1
|
Eyre J, Williams SA, Grabowski M, Winters S, Pontzer H. The effect of bi-iliac breadth on core body temperature. J Hum Evol 2024; 195:103580. [PMID: 39226621 DOI: 10.1016/j.jhevol.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Thermoregulation is argued to be an important factor influencing body breadth in hominins based on the relationship of surface area to body mass first proposed by Bergmann. Selection for a narrow thorax, and thus a narrow pelvis, increases body surface area relative to body mass, which could be beneficial in hot climates if it leads to a decrease in core body temperature. However, the relationship between pelvic breadth and thermoregulation in humans has not been established. Although previous work has shown that bi-iliac breadth is significantly positively associated with latitude in humans, we lack an understanding of whether this association is due to climate-related selection, neutral evolutionary processes, or other selective pressures. A missing piece of the puzzle is whether body breadth at the iliac blades is an important factor in thermoregulation. Here, we examine this in a mixed-sex sample of 28 adult runners who ran for one hour at 3.14 m s-1 in a variety of climatic conditions while their core body temperatures were measured using internal temperature sensors. The association of maximum core temperature with anthropometric and demographic variables such as age, sex, mass, body fat percentage, and bi-iliac breadth was analyzed using a linear mixed-effect model. Due to the small sample size, the model was also bootstrapped. We found that an increase in absolute bi-iliac breadth was significantly associated with an increase in maximum core temperature. Overall, this preliminary analysis suggests a link between variation in bi-iliac breadth and maximum core body temperature during running, but further investigation is needed.
Collapse
Affiliation(s)
- Jennifer Eyre
- Department of Anthropology, Dartmouth College, Hanover, NH, 03755, USA; Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA.
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg 2050, South Africa
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Sandra Winters
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA; Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway; School of Biological Sciences, University of Bristol, Bristol, UK
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Zhao W, Huang M, Bragazzi NL, Tang B, Dai H. Age-Period-Cohort Analysis of Cardiovascular Mortality Attributable to Environmental Risks in China. Am J Prev Med 2024; 66:371-379. [PMID: 37802306 DOI: 10.1016/j.amepre.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
INTRODUCTION This study aimed to analyze changes in cardiovascular disease (CVD) mortality attributable to major environmental risks in China during 1990-2019, and their associations with age, period, and birth cohort. METHODS Mortality data were obtained from the Global Burden of Disease Study 2019. Major environmental risks included ambient particulate matter pollution (APMP), household air pollution from solid fuels (HAP), low temperature, high temperature, and lead exposure. Age-period-cohort modeling was used to estimate the overall annual percentage change in CVD mortality (net drift), annual percentage change for each age group (local drift), expected longitudinal age-specific rate (longitudinal age curve), period and cohort relative risks (RRs, period/cohort effects) between 1990 and 2019. Analyses were conducted in 2021-2022. RESULTS In China, five major environmental risks led to 1.62 million CVD deaths in 2019. Among these risks, the primary contributor to CVD mortality transited from HAP in 1990 to APMP in 2019. There was also an improvement in attributable CVD mortality rates for low temperature and lead exposure during 1990-2019, while an unfavorable trend was noted for high temperature. The longitudinal age curve demonstrated increased attributable CVD mortality rates with age groups for all environmental risks, with similar patterns for both sexes. Period and cohort RRs suggested generally improved risks of attributable CVD mortality for HAP, low temperature, and lead exposure, but worsening risks for APMP and high temperature in both genders, except for period risks after 2010-2014 for APMP in both sexes, period risks after 2000-2004 for high temperature in females, and cohort risks in cohorts born after 1955 for APMP and high temperature in females. CONCLUSIONS Over the study period, there was a significant improvement in attributable CVD mortality rates in China for HAP, low temperature and lead exposure, but an unfavorable trend was noted for APMP and high temperature.
Collapse
Affiliation(s)
- Wuqiong Zhao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Mengying Huang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Biao Tang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Dyches KD, Friedl KE, Greeves JP, Keller MF, McClung HL, McGurk MS, Popp KL, Teyhen DS. Physiology of Health and Performance: Enabling Success of Women in Combat Arms Roles. Mil Med 2023; 188:19-31. [PMID: 37490562 DOI: 10.1093/milmed/usac256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/28/2022] [Accepted: 08/16/2022] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION The modern female soldier has yet to be fully characterized as she steps up to fill new combat roles that have only recently been opened to women. Both U.S. and U.K. military operational research efforts are supporting a science-based evolution of physical training and standards for female warfighters. The increasing representation of women in all military occupations makes it possible to discover and document the limits of female physiological performance. METHOD An informal Delphi process was used to synthesize an integrated concept of current military female physiological research priorities and emerging findings using a panel of subject matter experts who presented their research and perspectives during the second Women in Combat Summit hosted by the TriService Nursing Research Program in February 2021. RESULTS The physical characteristics of the modern soldier are changing as women train for nontraditional military roles, and they are emerging as stronger and leaner. Capabilities and physique will likely continue to evolve in response to new Army standards and training programs designed around science-based sex-neutral requirements. Strong bones may be a feature of the female pioneers who successfully complete training and secure roles traditionally reserved for men. Injury risk can be reduced by smarter, targeted training and with attention directed to female-specific hormonal status, biomechanics, and musculoskeletal architecture. An "estrogen advantage" appears to metabolically support enhanced mental endurance in physically demanding high-stress field conditions; a healthy estrogen environment is also essential for musculoskeletal health. The performance of female soldiers can be further enhanced by attention to equipment that serves their needs with seemingly simple solutions such as a suitable sports bra and personal protective equipment that accommodates the female anatomy. CONCLUSIONS Female physiological limits and performance have yet to be adequately defined as women move into new roles that were previously developed and reserved for men. Emerging evidence indicates much greater physical capacity and physiological resilience than previously postulated.
Collapse
Affiliation(s)
- Karmon D Dyches
- Military Operational Medicine Research Program, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA
| | - Karl E Friedl
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Julie P Greeves
- Department of Army Health and Performance Research (AHPR), British Army, Andover, Hampshire SP11 8HT, UK
| | - Margaux F Keller
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Holly L McClung
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Michael S McGurk
- Research and Analysis Directorate, U.S. Army Center for Initial Military Training, Fort Eustis, VA 23604, USA
| | - Kristin L Popp
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Deydre S Teyhen
- Chief, U.S. Army Medical Specialist Corps, U.S. Army Medical Command, Falls Church, VA 22042, USA
| |
Collapse
|
4
|
Gifford RM, Taylor N, Stacey M, Woods DR. Sex, gender or occupational psychology: what matters most to preventing heat-related illnesses and improving outcomes for women in ground close combat? BMJ Mil Health 2023; 169:75-77. [PMID: 32345677 DOI: 10.1136/bmjmilitary-2020-001480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/27/2023]
Abstract
Since the advent of women in ground close combat (WGCC) roles, the impact on women of the attendant risk of heat stress and heat illness has been considered. Much emphasis has been placed on sex differences in thermal physiology. This article considers the application of evidence of sex-associated thermoregulatory variation to the occupational and environmental setting of WGCC, and weighs the relative importance of physiological differences arising from biological sex, and behaviour associated with gender normatives. Quantifying the risk of heat illness to WGCC should draw on data from their real-world occupational context.
Collapse
Affiliation(s)
- Robert M Gifford
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Academic Department of Military Medicine, HQ Joint Medical Group, Birmingham, UK
| | - N Taylor
- Academic Department of Military Medicine, HQ Joint Medical Group, Birmingham, UK
| | - M Stacey
- Academic Department of Military Medicine, HQ Joint Medical Group, Birmingham, UK
| | - D R Woods
- Academic Department of Military Medicine, HQ Joint Medical Group, Birmingham, UK.,Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University Carnegie Faculty, Leeds, UK
| |
Collapse
|
5
|
Jenkins EJ, Campbell HA, Lee JKW, Mündel T, Cotter JD. Delineating the impacts of air temperature and humidity for endurance exercise. Exp Physiol 2023; 108:207-220. [PMID: 36537856 PMCID: PMC10103870 DOI: 10.1113/ep090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the independent effects of air temperature and humidity on performance, physiological and perceptual responses during endurance exercise? What is the main finding and its importance? When examined independently, elevated air temperature increased heat strain and impaired aerobic exercise performance, but to a lesser extent than has been reported previously. These findings highlight the importance of absolute humidity relative to temperature when exercising or working under severe heat stress. ABSTRACT Many studies have reported that ambient heat stress increases physiological and perceptual strain and impairs endurance exercise, but effects of air temperature per se remain almost unexamined. Most studies have used matched relative humidity, thereby exponentially increasing absolute humidity (water content in air) concurrently with temperature. Absolute (not relative) humidity governs evaporative rate and is more important at higher work rates and air temperatures. Therefore, we examined the independent effects of air temperature and humidity on performance, thermal, cardiovascular and perceptual measures during endurance exercise. Utilizing a crossover design, 14 trained participants (7 females) completed 45 min fixed-intensity cycling (70%V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ) followed by a 20-km time trial in each of four environments: three air temperatures at matched absolute humidity (Cool, 18°C; Moderate, 27°C; and Hot, 36°C; at 1.96 kPa, air velocity ∼4.5 m/s), and one at elevated humidity (Hot Humid, 36°C at 3.92 kPa). Warmer air caused warmer skin (0.5°C/°C; P < 0.001), higher heart rate (1 bpm/°C; P < 0.001), sweat rate (0.04 l/h/°C; P < 0.001) and thermal perceptions during fixed-intensity exercise, but minimally affected core temperature (<0.01°C/°C; P = 0.053). Time-trial performance was comparable between Cool and Moderate (95% CI: -1.4, 5.9%; P = 0.263), but 3.6-6% slower in Hot (95% CI: ±2.4%; P ≤ 0.006). Elevated humidity increased core temperature (P < 0.001), perceived temperature and discomfort but not skin temperature or heart rate, and reduced mean blood pressure (P = 0.046) during fixed-intensity exercise. Elevated humidity impaired time-trial performance by 3.4% (95% CI: ±2.2%; P = 0.006). In conclusion, these findings quantify the importance of absolute humidity alongside air temperature when exercising under severe heat stress.
Collapse
Affiliation(s)
- Elliott J. Jenkins
- School of Physical EducationSport and Exercise SciencesUniversity of OtagoDunedinNew Zealand
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| | - Holly A. Campbell
- Department of Surgical SciencesDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Jason K. W. Lee
- Department of PhysiologyNational University of SingaporeSingapore
- Heat Resilience and Performance CentreYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Human Potential Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Campus for Research Excellence and Technological Enterprise (CREATE)Singapore
| | - Toby Mündel
- School of SportExercise and NutritionMassey UniversityPalmerston NorthNew Zealand
| | - James D. Cotter
- School of Physical EducationSport and Exercise SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
6
|
Ferreira FC, Padilha MCSV, Tobadini E, Bellocchi C, Carandina A, Montano N, Soares PPS, Rodrigues GD. Women have a greater cardiac vagal withdrawal to heat stress compared to men. Temperature (Austin) 2022; 10:444-453. [PMID: 38130655 PMCID: PMC10732604 DOI: 10.1080/23328940.2022.2135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022] Open
Abstract
The heated environment shifts the sympatho-vagal balance toward sympathetic predominance and vagal withdrawal. Women's heart is more reliant on vagal autonomic control, while men's heart is more dependent on sympathetic control. However, sex differences in cardiovascular autonomic responses to heat stress remain unknown. We aimed to investigate the cardiovascular autonomic regulation under heat stress between sexes. Thirty-two young participants (27 ± 4 years old; 16 women) were enrolled in a single visit, resting for 30min at baseline (thermal reference condition TC; ∼24°C) and 30min under a heated environment (HOT; ∼38°C). Blood pressure (BP), skin temperature, electrocardiogram, and respiratory oscillations were continuously recorded. The heart rate variability (HRV) was assessed by spectral analysis (low-frequency [LFnu; sympathetic and vagal] and high-frequency [HFnu; vagal]), and symbolic analysis (0 V% [sympathetic] and 2UV%, and 2LV% [vagal]). The spontaneous baroreflex sensitivity (BRS) was calculated by the gain between BP and R-R within the LF band (αLF). The estimated maximal aerobic capacity and body surface area were employed as covariates in sex comparisons. The effects of HOT were the following: 1) Women have a greater cardiac vagal withdrawal to heat stress compared to men; 2) Sex differences on cardiac autonomic response to heat stress exist after controlling for the effect of estimated physical fitness and body surface area. Therefore, heat stress provokes a higher vagal withdrawal to the heart in women compared to men. It could be attributed to sex per se since significant differences between men and women were not modified after covariate analysis.
Collapse
Affiliation(s)
- Felipe C. Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Michelle Cristina S. V. Padilha
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Eleonora Tobadini
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Pedro Paulo S. Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel D. Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
| |
Collapse
|
7
|
Renberg J, Lignier MJ, Wiggen ØN, Færevik H, Helgerud J, Sandsund M. Heat tolerance during uncompensable heat stress in men and women wearing firefighter personal protective equipment. APPLIED ERGONOMICS 2022; 101:103702. [PMID: 35121406 DOI: 10.1016/j.apergo.2022.103702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Firefighters run a risk of heat strain during occupational tasks. The number of female firefighters has been increasing, but research relevant to this group is still scarce. We aimed to investigate whether there are any sex differences in heat tolerance or physiological responses during uncompensable heat stress while wearing firefighter personal protective equipment. Twelve female (28 ± 7 years, 66 ± 5 kg, 51.7 ± 4.7 mL kg-1 min-1) and 12 male (27 ± 7 years, 83 ± 8 kg, 58.8 ± 7.5 mL kg-1 min-1) participants performed walking (maximum of 60 min) at 6W·kg-1, 40 °C, and 14% relative humidity. No differences were observed between groups in heat tolerance, rectal temperature, heart rate, percent body mass loss, thermal sensation, and rate of perceived exertion. Thus, when personnel are selected using gender-neutral physical employment standards, sex is not an independent factor influencing heat tolerance when wearing firefighter personal protective equipment during uncompensable heat stress.
Collapse
Affiliation(s)
- Julie Renberg
- SINTEF Digital, Department of Health Research, Trondheim, Norway.
| | - Maxime Jeanovitch Lignier
- Norwegian University of Science and Technology (NTNU), Department of Neuromedicine and Movement Science, Trondheim, Norway
| | | | - Hilde Færevik
- SINTEF Digital, Department of Health Research, Trondheim, Norway
| | - Jan Helgerud
- Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Trondheim, Norway; Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Mariann Sandsund
- SINTEF Digital, Department of Health Research, Trondheim, Norway
| |
Collapse
|
8
|
Notley SR, Akerman AP, Friesen BJ, Poirier MP, McCourt E, Flouris A, Kenny GP. Heat tolerance and the validity of occupational heat exposure limits in women during moderate-intensity work. Appl Physiol Nutr Metab 2022; 47:711-724. [PMID: 35259026 DOI: 10.1139/apnm-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To mitigate excessive rises in core temperature (>1°C) in non heat-acclimatized workers, the American Conference of Governmental Industrial Hygienists (ACGIH) provide heat stress limits (Action Limit Values; ALV), defined by the wet-bulb globe temperature (WBGT) and a worker's metabolic rate. However, since these limits are based on data from men, their suitability for women remains unclear. We therefore assessed core temperature and heart rate in men (n=19; body surface area-to-mass ratio: 250 (SD 17) cm2/kg) and women (n=15; body surface area-to-mass ratio: 268 (SD 24) cm2/kg) aged 18-45 years during 180-min walking at a moderate metabolic rate (200 W/m2) in WBGTs below (16 and 24°C) and above (28 and 32°C) ACGIH ALV. Sex did not significantly influence (i) rises in core temperature, irrespective of WBGT, (ii) the proportion of participants with rises in core temperature >1°C in environments below ACGIH limits, and (iii) work duration before rises in core temperature exceeded 1°C or volitional termination in environments above ACGIH limits. Although further studies are needed, these findings indicate that for the purpose of mitigating rises in core temperature exceeding recommended limits (>1°C), ACGIH guidelines have comparable effectiveness in non heat-acclimatized men and women when working at a moderate metabolic rate. Novelty points • Sex did not appreciably influence thermal strain nor the proportion of participants with core temperatures exceeding recommended limits. • Sex did not significantly influence tolerance to uncompensable heat stress • Despite originating from data obtained in only men, current occupational heat stress guidance offered comparable effectiveness in men and women.
Collapse
Affiliation(s)
| | | | - Brian J Friesen
- University of Ottawa, Human Kinetics, Ottawa, Ontario, Canada;
| | - Martin P Poirier
- University of Ottawa, School of Human Kinetics, Faculty of Health Sciences, Ottawa, Ontario, Canada;
| | | | - Andreas Flouris
- FAME Laboratory, Institute of Human Performance and Rehabilitation, Centre for Research and Technology Thessaly, Trikala, Thessaly, Greece.,Department of Research and Technology Development, Biomnic Ltd., Trikala, Thessaly, Greece;
| | - Glen P Kenny
- University of Ottawa, 6363, Ottawa, Canada, K1N 6N5.,Ottawa Hospital Research Institute, 10055, Ottawa, Canada, K1Y 4E9;
| |
Collapse
|
9
|
Folkerts MA, Bröde P, Botzen WJW, Martinius ML, Gerrett N, Harmsen CN, Daanen HAM. Sex differences in temperature-related all-cause mortality in the Netherlands. Int Arch Occup Environ Health 2022; 95:249-258. [PMID: 34089351 PMCID: PMC8755659 DOI: 10.1007/s00420-021-01721-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Over the last few decades, a global increase in both cold and heat extremes has been observed with significant impacts on human mortality. Although it is well-identified that older individuals (> 65 years) are most prone to temperature-related mortality, there is no consensus on the effect of sex. The current study investigated if sex differences in temperature-related mortality exist in the Netherlands. METHODS Twenty-three-year ambient temperature data of the Netherlands were combined with daily mortality data which were subdivided into sex and three age classes (< 65 years, 65-80 years, ≥ 80 years). Distributed lag non-linear models were used to analyze the effect of ambient temperature on mortality and determine sex differences in mortality attributable to the cold and heat, which is defined as mean daily temperatures below and above the Minimum Mortality Temperature, respectively. RESULTS Attributable fractions in the heat were higher in females, especially in the oldest group under extreme heat (≥ 97.5th percentile), whilst no sex differences were found in the cold. Cold- and heat-related mortality was most prominent in the oldest age group (≥ 80 years) and to a smaller extent in the age group between 65-80 years. In the age group < 65 years temperature-related mortality was only significant for males in the heat. CONCLUSION Mortality in the Netherlands represents the typical V- or hockey-stick shaped curve with a higher daily mortality in the cold and heat than at milder temperatures in both males and females, especially in the age group ≥ 80 years. Heat-related mortality was higher in females than in males, especially in the oldest age group (≥ 80 years) under extreme heat, whilst in the cold no sex differences were found. The underlying cause may be of physiological or behavioral nature, but more research is necessary.
Collapse
Affiliation(s)
- Mireille A Folkerts
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - W J Wouter Botzen
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Mike L Martinius
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Nicola Gerrett
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | | | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Hutchins KP, Borg DN, Bach AJE, Bon JJ, Minett GM, Stewart IB. Female (Under) Representation in Exercise Thermoregulation Research. SPORTS MEDICINE - OPEN 2021; 7:43. [PMID: 34156570 PMCID: PMC8219822 DOI: 10.1186/s40798-021-00334-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/06/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Despite an increasing rate of women participating in professional sports, emergency services, and military settings where they are exposed to exertional heat stress, our understanding of female thermoregulation and the detrimental effects of heat on women's performance, especially regarding the menstrual cycle, is limited. This review aimed to quantify the representation of women in exercise thermoregulation research between 2010 and 2019 and the frequency that these articles reported details pertaining to female participants' menstrual cycle to determine the volume of novel research that is directly relevant to this growing population. METHODS Original exercise thermoregulatory studies published in three major sports medicine databases (PubMed, MEDLINE, and SPORTDiscus) between 2010 and 2019 were surveyed. Articles were screened to determine the number of female and male participants in the study and whether studies involving women reported menstrual orientation or phase. Research involving healthy adult participants and an exercise protocol with a thermoregulatory outcome measure were included in the review. RESULTS A total of 1407 articles were included in the review, involving 28,030 participants. The annual representation of women ranged from a mean of 11.6% [95% credible interval (CI); 9.2, 14.3] to 17.8% [95% CI; 15.2, 20.6] across the 10 years, indicating studies predominantly included men. Nonetheless, there was a small statistical increase in the overall proportion of women, with a mean overall proportion change of 0.7% [95% CI; 0.2, 1.2] per year. The increase appeared to be driven by a reduction in the number of studies including only men, rather than studies including more women alongside men, or increased women-only studies. Less than one third of articles involving women reported the menstrual orientation of participants and less than one quarter reported both menstrual orientation and phase. This study shows that women were proportionally underrepresented in exercise thermoregulation research during the past decade and the majority of studies did not report menstrual cycle details of female participants. Researchers should consider including women in future work where their inclusion could contribute meaningful data that enhance the evidence-based and ultimately improves our comprehension of women's thermal physiology.
Collapse
Affiliation(s)
- Kate P Hutchins
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia.
| | - David N Borg
- The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Aaron J E Bach
- The National Climate Change Adaption Research Facility, Griffith University, Gold Coast, Australia
| | - Joshua J Bon
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Australian Centre of Excellence for Mathematical and Statistical Frontiers, Brisbane, Australia
| | - Geoffrey M Minett
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ian B Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
11
|
Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res 2020; 7:58. [PMID: 33248459 PMCID: PMC7700709 DOI: 10.1186/s40779-020-00287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, Otago 9016 New Zealand
| | - Andrew Edward Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| |
Collapse
|
12
|
Sex differences in the physiological adaptations to heat acclimation: a state-of-the-art review. Eur J Appl Physiol 2020; 121:353-367. [PMID: 33205218 DOI: 10.1007/s00421-020-04550-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Over the last few decades, females have significantly increased their participation in athletic competitions and occupations (e.g. military, firefighters) in hot and thermally challenging environments. Heat acclimation, which involves repeated passive or active heat exposures that lead to physiological adaptations, is a tool commonly used to optimize performance in the heat. However, the scientific community's understanding of adaptations to heat acclimation are largely based on male data, complicating the generalizability to female populations. Though limited, current evidence suggests that females may require a greater number of heat acclimation sessions or greater thermal stress to achieve the same magnitude of physiological adaptations as males. The underlying mechanisms explaining the temporal sex differences in the physiological adaptations to heat acclimation are currently unclear. Therefore, the aims of this state-of-the-art review are to: (i) present a brief yet comprehensive synthesis of the current female and sex difference literature, (ii) highlight sex-dependent (e.g. anthropometric, menstrual cycle) and sex-independent factors (e.g. environmental conditions, fitness) influencing the physiological and performance adaptations to heat acclimation, and (iii) address key avenues for future research.
Collapse
|
13
|
Muscle temperature kinetics and thermoregulatory responses to 42 °C hot-water immersion in healthy males and females. Eur J Appl Physiol 2020; 120:2611-2624. [DOI: 10.1007/s00421-020-04482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|