1
|
Wang C, Chen B, Yu X, Guan X. Macrophages Unmasked: Their Pivotal Role in Driving Atherosclerosis in Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2025; 68:10. [PMID: 39920534 DOI: 10.1007/s12016-025-09025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that significantly increases the risk of cardiovascular diseases, particularly atherosclerosis (AS). Understanding the shared pathogenic mechanisms underlying SLE and AS is crucial for developing effective therapeutic strategies. Macrophages, as pivotal immune cells, play a critical role in the initiation and progression of atherosclerotic plaques within the context of SLE. This review delves into the molecular and cellular mechanisms governing macrophage activation and differentiation in response to SLE-related inflammatory mediators, highlighting their roles in lipid metabolism, plaque stability, and immune regulation. Additionally, we discussed the current treatment modalities for SLE and their impact on macrophage functionality, exploring these effects for atherosclerotic progression. By elucidating the intricate relationship between macrophages, SLE pathophysiology, and AS progression, this review underscores the need for a multidisciplinary approach in managing SLE and its cardiovascular complications, aiming to improve patient survival and quality of life through tailored therapeutic interventions addressing both autoimmune and cardiovascular pathologies.
Collapse
Affiliation(s)
- Chao Wang
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Bingxing Chen
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xiaochen Yu
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Fernando V, Zheng X, Sharma V, Sweef O, Choi ES, Furuta S. Reprogramming of breast tumor-associated macrophages with modulation of arginine metabolism. Life Sci Alliance 2024; 7:e202302339. [PMID: 39191486 PMCID: PMC11350068 DOI: 10.26508/lsa.202302339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor-associated macrophages (TAMs). Although TAMs consist of the immune-stimulatory M1 type and immune-suppressive M2 type, the M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1- versus M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2-TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- versus M2-TAMs is attributed to different availability of BH4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH4 precursor, elevates the expression of M1-TAM markers within HER2+ tumors. Here, we show that SEP restores BH4 levels in M2-like macrophages, which then redirects arginine metabolism to NO synthesis and converts M2 type to M1 type. The reprogrammed macrophages exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in the metabolic shift of the HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.
Collapse
Affiliation(s)
- Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Aurora, CO, USA
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Yung S, Chan TM. Endothelial cell activation and glycocalyx shedding - potential as biomarkers in patients with lupus nephritis. Front Immunol 2023; 14:1251876. [PMID: 37854589 PMCID: PMC10579905 DOI: 10.3389/fimmu.2023.1251876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Lupus nephritis (LN) is a common and severe manifestation of systemic lupus erythematosus and an important cause of acute and chronic kidney injury. Early diagnosis of LN and preventing relapses are key to preserving renal reserve. However, due to the complexity and heterogeneity of the disease, clinical management remains challenging. Kidney biopsy remains the gold standard for confirming the diagnosis of LN and subsequent assessment of kidney histopathology, but it is invasive and cannot be repeated frequently. Current clinical indicators of kidney function such as proteinuria and serum creatinine level are non-specific and do not accurately reflect histopathological changes, while anti-dsDNA antibody and C3 levels reflect immunological status but not kidney injury. Identification of novel and specific biomarkers for LN is prerequisite to improve management. Renal function deterioration is associated with changes in the endothelial glycocalyx, a delicate gel-like layer located at the interface between the endothelium and bloodstream. Inflammation induces endothelial cell activation and shedding of glycocalyx constituents into the circulation. This review discusses the potential role of soluble glycocalyx components as biomarkers of active LN, especially in patients in whom conventional serological and biochemical markers do not appear helpful.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Fernando V, Zheng X, Sharma V, Furuta S. Reprogramming of breast tumor-associated macrophages with modulation of arginine metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554238. [PMID: 37662241 PMCID: PMC10473631 DOI: 10.1101/2023.08.22.554238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor associated macrophages (TAMs). While TAMs consist of the immune-stimulatory M1-type and immune-suppressive M2-type, M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1 vs. M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2-TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- vs M2-TAMs is attributed to different availability of BH4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH4 precursor, elevates the expression of M1-TAM markers within HER2+ tumors. Here, we show that SEP restores BH4 levels in M2-TAMs, which then redirects arginine metabolism to NO synthesis and converts M2-TAMs to M1-TAMs. The reprogrammed TAMs exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in metabolic shift of HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.
Collapse
Affiliation(s)
- Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Mail Stop B115, 1775 Aurora Court, Aurora, Colorado 80045
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| |
Collapse
|
5
|
Yin YL, Chen Y, Ren F, Wang L, Zhu ML, Lu JX, Wang QQ, Lu CB, Liu C, Bai YY, Wang SX, Wang JZ, Li P. Nitrosative stress induced by homocysteine thiolactone drives vascular cognitive impairments via GTP cyclohydrolase 1 S-nitrosylation in vivo. Redox Biol 2022; 58:102540. [DOI: 10.1016/j.redox.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
|
6
|
Oates JC, Russell DL, Van Beusecum JP. Endothelial cells: potential novel regulators of renal inflammation. Am J Physiol Renal Physiol 2022; 322:F309-F321. [PMID: 35129369 PMCID: PMC8897017 DOI: 10.1152/ajprenal.00371.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Substantial evidence has supported the role of endothelial cell (EC) activation and dysfunction in the development of hypertension, chronic kidney disease (CKD), and lupus nephritis (LN). In both humans and experimental models of hypertension, CKD, and LN, ECs become activated and release potent mediators of inflammation including cytokines, chemokines, and reactive oxygen species that cause EC dysfunction, tissue damage, and fibrosis. Factors that activate the endothelium include inflammatory cytokines, mechanical stretch, and pathological shear stress. These signals can activate the endothelium to promote upregulation of adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which promote leukocyte adhesion and migration to the activated endothelium. More importantly, it is now recognized that some of these signals may in turn promote endothelial antigen presentation through major histocompatibility complex II. In this review, we will consider in-depth mechanisms of endothelial activation and the novel mechanism of endothelial antigen presentation. Moreover, we will discuss these proinflammatory events in renal pathologies and consider possible new therapeutic approaches to limit the untoward effects of endothelial inflammation in hypertension, CKD, and LN.
Collapse
Affiliation(s)
- Jim C. Oates
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dayvia L. Russell
- 2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Justin P. Van Beusecum
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,3Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Mancardi D, Arrigo E, Cozzi M, Cecchi I, Radin M, Fenoglio R, Roccatello D, Sciascia S. Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players? Eur J Clin Invest 2021; 51:e13441. [PMID: 33128260 DOI: 10.1111/eci.13441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
In systemic lupus erythematosus (SLE) patients, most of the clinical manifestation share a vascular component triggered by endothelial dysfunction. Endothelial cells (ECs) activation occurs both on the arterial and venous side, and the high vascular density of kidneys accounts for the detrimental outcomes of SLE through lupus nephritis (LN). Kidney damage, in turn, exerts a negative feedback on the cardiovascular (CV) system aggravating risk factors for CV diseases such as hypertension, stroke and coronary syndrome among others. Despite the intensive investigation on SLE and LN, the role of endothelial dysfunction, as well as the underlying mechanisms, remains to be fully understood, with no specifically targeted pharmacological treatment. It is not known, in fact, if the activation pathway(s) in venous ECs are similar to the one in arterial ECs and doubts persist on the shared manifestation of microcirculation compared to macrocirculation. In this work, we aim to review the recent literature about the role of endothelial activation and dysfunction in the development of CV complications in SLE and LN patients. We, therefore, focus on arteriovenous similarities and differences and on specific pathways of great vessels compared to capillaries. Critically summarising the available data is of pivotal importance for both basic researchers and clinicians in order to develop and test new pharmacological approaches in the treatment of basic components of SLE and LN.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Martina Cozzi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy.,School of Specialization in Nephrology, University of Verona, Verona, Italy
| | - Irene Cecchi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Massimo Radin
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Roberta Fenoglio
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Dario Roccatello
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | - Savino Sciascia
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases-Nephrology and Dialysis S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Russell DA, Markiewicz M, Oates JC. Lupus serum induces inflammatory interaction with neutrophils in human glomerular endothelial cells. Lupus Sci Med 2020; 7:e000418. [PMID: 33037079 PMCID: PMC7549476 DOI: 10.1136/lupus-2020-000418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES SLE is associated with endothelial cell dysfunction (ECD). Understanding how ECD leads to neutrophil infiltration into glomeruli is essential to finding therapeutic targets for SLE. The aim of this study is to determine the effect of SLE serum from patients with active disease to induce neutrophil adhesion to and chemotaxis towards glomerular endothelial cells and factors induced by serum that associate with neutrophil chemotaxis. METHODS Patients with SLE had serum collected during paired longitudinal visits with lower and higher activity. 13 patients with SLE (5 SLE, 5 SLE with hypertension (HTN) and 3 SLE lupus nephritis (LN) and HTN), and 10 healthy controls (5 with and 5 without HTN) were examined. The adhesion of neutrophils to serum-treated human renal glomerular endothelial cells (HRGECs) or chemotaxis of neutrophils towards conditioned media from serum-treated HRGECs was determined, and levels of cytokines in this conditioned medium were quantified. Pathway analysis of cytokines induced by SLE and LN serum that associated with neutrophil migration was performed. RESULTS HRGECs treated with SLE serum induced significantly greater neutrophil chemotaxis and adhesion compared with control serum. When examining specific cohorts, SLE HTN and LN HTN promoted greater neutrophil chemotaxis than control serum, while SLE HTN and LN HTN promoted greater chemotaxis than SLE serum. Serum from active disease visits promoted neutrophil chemotaxis and adhesion over paired inactive visits. Levels of platelet-derived growth factor-BB, interleukin (IL)-15 and IL-8 secreted by SLE serum-treated HRGECs positively correlated with neutrophil chemotaxis. Pathway analysis suggested that LN serum induced pathways important in endoplasmic reticulum and oxidative stress. CONCLUSIONS SLE serum induces expression of mediators by HRGECs that promote neutrophil chemotaxis and adhesion, which increases during disease activity, and associates with factors common to pathways of endoplasmic reticulum and oxidative stress. These findings highlight the potential importance of serum factor-induced ECD in SLE and LN.
Collapse
Affiliation(s)
- Dayvia A Russell
- Medical Service, Ralph H Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Margaret Markiewicz
- Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jim C Oates
- Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Medical Service, Ralph H Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|