleviate penetrating traumatic brain injury disability. The optimal transplant location remains to be determined. METHODS To test if subacute human neural stem cell (hNSC) transplant location influences engraftment, lesion expansion, and motor deficits, rats (n = 10/group) were randomized to the following four groups (uninjured and three injured): group 1 (Gr1), uninjured with cell transplants (sham+hNSCs), 1-week postunilateral penetrating traumatic brain injury, after establishing motor deficit; group 2 (Gr2), treated with vehicle (media, no cells); group 3 (Gr3), hNSCs transplanted into lesion core (intra); and group 4 (Gr4), hNSCs transplanted into tissue surrounding the lesion (peri). All animals were immunosuppressed for 12 weeks and euthanized following motor assessment. RESULTS In Gr2, penetrating traumatic brain injury effect manifests as porencephalic cyst, 22.53 ± 2.87 (% of intact hemisphere), with p value of <0.0001 compared with uninjured Gr1. Group 3 lesion volume at 17.44 ± 2.11 did not differ significantly from Gr2 (p = 0.36), while Gr4 value, 9.17 ± 1.53, differed significantly (p = 0.0001). Engraftment and neuronal differentiation were significantly lower in the uninjured Gr1 (p < 0.05), compared with injured groups. However, there were no differences between Gr3 and Gr4. Significant increase in cortical tissue sparing (p = 0.03), including motor cortex (p = 0.005) was observed in Gr4 but not Gr3. Presence of transplant within lesion or in penumbra attenuated motor deficit development (p < 0.05) compared with Gr2. CONCLUSION In aggregate, injury milieu supports transplanted cell proliferation and differentiation independent of location. Unexpectedly, cortical sparing is transplant location dependent. Thus, apart from cell replacement and transplant mediated deficit amelioration, transplant location-dependent neuroprotection may be key to delaying onset or preventing development of injury-induced disability. LEVEL OF EVIDENCE Preclinical study evaluation of therapeutic intervention, level VI.
Collapse
Affiliation(s)
- Zhen Hu
- From the Department of Neurosurgery (Z.H.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Miami Project to Cure Paralysis (Z.H., S.G., M.S.S., A.M., L.S.Q., G.R.G., C.B.A., L.D., J.J., S.W.L., K.N.R., R.M.D.), University of Miami, Miami, Florida; and Branch of Brain Trauma Neuroprotection and Neurorestoration (D.A.S.), Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
3
|
Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M, Tortella FC, Duhaime AC, Dixon CE. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. J Neurotrauma 2015; 32:1725-35. [PMID: 26058402 DOI: 10.1089/neu.2014.3861] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health issue exacting a substantial personal and economic burden globally. With the advent of "big data" approaches to understanding complex systems, there is the potential to greatly accelerate knowledge about mechanisms of injury and how to detect and modify them to improve patient outcomes. High quality, well-defined data are critical to the success of bioinformatics platforms, and a data dictionary of "common data elements" (CDEs), as well as "unique data elements" has been created for clinical TBI research. There is no data dictionary, however, for preclinical TBI research despite similar opportunities to accelerate knowledge. To address this gap, a committee of experts was tasked with creating a defined set of data elements to further collaboration across laboratories and enable the merging of data for meta-analysis. The CDEs were subdivided into a Core module for data elements relevant to most, if not all, studies, and Injury-Model-Specific modules for non-generalizable data elements. The purpose of this article is to provide both an overview of TBI models and the CDEs pertinent to these models to facilitate a common language for preclinical TBI research.
Collapse
Affiliation(s)
- Douglas H Smith
- 1 Department of Neurosurgery, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Ramona R Hicks
- 2 One Mind, Seattle, Washington.,3 National Institutes of Health, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Victoria E Johnson
- 1 Department of Neurosurgery, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Debra A Bergstrom
- 3 National Institutes of Health, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Diana M Cummings
- 3 National Institutes of Health, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Linda J Noble
- 4 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - David Hovda
- 5 Department of Neurosurgery, University of California Los Angeles , Los Angeles, California
| | - Michael Whalen
- 6 Department of Pediatrics, Neuroscience Center at Massachusetts General Hospital , Charlestown, Massachusetts
| | - Stephen T Ahlers
- 7 Operational & Undersea Medicine Directorate, Naval Medical Research Center , Silver Spring, Maryland
| | - Michelle LaPlaca
- 8 Department of Biomedical Engineering, Georgia Tech and Emory University , Atlanta, Georgia
| | - Frank C Tortella
- 9 Walter Reed Army Institute of Research , Silver Spring, Maryland
| | | | - C Edward Dixon
- 11 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsyvania
| |
Collapse
|
4
|
Cunningham TL, Cartagena CM, Lu XCM, Konopko M, Dave JR, Tortella FC, Shear DA. Correlations between blood-brain barrier disruption and neuroinflammation in an experimental model of penetrating ballistic-like brain injury. J Neurotrauma 2014; 31:505-14. [PMID: 24138024 DOI: 10.1089/neu.2013.2965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Blood-brain barrier (BBB) disruption is a pathological hallmark of severe traumatic brain injury (TBI) and is associated with neuroinflammatory events contributing to brain edema and cell death. The goal of this study was to elucidate the profile of BBB disruption after penetrating ballistic-like brain injury (PBBI) in conjunction with changes in neuroinflammatory markers. Brain uptake of biotin-dextran amine (BDA; 3 kDa) and horseradish peroxidase (HRP; 44 kDa) was evaluated in rats at 4 h, 24 h, 48 h, 72 h, and 7 days post-PBBI and compared with the histopathologic and molecular profiles for inflammatory markers. BDA and HRP both displayed a uniphasic profile of extravasation, greatest at 24 h post-injury and which remained evident out to 48 h for HRP and 7 days for BDA. This profile was most closely associated with markers for adhesion (mRNA for intercellular adhesion molecule-1) and infiltration of peripheral granulocytes (mRNA for matrix metalloproteinase-9 [MMP-9] and myeloperoxidase staining). Improvement of BBB dysfunction coincided with increased expression of markers implicated in tissue remodeling and repair. The results of this study reveal a uniphasic and gradient opening of the BBB after PBBI and suggest MMP-9 and resident inflammatory cell activation as candidates for future neurotherapeutic intervention after PBBI.
Collapse
Affiliation(s)
- Tracy L Cunningham
- Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience , Branch of Brain Trauma Neuroprotection and Neurorestoration, Silver Spring, Maryland
| | | | | | | | | | | | | |
Collapse
|
5
|
Papa L, Robinson G, Oli M, Pineda J, Demery J, Brophy G, Robicsek SA, Gabrielli A, Robertson CS, Wang KK, Hayes RL. Use of biomarkers for diagnosis and management of traumatic brain injury patients. ACTA ACUST UNITED AC 2013; 2:937-45. [PMID: 23495867 DOI: 10.1517/17530059.2.8.937] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Advances in the understanding of human biochemistry and physiology have provided insight into new pathways by which we can understand traumatic brain injury (TBI). Increased sophistication of laboratory techniques and developments in the field of proteomics has led to the discovery and rapid detection of new biomarkers not previously available. OBJECTIVE To review recent advances in biomarker research for traumatic brain injury, describe the features of the ideal biomarker and to explore the potential role of these biomarkers in improving clinical management of brain injured patients. METHODS Through a literature review of recent research on TBI biomarkers and through experience with TBI research, important elements of biomarker development are described together with potential applications to patient care. CONCLUSIONS TBI biomarkers could have a significant impact on patient care by assisting in the diagnosis, risk stratification and management of TBI. Biomarkers could provide major opportunities for the conduct of clinical research, including confirmation of injury mechanism(s) and drug target identification. Continuing studies by the authors' group are now being conducted to elucidate more fully the relationships between new biomarkers and severity of injury and clinical outcomes in all severities of TBI patients.
Collapse
Affiliation(s)
- Linda Papa
- Director of Academic Clinical Research Orlando Regional Medical Center, Department of Emergency Medicine, 86 W. Underwood (S-200), Orlando, FL 32806, USA +1 407 237 6329 ; +1 407 649 3083 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 2012; 72:1335-44. [PMID: 22673263 DOI: 10.1097/ta.0b013e3182491e3d] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND This study compared early serum levels of ubiquitin C-terminal hydrolase (UCH-L1) from patients with mild and moderate traumatic brain injury (TBI) with uninjured and injured controls and examined their association with traumatic intracranial lesions on computed tomography (CT) scan (CT positive) and the need for neurosurgical intervention (NSI). METHODS This prospective cohort study enrolled adult patients presenting to three tertiary care Level I trauma centers after blunt head trauma with loss of consciousness, amnesia, or disorientation and a Glasgow Coma Scale (GCS) score 9 to 15. Control groups included normal uninjured controls and nonhead injured trauma controls presenting to the emergency department with orthopedic injuries or motor vehicle crash without TBI. Blood samples were obtained in all trauma patients within 4 hours of injury and measured by enzyme-linked immunosorbent assay for UCH-L1 (ng/mL ± standard error of the mean). RESULTS There were 295 patients enrolled, 96 TBI patients (86 with GCS score 13-15 and 10 with GCS score 9-12), and 199 controls (176 uninjured, 16 motor vehicle crash controls, and 7 orthopedic controls). The AUC for distinguishing TBI from uninjured controls was 0.87 (95% confidence interval [CI], 0.82-0.92) and for distinguishing those TBIs with GCS score 15 from controls was AUC 0.87 (95% CI, 0.81-0.93). Mean UCH-L1 levels in patients with CT negative versus CT positive were 0.620 (± 0.254) and 1.618 (± 0.474), respectively (p < 0.001), and the AUC was 0.73 (95% CI, 0.62-0.84). For patients without and with NSI, levels were 0.627 (0.218) versus 2.568 (0.854; p < 0.001), and the AUC was 0.85 (95% CI, 0.76-0.94). CONCLUSION UCH-L1 is detectable in serum within an hour of injury and is associated with measures of injury severity including the GCS score, CT lesions, and NSI. Further study is required to validate these findings before clinical application. LEVEL OF EVIDENCE II, prognostic study.
Collapse
|
7
|
Elias PZ, Spector M. Characterization of a Bilateral Penetrating Brain Injury in Rats and Evaluation of a Collagen Biomaterial for Potential Treatment. J Neurotrauma 2012; 29:2086-102. [DOI: 10.1089/neu.2011.2181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Paul Z. Elias
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, Massachusetts
| | - Myron Spector
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, Massachusetts
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Elias PZ, Spector M. Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. J Neurosci Methods 2012; 209:199-211. [PMID: 22698665 DOI: 10.1016/j.jneumeth.2012.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/24/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Penetrating brain injury (PBI) is a complex central nervous system injury in which mechanical damage to brain parenchyma results in hemorrhage, ischemia, broad areas of necrosis, and eventually cavitation. The permanent loss of brain tissue affords the possibility of treatment using a biomaterial scaffold to fill the lesion site and potentially deliver pharmacological or cellular therapeutic agents. The administration of cellular therapy may be of benefit in both mitigating the secondary injury process and promoting regeneration through replacement of certain cell populations. This study investigated the survival and differentiation of adult rat hippocampal neural progenitor cells delivered by a collagen scaffold in a rat model of PBI. The cell-scaffold construct was implanted 1 week after injury and was observed to remain intact with open pores upon analysis 4 weeks later. Implanted neural progenitors were found to have survived within the scaffold, and also to have migrated into the surrounding brain. Differentiated phenotypes included astrocytes, oligodendrocytes, vascular endothelial cells, and possibly macrophages. The demonstrated multipotency of this cell population in vivo in the context of traumatic brain injury has implications for regenerative therapies, but additional stimulation appears necessary to promote neuronal differentiation outside normally neurogenic regions.
Collapse
Affiliation(s)
- Paul Z Elias
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
9
|
Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KKW. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 2011; 59:471-83. [PMID: 22071014 DOI: 10.1016/j.annemergmed.2011.08.021] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/24/2022]
Abstract
STUDY OBJECTIVE This study examines whether serum levels of glial fibrillary acidic protein breakdown products (GFAP-BDP) are elevated in patients with mild and moderate traumatic brain injury compared with controls and whether they are associated with traumatic intracranial lesions on computed tomography (CT) scan (positive CT result) and with having a neurosurgical intervention. METHODS This prospective cohort study enrolled adult patients presenting to 3 Level I trauma centers after blunt head trauma with loss of consciousness, amnesia, or disorientation and a Glasgow Coma Scale (GCS) score of 9 to 15. Control groups included normal uninjured controls and trauma controls presenting to the emergency department with orthopedic injuries or a motor vehicle crash without traumatic brain injury. Blood samples were obtained in all patients within 4 hours of injury and measured by enzyme-linked immunosorbent assay for GFAP-BDP (nanograms/milliliter). RESULTS Of the 307 patients enrolled, 108 were patients with traumatic brain injury (97 with GCS score 13 to 15 and 11 with GCS score 9 to 12) and 199 were controls (176 normal controls and 16 motor vehicle crash controls and 7 orthopedic controls). Receiver operating characteristic curves demonstrated that early GFAP-BDP levels were able to distinguish patients with traumatic brain injury from uninjured controls with an area under the curve of 0.90 (95% confidence interval [CI] 0.86 to 0.94) and differentiated traumatic brain injury with a GCS score of 15 with an area under the curve of 0.88 (95% CI 0.82 to 0.93). Thirty-two patients with traumatic brain injury (30%) had lesions on CT. The area under these curves for discriminating patients with CT lesions versus those without CT lesions was 0.79 (95% CI 0.69 to 0.89). Moreover, the receiver operating characteristic curve for distinguishing neurosurgical intervention from no neurosurgical intervention yielded an area under the curve of 0.87 (95% CI 0.77 to 0.96). CONCLUSION GFAP-BDP is detectable in serum within an hour of injury and is associated with measures of injury severity, including the GCS score, CT lesions, and neurosurgical intervention. Further study is required to validate these findings before clinical application.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ylioja S, Hanks R, Baird A, Millis S. Are Cognitive Outcome and Recovery Different in Civilian Penetrating Versus Non-Penetrating Brain Injuries? Clin Neuropsychol 2010; 24:1097-112. [DOI: 10.1080/13854046.2010.516021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Shear DA, Lu XCM, Bombard MC, Pedersen R, Chen Z, Davis A, Tortella FC. Longitudinal Characterization of Motor and Cognitive Deficits in a Model of Penetrating Ballistic-Like Brain Injury. J Neurotrauma 2010; 27:1911-23. [DOI: 10.1089/neu.2010.1399] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Deborah A. Shear
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
| | - Xi-Chun May Lu
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
| | - Matthew C. Bombard
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
- The Geneva Foundation, Lakewood, Washington
| | - Rebecca Pedersen
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
- The Geneva Foundation, Lakewood, Washington
| | - Zhiyong Chen
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
| | - Angela Davis
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
- The Geneva Foundation, Lakewood, Washington
| | - Frank C. Tortella
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, Maryland
| |
Collapse
|
12
|
Yao C, Williams AJ, Ottens AK, May Lu XC, Chen R, Wang KK, Hayes RL, Tortella FC, Dave JR. Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats. Brain Inj 2009; 22:723-32. [PMID: 18720098 DOI: 10.1080/02699050802304706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PRIMARY OBJECTIVE Recent efforts have been aimed at developing a panel of protein biomarkers for the diagnosis/prognosis of the neurological damage associated with acute brain injury. METHODS AND PROCEDURES This study utilized high-throughput immunoblotting (HTPI) technology to compare changes between two animal models of acute brain injury: penetrating ballistic-like brain injury (PBBI) which mimics the injury created by a gunshot wound and transient middle cerebral artery occlusion (MCAo) which is a model of stroke. Brain and blood were collected at 24-hours post-injury. MAIN OUTCOMES AND RESULTS This study identified the changes in 18 proteins following PBBI and 17 proteins following MCAo out of a total of 998 screened proteins. Distinct differences were observed between the two models: five proteins were up- or down-regulated in both models, 23 proteins changed in only one model and one protein was differentially expressed. Western blots were used to verify HTPI results for selected proteins with measurable changes observed in both blood and brain for the proteins STAT3, Tau, PKA RII beta, 14-3-3 epsilon and p43/EMAPII. CONCLUSIONS These results suggest distinct post-injury protein profiles between brain injury types (traumatic vs. ischemic) that will facilitate strategies aimed at the differential diagnosis and prognosis of acute brain injury.
Collapse
Affiliation(s)
- Changping Yao
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Williams AJ, Hartings JA, Lu XCM, Rolli ML, Tortella FC. Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma 2007; 23:1828-46. [PMID: 17184192 DOI: 10.1089/neu.2006.23.1828] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute and delayed cerebral injury was assessed in a recently developed rat model of a penetrating ballistic-like brain injury (PBBI). A unilateral right frontal PBBI trajectory was used to induce survivable injuries to the frontal cortex and striatum. Three distinct phases of injury progression were observed. Phase I (primary injury, 0-6 h) began with immediate (<5 min) intracerebral hemorrhage (ICH) that reached maximal volumetric size at 6 h (27.0 +/- 2.9 mm(3)). During Phase II (secondary injury, 6-72 h), a core lesion of degenerate neurons surrounding the injury track expanded into peri-lesional areas to reach a maximal volume of 69.9 +/- 6.1 mm(3) at 24 h. The core lesion consisted of predominately necrotic cell death and included marked infiltration of both neutrophils (24 h) and macrophages (72 h). Phase III (delayed degeneration, 3-7 days) involved the degeneration of neurons and fiber tracts remote from the core lesion including the thalamus, internal capsule, external capsule, and cerebral peduncle. Overall, different time courses of hemorrhage, lesion evolution, and inflammation were consistent with complementary roles in injury development and repair, providing key information about these mediators of primary, secondary, and delayed brain injury development. The similarities/differences of PBBI to other focal brain injury models are discussed.
Collapse
Affiliation(s)
- Anthony J Williams
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | |
Collapse
|
14
|
Williams AJ, Ling GSF, Tortella FC. Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neurosci Lett 2006; 408:183-8. [PMID: 17030434 DOI: 10.1016/j.neulet.2006.08.086] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 11/16/2022]
Abstract
Penetrating ballistic brain injury (PBBI) is a high-energy transfer wound causing direct damage to the cerebrum. Outcome is directly related to the ballistic's anatomical path and degree of energy transfer. In this study we evaluated differences in outcome induced by altering the 'projectile' paths and severity levels of a simulated bullet wound using a newly characterized rat model of PBBI. Severity levels (5, 10, and 15%) were compared across three distinct injury paths: (1) unilateral 'frontal', (2) 'bilateral' hemispheric, and (3) unilateral 'caudal' (including cerebellum/midbrain). Outcome was assessed by differences in mortality rate and motor dysfunction (e.g. neurological and balance beam deficits). Results indicated that outcome was dependent not only on the severity level of PBBI (P<0.001, r=0.535) but also brain regions injured (P<0.001, r=0.398). A unilateral caudal injury was associated with the highest degree of mortality (up to 100%) and motor dysfunction (64-100% disability). Bilateral hemispheric injuries were also potentially fatal, while the best outcomes were associated with a unilateral frontal injury (no mortality and 14-39% motor disability). These data closely resemble clinical reports of ballistic wounds to the head and further validate the rat PBBI model with the ultimate intent to investigate novel therapeutic approaches for diagnosis and treatment of the neuropathological damage associated with PBBI.
Collapse
Affiliation(s)
- Anthony J Williams
- Walter Reed Army Institute of Research, Department of Applied Neurobiology, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
15
|
Neuhaus SJ, Sharwood PF, Rosenfeld JV. TERRORISM AND BLAST EXPLOSIONS: LESSONS FOR THE AUSTRALIAN SURGICAL COMMUNITY. ANZ J Surg 2006; 76:637-44. [PMID: 16813632 DOI: 10.1111/j.1445-2197.2006.03795.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prospect of a terrorist attack against Australian interests is currently being debated across our society. The explosive blast attack is most favoured by terrorists. Blast injuries create unique patterns of multisystem injury with contaminated wounds and extensive devitalized tissue. Australian civilian surgeons are increasingly likely to be involved in the management of these injuries, either in response to a terrorist incident in Australia or as part of delayed management of Australian nationals injured overseas. An appreciation of the unique complexities of blast injuries is equally important to both military and civilian surgeons. This paper covers the mechanisms and pathophysiology of blast injuries and discusses issues of surgical management as they would apply to an Australian civilian setting.
Collapse
Affiliation(s)
- Susan J Neuhaus
- The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
16
|
Williams AJ, Hartings JA, Lu XCM, Rolli ML, Dave JR, Tortella FC. Characterization of a New Rat Model of Penetrating Ballistic Brain Injury. J Neurotrauma 2005; 22:313-31. [PMID: 15716636 DOI: 10.1089/neu.2005.22.313] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Penetrating brain injury (PBI) is a leading cause of mortality and morbidity in modern warfare and accounts for a significant number of traumatic brain injuries worldwide. Here we characterize the pathophysiology of a new rat model of PBI that simulates the large temporary cavity caused by energy dissipation from a penetrating bullet round. Male Sprague-Dawley rats (250-300 g) were subjected to a simulated ballistic wound to the right frontal hemisphere implemented by an inflatable penetrating probe. Three levels of injury severity were compared to control animals. Neurological and physiological outcome was assessed over a 3-day recovery period and brain tissue collected at 72 h for histopathological evaluation. Brain-injured regions included the ipsilateral frontal cortex and striatum with volumetric increases in intracranial hemorrhage (5-18 mm3) and lesion size (9-86 mm3) related to severity. Similarly, hemispheric swelling increased (3-14%) following PBI, associated with a significant rise in intracranial pressure. Astrogliosis was present in regions adjacent to the core-injury along with microglial and leukocyte infiltration. Injury remote to the lesion was observed in the cerebral peduncle that may have accounted, in part, for observed neurological deficits. Neurological and balance beam testing revealed sensorimotor deficits that persisted through 72 h. Severe electroencephalographic disturbances included the occurrence of cortical spreading depression, slow-waves, and brain seizure activity. In conclusion, this rat PBI model replicates diverse, salient features of clinical PBI pathology, generates reproducible and quantifiable measures of outcome, and is scalable by injury severity, rendering it an attractive vehicle for experimental brain trauma research.
Collapse
Affiliation(s)
- Anthony J Williams
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | |
Collapse
|