1
|
Tehrani AM, Hajiketabi S, Berijani N, Samadi M. Investigating the respiratory and systemic effects of exposure to BTEX among municipal solid waste workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125525. [PMID: 39672371 DOI: 10.1016/j.envpol.2024.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Workers at municipal solid waste (MSW) facilities may be exposed to a range of volatile organic compounds (VOCs). This study aimed to evaluate the potential systemic and respiratory effects, as well as to conduct cancer and non-cancer health risk assessments, associated with exposure to an important group of VOCs-Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)-among MSW workers. For this purpose, 48 air samples were collected from an MSW facility (36 samples from the landfill and 12 samples from the transfer station) and from a green space serving as the control area (n = 6), located in Hamedan, in the west of Iran, during the spring and summer of 2019. Additionally, 60 individuals (30 in the exposure group and 30 in the control group) underwent testing for inflammatory markers, blood factors, and respiratory function. The highest levels of all BTEX compounds were detected at the transfer station, while the lowest concentrations were found at the green space. The mean concentrations of total BTEX compounds were 127 μg/m³, 42 μg/m³, and 4 μg/m³ for air samples collected from the transfer station, the landfill, and the green space, respectively, with Toluene being the dominant pollutant at all sampling sites. While all BTEX compound concentrations remained below the Reference Concentration (RfC) and Threshold Limit Value (TLV), high lifetime cancer risks (LCRs) for Benzene and Ethylbenzene were observed at certain sampling locations, particularly at the transfer station and the active zone of landfill, with LCR values exceeding acceptable thresholds. Biological monitoring of workers indicated that working at sites with higher concentrations of BTEX adversely impacted blood biomarkers and respiratory function. This emphasizes the need for more effective protective strategies to minimize exposure and address associated occupational hazards.
Collapse
Affiliation(s)
- Ashraf Mazaheri Tehrani
- Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Sajjad Hajiketabi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammadtaghi Samadi
- Research Center for Health Sciences, Department of Environment Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Sun M, Li X, Geng M, Zhou X, Zhang Z, Nie H, Xia N, Huang G, Wang X, Zhang H. Associations of coke oven emission exposure with pulmonary function, blood pressure, blood cell parameters, and biochemical indices in coking workers: a cross-sectional pilot study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39582442 DOI: 10.1039/d4em00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Background and objective: Coke oven emissions (COEs) are formed in the process of coking production, mainly composed of polycyclic aromatic hydrocarbons (PAHs) and benzene; however, the health impacts of COE exposure in coking workers are not fully clear so far. We aimed to explore the associations of occupational COE exposure with pulmonary function, blood pressure, blood cell parameters, and blood biochemical indices, and to bolster health surveillance and disease prevention and control in coking workers. Methods: We investigated 566 coking workers at a large state-owned enterprise coking plant in Taiyuan, Shanxi, China, measured the concentrations of plasma 16 PAHs and urinary phenol, assessed the health outcomes including pulmonary function, blood pressure, the levels of peripheral hematologic parameters and biochemical indices, and examined the associations of PAH and phenol concentrations with the health outcomes using multiple linear regressions, least absolute shrinkage and selection operator regression (LASSO), and Bayesian kernel machine regression (BKMR). Results: After adjustment for confounders, plasma ∑15PAH concentration was significantly associated with increases in hemoglobin (HGB) and triglyceride (TG) levels in coking workers, and urinary phenol concentration was significantly associated with increases in the diastolic blood pressure (DBP) level, and decreases in platelet (PLT) count. When phenol concentration and PAH concentration were simultaneously included in the multiple linear regression model, both of them were associated with the level of HGB. LASSO and BKMR indicated that the PAHs with four rings and above contributed to the HGB level. Conclusion: PAH exposure could damage hematological parameters and blood lipids, and benzene exposure could increase blood pressure and decrease PLT count.
Collapse
Affiliation(s)
- Min Sun
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xin Li
- Radiological Health Department of TISCO General Hospital, Taiyuan 030003, Shanxi, China
| | - Mengmeng Geng
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiaoling Zhou
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhiyan Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Huixiang Nie
- Radiological Health Department of TISCO General Hospital, Taiyuan 030003, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Guoshun Huang
- Health Examination Department of TISCO General Hospital, Taiyuan 030003, Shanxi, China
| | - Xuhong Wang
- Health Examination Department of TISCO General Hospital, Taiyuan 030003, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| |
Collapse
|
3
|
Lima S, Santiago F, Silvestre RT, Elexias SRV, Ornellas MH, Ribeiro Carvalho MDM. Recent Advances in Biomonitoring of Gas Station Workers: A Systematic Review. Asian Pac J Cancer Prev 2024; 25:3439-3445. [PMID: 39471009 PMCID: PMC11711367 DOI: 10.31557/apjcp.2024.25.10.3439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND In Brazil, gas stations are not self-service; attendants fill fuel tanks, leading to chronic exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes), which can cause bone marrow degeneration and immunosuppression. This systematic review highlights recent advances in biomonitoring gas station workers (GSW). METHODS We searched PubMed, Medline, and Cochrane databases for articles in English, French, Portuguese, and Spanish from 2014 to April 30, 2024, using multiple search terms. RESULTS A total of 1,086 articles were identified, 322 were analyzed, and 13 were included in the final review. We highlighted recent technologies in GSW biomonitoring, such as immunophenotyping, molecular cytogenetics (FISH), and measuring miRNAs and inflammatory markers via ELISA. We also explored the link between benzene exposure and immunosuppression and suggested a potential association with chronic inflammation. Conclusion: GSWs face significant health risks and require continuous clinical monitoring, even in the absence of overt disease. Effect biomarkers may indicate early biological responses to benzene toxicity and highlight potential health risks. However, there is no universally accepted gold standard for assessing these biomarkers.
Collapse
Affiliation(s)
- Simone Lima
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
| | - Fabio Santiago
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Department of Pathology Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Rafaele Tavares Silvestre
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Laboratory of Circulating Biomarkers, Department of Pathology, Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Stêphanie Rocha Vieira Elexias
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
| | - Maria Helena Ornellas
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Laboratory of Circulating Biomarkers, Department of Pathology, Faculty of Medical Sciences (FCM), State, Brazil.
| | - Marilza de Moura Ribeiro Carvalho
- Graduation Program of Medical Sciences (PGCM), Medical Sciences Faculty (FCM), State University of Rio de Janeiro (UERJ), Brazil.
- Laboratory of Circulating Biomarkers, Department of Pathology, Faculty of Medical Sciences (FCM), State, Brazil.
| |
Collapse
|
4
|
Polyong CP, Roytrakul S, Sirivarasai J, Yingratanasuk T, Thetkathuek A. Novel Serum Proteomes Expressed from Benzene Exposure Among Gasoline Station Attendants. Biomark Insights 2024; 19:11772719241259604. [PMID: 38868168 PMCID: PMC11168042 DOI: 10.1177/11772719241259604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Background Research on the proteomes impact of benzene exposure in fuel station employees remains sparse, underscoring the need for detailed health impact assessments focusing on biomarker evaluation. Objectives This investigation aimed to analyze the differences in blood parameters and serum proteomes resulting from benzene exposure between gasoline station attendants (B-GSA) and a control group. Design and methods A cross-sectional analytical study was conducted with 96 participants, comprising 54 in the B-GSA group and 42 in the control group. The methodology employed included an interview questionnaire alongside urine and blood sample collections. The urine samples were analyzed for trans,trans-muconic acid (t,t-MA) levels, while the blood samples underwent complete blood count analysis and proteome profiling. Results Post-shift analysis indicated that the B-GSA group exhibited significantly higher levels of t,t-MA and monocytes compared to the control group (P < .05). Proteome quantification identified 1448 proteins differentially expressed between the B-GSA and control groups. Among these, 20 proteins correlated with the levels of t,t-MA in urine. Notably, 4 proteins demonstrated more than a 2-fold down-regulation in the B-GSA group: HBS1-like, non-structural maintenance of chromosomes element 1 homolog, proprotein convertase subtilisin/kexin type 4, and zinc finger protein 658. The KEGG pathway analysis revealed associations with apoptosis, cancer pathways, p53 signaling, and the TNF signaling pathway. Conclusion The changes in these 4 significant proteins may elucidate the molecular mechanisms underlying benzene toxicity and suggest their potential as biomarkers for benzene poisoning in future assessments.
Collapse
Affiliation(s)
- Chan Pattama Polyong
- Occupational Health and Safety Program, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jintana Sirivarasai
- Nutrition Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanongsak Yingratanasuk
- Department of Industrial Hygiene and Safety, Faculty of Public Health, Burapha University, Chonburi, Thailand
| | - Anamai Thetkathuek
- Department of Industrial Hygiene and Safety, Faculty of Public Health, Burapha University, Chonburi, Thailand
| |
Collapse
|
5
|
Cox LA, Thompson WJ, Mundt KA. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit Rev Toxicol 2024; 54:252-289. [PMID: 38753561 DOI: 10.1080/10408444.2024.2337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates and University of Colorado, Denver, CO, USA
| | | | - Kenneth A Mundt
- Independent Consultants in Epidemiology, Amherst, MA, USA
- Adjunct Professor of Epidemiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
6
|
Zhang D, Zhang Y, Xia S, Shen P, Yang C. Metabolic profiling of synovial fluid in human temporomandibular joint osteoarthritis. Front Immunol 2024; 15:1335181. [PMID: 38529278 PMCID: PMC10961395 DOI: 10.3389/fimmu.2024.1335181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Temporomandibular joint (TMJ) osteoarthritis (OA) is a common TMJ degenerative disease with an unclear mechanism. Synovial fluid (SF), an important component of TMJ, contains various proteins and metabolites that may directly contribute to OA. The present study aimed to investigate the influence of SF in TMJOA at the metabolite level. Methods Untargeted and widely targeted metabolic profiling were employed to identify metabolic changes in SF of 90 patients with different TMJOA grades according to TMJ magnetic resonance imaging. Results A total 1498 metabolites were detected. Most of the metabolites were amino acids and associated metabolites, benzene and substituted derivatives, and lipids. Among patients with mild, moderate and severe TMJOA, 164 gradually increasing and 176 gradually decreasing metabolites were identified, indicating that biosynthesis of cofactors, choline metabolism, mineral absorption and selenocompound metabolism are closely related to TMJOA grade. Combined metabolomics and clinical examination revealed 37 upregulated metabolites and 16 downregulated metabolites in patients with pain, of which 19 and 26 metabolites were positively and negatively correlated, respectively, with maximum interincisal opening. A model was constructed to diagnose TMJOA grade and nine biomarkers were identified. The identified metabolites are key to exploring the mechanism of TMJOA. Discussion In the present study, a metabolic profile was constructed and assessed using a much larger number of human SF samples from patients with TMJOA, and a model was established to contribute to the diagnosis of TMJOA grade. The findings expand our knowledge of metabolites in human SF of TMJOA patients, and provide an important basis for further research on the pathogenesis and treatment of TMJOA.
Collapse
Affiliation(s)
- Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
7
|
Zhang L, Liu Z, Zhang W, Wang J, Kang H, Jing J, Han L, Gao A. Gut microbiota-palmitoleic acid-interleukin-5 axis orchestrates benzene-induced hematopoietic toxicity. Gut Microbes 2024; 16:2323227. [PMID: 38436067 PMCID: PMC10913712 DOI: 10.1080/19490976.2024.2323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Due to the annual increase in its production and consumption in occupational environments, the adverse blood outcomes caused by benzene are of concern. However, the mechanism of benzene-induced hematopoietic damage remains elusive. Here, we report that benzene exposure causes hematopoietic damage in a dose-dependent manner and is associated with disturbances in gut microbiota-long chain fatty acids (LCFAs)-inflammation axis. C57BL/6J mice exposed to benzene for 45 days were found to have a significant reduction in whole blood cells and the suppression of hematopoiesis, an increase in Bacteroides acidifaciens and a decrease in Lactobacillus murinus. Recipient mice transplanted with fecal microbiota from benzene-exposed mice showed potential for hematopoietic disruption, LCFAs, and interleukin-5 (IL-5) elevation. Abnormally elevated plasma LCFAs, especially palmitoleic acid (POA) exacerbated benzene-induced immune-inflammation and hematopoietic damage via carnitine palmitoyltransferase 2 (CPT2)-mediated disorder of fatty acid oxidation. Notably, oral administration of probiotics protects the mice against benzene-induced hematopoietic toxicity. In summary, our data reveal that the gut microbiota-POA-IL-5 axis is engaged in benzene-induced hematopoietic damage. Probiotics might be a promising candidate to prevent hematopoietic abnormalities from benzene exposure.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Binzhou Medical University, Yantai, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sanjari Nia AH, Reyhani Ardabili M, Sheikhvand M, Bagheri-Mohammadi S, Niknejad H, Rasoulzadeh H, Movafagh A, Kharazi Neghad S, Baniasadi M, Ashrafi Asgarabad A, Hosseini Neiresi SM, Aghaei-Zarch SM. Non-coding RNAs: A new frontier in benzene-mediated toxicity. Toxicology 2023; 500:153660. [PMID: 37924934 DOI: 10.1016/j.tox.2023.153660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
One of the most frequent environmental contaminants, benzene is still widely used as an industrial solvent around the world, especially in developing nations, posing a serious occupational risk. While the processes behind the toxicity of benzene grounds are not fully understood, it is generally accepted that its metabolism, which involves one or more reactive metabolites, is crucial to its toxicity. In order to evaluate the many ways that benzene could influence gene regulation and thus have an impact on human health, new methodologies have been created. The pathophysiology of the disorder may result from epigenetic reprogramming caused by exposure to benzene, including changes in non-coding RNA (ncRNA) markers, according to recent studies. We are interested in the identification of hazardous regulatory ncRNAs, the identification of these ncRNAs' targets, and the comprehension of the significance of these interactions in the mechanisms behind benzene toxicity. Hence, the focus of recent research is on long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs), and some of the more pertinent articles are also discussed.
Collapse
Affiliation(s)
- Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mehran Reyhani Ardabili
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sheikhvand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Niknejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran; Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mohammad Baniasadi
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| | - Ahad Ashrafi Asgarabad
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| | - Seyedeh Mobina Hosseini Neiresi
- Department of Cell and Molecular Biology, School of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhao H, Tang Z, Wang Z, Li J, Hu Z, Wang Q, Yu Q, Zhang X, Zhou B, Meng E. Quantitative simulationSimulation of nitrogen doping effects on benzene selective adsorption by activated carbon in aqueous conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122819. [PMID: 39491158 DOI: 10.1016/j.envpol.2023.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Investigating the impact of nitrogen doping on the selective adsorption of benzene on activated carbon under aqueous conditions holds significant importance in regulating nitrogen content on activated carbon precisely and enhancing benzene adsorption in the air. This study utilizes quantum chemical simulation to systematically compute the pairwise interactions of pyridine nitrogen, pyrrole nitrogen, graphite nitrogen, and their coexistence on carbon materials, including electrostatic potential, van der Waals potential, and polarity changes. We examine the adsorption of benzene and water on nitrogen-doped carbon materials and calculate the type and proportion of weak interactions in the adsorption process through energy decomposition analysis. Visual analysis of weak interactions is conducted via independent gradient scatter plots and isosurface plots. Based on this research, we investigate the influence of nitrogen doping on the competitive adsorption of benzene and water on carbon materials using adsorption energy and configuration changes. Our findings reveal that nitrogen doping disrupts the uniform electrostatic potential distribution and polarity of carbon materials. Specifically, graphite nitrogen inhibits water molecule adsorption by enhancing mutual repulsion and weakening dispersion and electrostatic interactions, consequently promoting benzene adsorption on carbon materials. Moreover, hydrogen bonds form between pyridine nitrogen, pyrrole nitrogen, and water, making carbon materials more hydrophilic. However, when combined with graphite nitrogen, this increases the negative van der Waals potential of carbon materials, further enhancing benzene adsorption. Experimental results align with the simulation, reinforcing the significance of this research in developing efficient activated carbon adsorbents for benzene under aqueous conditions.
Collapse
Affiliation(s)
- Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Ziyu Tang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Jun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zhipei Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qingshu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qi Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bo Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Erlin Meng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
10
|
Liu Z, Guo X, Zhang W, Wang J, Zhang L, Jing J, Han L, Gao A. Oxidative stress-affected ACSL1 hydroxymethylation triggered benzene hematopoietic toxicity by inflammation and senescence. Food Chem Toxicol 2023; 180:114030. [PMID: 37689099 DOI: 10.1016/j.fct.2023.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Long-term benzene exposure is harmful and causes hematopoietic dysfunction. However, the mechanism of benzene hematopoietic toxicity is still unclear. Acyl-CoA Synthetase Long-Chain Family Member 1 (ACSL1) has been found to participate in the progress of a variety of benign and malignant diseases, but there is no research about its effect on benzene-induced hematopoietic toxicity. Herein, We exposed C57BL/6J mice to benzene to construct an in vivo model. Human peripheral blood mononuclear cells (THP-1 cells) were treated with benzene metabolite 1, 4-BQ to construct an in vitro model. We observed that the ACSL1 expression was upregulated both in vivo and in vitro. Moreover, inhibition of ACSL1 relieved inflammation and senescence development in vitro, suggesting that ACSL1 mediates inflammation and senescence. As for the regulation mechanism of ACSL1 expression, it is closely related to hydroxymethylation modification. This was proved by hydroxymethylated DNA immunoprecipitation (hMeDIP) experiments. Furthermore, oxidative stress influenced the hydroxymethylation process. These results showed that benzene hematopoietic toxicity occurs through the induction of oxidative stress and thus the regulation of ACSL1 hydroxymethylation, which in turn mediates inflammation and senescence. Thus, this study might be of great significance in identifying and preventing benzene exposure in the early stage.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
11
|
Xu K, Huang J, Pu Y, Liang G, Yin L, Zhang J, Sun R, Pu Y. Characterization of lymphocyte subsets and intestinal short-chain fatty acids in benzene-induced immunosuppressive mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60907-60919. [PMID: 37041361 DOI: 10.1007/s11356-023-26793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Exposure to benzene causes immunosuppression, but the mechanism has not been clarified. In this study, mice were subcutaneously injected with different concentrations (0, 6, 30 and 150 mg/kg) of benzene for four weeks. The lymphocytes of bone marrow (BM), spleen and peripheral blood (PB) and the level of short-chain fatty acids (SCFAs) in mouse intestine were measured. The results showed that benzene exposure led to a reduction in CD3+ and CD8+ lymphocytes in mouse BM, spleen and PB, and CD4+ lymphocytes were increased in mouse spleen but decreased in mouse BM and PB after 150 mg/kg benzene exposure. In addition, Pro-B lymphocytes were reduced in mouse BM in the 6 mg/kg group. Besides, the levels of IgA, IgG, IgM, IL-2, IL-4, IL-6, IL-17a, TNF-α and IFN-γ in mouse serum were reduced after benzene exposure. Furthermore, the levels of acetic, propionic, butyric and hexanoic acid were reduced in mouse intestine, and the AKT-mTOR signaling pathway was activated in mouse BM cells after benzene exposure. Our results demonstrate that benzene induced immunosuppression in mice, and the B lymphocytes in BM are more sensible to benzene-induced toxicity. The reduction in mouse intestinal SCFAs as well as the activation of AKT-mTOR signaling may be related to the occurrence of benzene immunosuppression. Our study provides new insight for further mechanistic research on benzene-induced immunotoxicity.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Zhao H, Tang Z, He M, Yang X, Lai S, An K, Han S, Qu Z, Zhou W, Wang Z. Effect of oxygen functional groups on competitive adsorption of benzene and water on carbon materials: Density functional theory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160772. [PMID: 36513224 DOI: 10.1016/j.scitotenv.2022.160772] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
It is important to study the effect of oxygen-containing functional groups on the competitive adsorption mechanism of benzene and water on the surface of carbon materials, and to directional modification of activated carbon to improve its selective adsorption of benzene in air. In this study, the adsorption characteristics of benzene and water on original and linked ester, carboxyl, hydroxyl, carbon materials linked by ether groups were calculated by quantum chemical simulation based on density functional theory. The types and proportions of weak interactions in the adsorption process were calculated by energy decomposition analysis, and the adsorption mechanism of carbon materials for water and benzene was described. The influence and contribution of oxygen-containing functional groups on the adsorption of benzene and water were further analyzed by van der Waals potential and electrostatic potential, respectively, so as to determine the difference in the adsorption effect of different types of oxygen-containing functional groups on the two molecules. It was found that the carboxyl group has a great influence on the hydrophilicity of carbon materials, and the electrostatic potential distribution before and after linking the carboxyl group changed significantly. Therefore, they can attract each other with water through hydrogen bonds and occupy the surface adsorption sites of carbon materials, thereby inhibiting the adsorption of benzene on carbon materials. On the contrary, due to its hydrophobic properties, the ether group will free up adsorption space for the adsorption of benzene on the surface of the carbon material, which is beneficial to the adsorption of benzene. The adsorption experiments were carried out, and the results were consistent with the simulation. This study provides an idea for preparing efficient carbonaceous adsorbent of benzene and reducing benzene pollution in industry.
Collapse
Affiliation(s)
- Haiqian Zhao
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Ziyu Tang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Mingqi He
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xue Yang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Shiwei Lai
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Kaibo An
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Shuaishuai Han
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China.
| |
Collapse
|
13
|
Zhang L, Louie A, Rigutto G, Guo H, Zhao Y, Ahn S, Dahlberg S, Sholinbeck M, Smith MT. A systematic evidence map of chronic inflammation and immunosuppression related to per- and polyfluoroalkyl substance (PFAS) exposure. ENVIRONMENTAL RESEARCH 2023; 220:115188. [PMID: 36592815 PMCID: PMC10044447 DOI: 10.1016/j.envres.2022.115188] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The ability to induce chronic inflammation and immunosuppression are two key characteristics of carcinogens and important forms of immunotoxicity. The National Toxicology Program (NTP) evaluated the immunotoxicity of two per- and polyfluoroalkyl substances (PFASs), PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate), in 2016. However, the potential pro-inflammatory and immunosuppressive effects of other PFASs remain largely uncharacterized. METHODS We developed an expanded set of search terms pertaining to the chronic inflammatory and immunosuppressive effects of PFASs based on those of the International Agency for Research on Cancer (IARC) and NTP. To confirm searching effectiveness and scope, we compared our search term results with those of IARC and NTP for both PFASs and two other known carcinogens, chromium (VI) and benzene. Systematic evidence maps (SEMs) were also produced using Tableau to visualize the distribution of study numbers and types reporting immunotoxic effects and specific biomarkers elicited by PFAS exposures. RESULTS In total, 1155 PFAS studies were retrieved, of which 321 qualified for inclusion in our dataset. Using our search terms, we identified a greater number of relevant studies than those obtained using IARC and NTP's search terms. From the SEM findings, increased cytokine production strengthened an association between PFAS exposure and chronic inflammation, and decreased B-cell activation and altered levels of T-cell subtypes and immunoglobulins confirmed PFAS-induced immunosuppression. CONCLUSION Our SEM findings confirm that several PFASs commonly found in both in the environment, including those that are lesser-known, may induce immunosuppression and chronic inflammation, two key characteristics of carcinogens. This approach, including development of search terms, study screening process, data coding, and evidence mapping visualizations, can be applied to other key characteristics of chemical carcinogens.
Collapse
Affiliation(s)
- Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA.
| | - Allen Louie
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA; Molecular Toxicology Interdepartmental Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Helen Guo
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Yun Zhao
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Stacy Ahn
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Sarah Dahlberg
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Michael Sholinbeck
- Bioscience, Natural Resources & Public Health Library, University of California, Berkeley, CA, 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Pech K, Pérez-Herrera N, Vértiz-Hernández ÁA, Lajous M, Farías P. Health Risk Assessment in Children Occupationally and Para-Occupationally Exposed to Benzene Using a Reverse-Translation PBPK Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2275. [PMID: 36767642 PMCID: PMC9915979 DOI: 10.3390/ijerph20032275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Benzene is a known human carcinogen and one of the ten chemicals of major public health concern identified by the World Health Organization. Our objective was to evaluate benzene's carcinogenic and non-carcinogenic health risks (current and projected) in highly exposed children in Yucatan, Mexico. Benzene exposure was estimated through a reverse-translation, four-compartment, physiologically based pharmacokinetic model (PBPK) based on previously performed urine trans, trans-muconic acid (benzene metabolite) determinations. Using a risk assessment methodology, the carcinogenic and non-carcinogenic risks of benzene were estimated for 6-12-year-old children from a family of shoemakers. The children's hazard quotients for decreased lymphocyte count were 27 and 53 for 4 and 8 h/day exposure, respectively, and 37 for the projected 8 h/day exposure in adults. The risks of developing leukemia were 2-6 cases in 1000 children exposed 4 h/day; 4-10 cases in 1000 children exposed 8 h/day, and 2-9 cases in 1000 adults with an 8 h/day lifetime exposure. Children in Yucatan working in shoe-manufacturing workshops, or living next to them, are exposed to benzene concentrations above the reference concentration and have unacceptably high risks of presenting with non-carcinogenic and carcinogenic hematologic symptoms, now and in the future. Interventions to prevent further exposure and mitigate health risks are necessary.
Collapse
Affiliation(s)
- Kristal Pech
- Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico
| | - Norma Pérez-Herrera
- Laboratorio de Enfermedades Crónicas y Degenerativas, Unidad Interinstitucional de Investigación Clínica y Epidemiológica, Universidad Autónoma de Yucatán, Mérida 97000, Mexico
| | | | - Martín Lajous
- Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Paulina Farías
- Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico
| |
Collapse
|
15
|
Cordiano R, Papa V, Cicero N, Spatari G, Allegra A, Gangemi S. Effects of Benzene: Hematological and Hypersensitivity Manifestations in Resident Living in Oil Refinery Areas. TOXICS 2022; 10:678. [PMID: 36355969 PMCID: PMC9697938 DOI: 10.3390/toxics10110678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Literature is teeming with publications on industrial pollution. Over the decades, the main industrial pollutants and their effects on human health have been widely framed. Among the various compounds involved, benzene plays a leading role in the onset of specific diseases. Two systems are mainly affected by the adverse health effects of benzene exposure, both acute and chronic: the respiratory and hematopoietic systems. The most suitable population targets for a proper damage assessment on these systems are oil refinery workers and residents near refining plants. Our work fits into this area of interest with the aim of reviewing the most relevant cases published in the literature related to the impairment of the aforementioned systems following benzene exposure. We perform an initial debate between the two clinical branches that see a high epidemiological expression in this slice of the population examined: residents near petroleum refinery areas worldwide. In addition, the discussion expands on highlighting the main immunological implications of benzene exposure, finding a common pathophysiological denominator in inflammation, oxidative stress, and DNA damage, thus helping to set the basis for an increasingly detailed characterization aimed at identifying common molecular patterns between the two clinical fields discussed.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Spatari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
16
|
Germolec DR, Lebrec H, Anderson SE, Burleson GR, Cardenas A, Corsini E, Elmore SE, Kaplan BL, Lawrence BP, Lehmann GM, Maier CC, McHale CM, Myers LP, Pallardy M, Rooney AA, Zeise L, Zhang L, Smith MT. Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:105001. [PMID: 36201310 PMCID: PMC9536493 DOI: 10.1289/ehp10800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.
Collapse
Affiliation(s)
- Dori R. Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Herve Lebrec
- Translational Safety & Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Gary R. Burleson
- Burleson Research Technologies, Inc., Morrisville, North Carolina, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah E. Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Barbara L.F. Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Curtis C. Maier
- In Vitro In Vivo Translation, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - L. Peyton Myers
- Division of Pharm/Tox, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Federal Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marc Pallardy
- Inserm, Inflammation microbiome immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Andrew A. Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
17
|
Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek 2022; 115:1113-1128. [PMID: 35841500 PMCID: PMC9363352 DOI: 10.1007/s10482-022-01759-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).
Collapse
|
18
|
Julaton T, Taclendo A, Oyong G, Rempillo O, Galvez MC, Vallar E. In Silico Insights on the Pro-Inflammatory Potential of Polycyclic Aromatic Hydrocarbons and the Prospective Anti-Inflammatory Capacity of Andrographis paniculata Phytocompounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148588. [PMID: 35886440 PMCID: PMC9317509 DOI: 10.3390/ijerph19148588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Inflammation linked to various diseases is the biological response to certain stimuli. The pro-inflammatory potential of Polycyclic Aromatic Hydrocarbons (PAHs) as potential inducers of inflammation bound to the Toll-like Receptor 4 (TLR4) and the anti-inflammatory capacity of A. paniculata (AP) phytocompounds as prospective inhibitors of the Nuclear Factor Kappa B (NF-κB) p50 transcription factor are investigated via in silico techniques. The molecular docking of the PAHs and AP phytocompounds is performed in AutoDock Vina by calculating their binding energies. The molecular dynamics simulations (MDS) of the apo and ligand-bound complex of the top binding ligands were performed in CABS-flex. The agonists, which included the PAHs indeno(1,2,3-cd)pyrene (IP), and dibenz(a,h)anthracene (DahA), had the highest binding energies of −10 kcal/mol and −9.2 kcal/mol, respectively. The most stable antagonists in the binding site with binding energies to the NF-κB p50 were the AP phytocompounds with −5.6 kcal/mol for ergosterol peroxide and −5.3 kcal/mol for 14-deoxy-14,15-dehydroandrographolide. The MDS of the apo human TLR4 and PAH-bound TLR4, and the apo p50 and the AP phytocompound-bound NF-κB p50 showed minimal fluctuations. These results reveal that IP and DahA are significant inducers of inflammation, whereas ergosterol peroxide and 14-deoxy-14,15-dehydroandrographolide are inhibitors of the NF-κB pathway. Furthermore, the study theorizes that any inflammatory activity induced by PAH can be potentially inhibited by A. paniculata phytocompounds.
Collapse
Affiliation(s)
- Trixia Julaton
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Aibelou Taclendo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Glenn Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Ecological Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ofelia Rempillo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Maria Cecilia Galvez
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Edgar Vallar
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
- Correspondence:
| |
Collapse
|
19
|
Buonaurio F, Borra F, Pigini D, Paci E, Spagnoli M, Astolfi ML, Giampaoli O, Sciubba F, Miccheli A, Canepari S, Ancona C, Tranfo G. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. TOXICS 2022; 10:toxics10050267. [PMID: 35622680 PMCID: PMC9143243 DOI: 10.3390/toxics10050267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Background: The objective of this study is to evaluate the effects of traffic on human health comparing biomonitoring data measured during the COVID-19 lockdown, when restrictions led to a 40% reduction in airborne benzene in Rome and a 36% reduction in road traffic, to the same parameters measured in 2021. Methods: Biomonitoring was performed on 49 volunteers, determining the urinary metabolites of the most abundant traffic pollutants, such as benzene and PAHs, and oxidative stress biomarkers by HPLC/MS-MS, 28 elements by ICP/MS and metabolic phenotypes by NMR. Results: Means of s-phenylmercaputric acid (SPMA), metabolites of naphthalene and nitropyrene in 2020 are 20% lower than in 2021, while 1-OH-pyrene was 30% lower. A reduction of 40% for 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) and 60% for 8-oxo-7,8-dihydroguanine (8-oxoGua) were found in 2020 compared to 2021. The concentrations of B, Co, Cu and Sb in 2021 are significantly higher than in the 2020. NMR untargeted metabolomic analysis identified 35 urinary metabolites. Results show in 2021 a decrease in succinic acid, a product of the Krebs cycle promoting inflammation. Conclusions: Urban pollution due to traffic is partly responsible for oxidative stress of nucleic acids, but other factors also have a role, enhancing the importance of communication about a healthy lifestyle in the prevention of cancer diseases.
Collapse
Affiliation(s)
- Flavia Buonaurio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Francesca Borra
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, 00154 Rome, Italy;
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
- Correspondence: ; Tel.: +39-0694181436
| |
Collapse
|
20
|
Webber BJ, Tacke CD, Wolff GG, Rutherford AE, Erwin WJ, Escobar JD, Simon AA, Reed BH, Whitaker JG, Gambino-Shirley KJ, Stuever DM. Cancer Incidence and Mortality Among Fighter Aviators in the United States Air Force. J Occup Environ Med 2022; 64:71-78. [PMID: 34412090 PMCID: PMC8715989 DOI: 10.1097/jom.0000000000002353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study sought to clarify cancer risk in fighter aviators. METHODS US Air Force officers who served between 1970 and 2004 were followed through 2018 for incidence and mortality of 10 cancers: colon and rectum; pancreas; melanoma skin; prostate; testis; urinary bladder; kidney and renal pelvis; brain and other nervous system; thyroid; and non-Hodgkin lymphoma. Fighter aviators were compared with other officers and the general US population. RESULTS Compared with other officers, male fighter aviators had greater adjusted odds of developing testis, melanoma skin, and prostate cancers; mortality odds were similar for all cancers. When compared with the US population, male fighter aviators were more likely to develop and die from melanoma skin cancer, prostate cancer, and non-Hodgkin lymphoma. CONCLUSIONS Military fighter aviation may be associated with slightly increased risk of certain cancers.
Collapse
Affiliation(s)
- Bryant J Webber
- Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson AFB, Ohio (Dr Webber, Ms Tacke, Mr Wolff, Dr Rutherford, Mr Escobar, Dr Simon, Dr Whitaker, Dr Gambino-Shirley, and Dr Stuever); Oak Ridge Institute for Science and Education, Department of Energy, Oak Ridge, Tennessee (Ms Tacke); Occupational and Environmental Health Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson AFB, Ohio (Mr Erwin); Aerospace Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson AFB, Ohio (Dr Reed)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sheng M, Cai H, Yang Q, Li J, Zhang J, Liu L. A Random Walk-Based Method to Identify Candidate Genes Associated With Lymphoma. Front Genet 2021; 12:792754. [PMID: 34899868 PMCID: PMC8655984 DOI: 10.3389/fgene.2021.792754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a serious type of cancer, especially for adolescents and elder adults, although this malignancy is quite rare compared with other types of cancer. The cause of this malignancy remains ambiguous. Genetic factor is deemed to be highly associated with the initiation and progression of lymphoma, and several genes have been related to this disease. Determining the pathogeny of lymphoma by identifying the related genes is important. In this study, we presented a random walk-based method to infer the novel lymphoma-associated genes. From the reported 1,458 lymphoma-associated genes and protein–protein interaction network, raw candidate genes were mined by using the random walk with restart algorithm. The determined raw genes were further filtered by using three screening tests (i.e., permutation, linkage, and enrichment tests). These tests could control false-positive genes and screen out essential candidate genes with strong linkages to validate the lymphoma-associated genes. A total of 108 inferred genes were obtained. Analytical results indicated that some inferred genes, such as RAC3, TEC, IRAK2/3/4, PRKCE, SMAD3, BLK, TXK, PRKCQ, were associated with the initiation and progression of lymphoma.
Collapse
Affiliation(s)
- Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin Yang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Lihua Liu
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Zhang L, Jing J, Han L, Wang J, Zhang W, Liu Z, Gao A. Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112956. [PMID: 34781132 DOI: 10.1016/j.ecoenv.2021.112956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Benzene exposure leads to hematopoietic dysfunction and is characterized clinically by a decrease in blood cells, but the underlying mechanisms remain elusive. Disturbed gut microbiota may induce host metabolic, immune disorders and the onset of disease. However, the characterization of gut microbiota, metabolism, cytokines and their association with benzene-induced hematopoietic toxicity lacks systematic evidence. Here, the microbiomics, metabolomics and cytokine network were applied to find out the critical characteristics of gut microbiota, metabolism and cytokines in mice involved in the benzene-induced hematopoietic toxicity. We found that the decline in hematopoietic stem cells was earlier than the hematological changes in the 5 mg/kg and 25 mg/kg benzene exposure groups. While 125 mg/kg benzene exposure resulted in a significant decline in whole blood cells. High-throughput sequencing results showed that benzene exposure disrupted homeostasis of gut microbiota, metabolism and cytokine in mice. 6 bacteria, 12 plasma metabolites and 6 cytokines were associated with benzene-induced hematopoietic damage. Notably, IL-5 was significantly increased in benzene exposure group in a dose-dependent manner, and a significant negative correlation was found between IL-5 and hematopoietic damage. We further found that increased Family_XIII_AD3011_group at the genus level and decreased Anaerotruncus_sp at the species level in benzene-exposed group were strongly associated with hematopoietic toxicity and IL-5. Furthermore, the abundance of Family_XIII_AD3011_group and Anaerotruncus_sp were negatively correlated with Adipic acid and 4-Hydroxyproline, respectively. Our findings indicated that altered flora structure of gut microbiota affects the metabolic phenotype which acts as messengers for the gut microbes, affecting host inflammation. This preliminary study provides new insight into the potential mechanisms of benzene-induced hematopoietic toxicity, further exploration by functional studies is required in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
23
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
24
|
Wang D, Tao X. Benzene poisoning presenting as status epilepticus: a case report and literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1263. [PMID: 34532400 PMCID: PMC8421973 DOI: 10.21037/atm-21-1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Benzene is a common industrial chemical and an important environmental pollutant. In addition, exposure to benzene may cause injury to the nervous system, in vivo. However, few clinical cases of benzene-induced injury to the nervous system have been reported. Therefore, the present report highlights a case of benzene poisoning, presenting as status epilepticus. The patient was admitted to the intensive care unit (ICU) with a coma after experiencing seizures 7 hours ago. He had a history of exposure to paint containing benzene. In addition, cranial magnetic resonance imaging (MRI) revealed extensive bilateral signal abnormalities in the cerebral white matter. The level of the benzene metabolite was also high in the urine. Consequently, the patient was diagnosed with benzene poisoning and status epilepticus, after which he received nerve nourishment, enteral nutrition, mechanical ventilation, and other supportive measures. He regained normal consciousness and motor ability, 1 month after treatment. The patient was also followed-up for 15 months and it was shown that he had returned to normal life without neurological and psychological deficits. Moreover, cranial MRI showed that the lesions had disappeared. This case therefore indicated that benzene poisoning should be considered if the patient has a clear history of exposure to the chemical, presents with seizures and has extensive signal abnormalities in the white matter, revealed by MRI examination. Additionally, early diagnosis and effective supportive treatment can guarantee a favorable prognosis for benzene poisoning.
Collapse
Affiliation(s)
- Di Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaogen Tao
- Department of Intensive Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Rana I, Dahlberg S, Steinmaus C, Zhang L. Benzene exposure and non-Hodgkin lymphoma: a systematic review and meta-analysis of human studies. Lancet Planet Health 2021; 5:e633-e643. [PMID: 34450064 PMCID: PMC9109598 DOI: 10.1016/s2542-5196(21)00149-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Non-Hodgkin lymphoma comprises a heterogeneous group of cancers with unresolved aetiology, although risk factors include environmental exposures to toxic chemicals. Although the ubiquitous pollutant benzene is an established leukemogen, its potential to cause non-Hodgkin lymphoma has been widely debated. We aimed to examine the potential link between benzene exposure and risk of non-Hodgkin lymphoma in humans by evaluating a wide array of cohort and case-control studies using electronic systematic review. METHODS We did a comprehensive systematic review and meta-analysis of all qualified human epidemiological studies that assessed the relationship between benzene exposure and non-Hodgkin lymphoma. We queried the PubMed and Embase databases for relevant articles published before June 5, 2019, and applied the SysRev platform for study selection. All peer-reviewed human cohort and case-control studies that reported non-Hodgkin lymphoma risk estimates specifically for benzene exposure were eligible for inclusion. Studies that calculated relative risks (RRs) for industries or job types without identifying those specifically exposed to benzene, that combined non-Hodgkin lymphoma with other cancer types, or that reported many different solvent exposures together were excluded. From each study, two investigators independently extracted information on the study design, location, years, sample size, participation rates, age, sex, sources of cases and controls, diagnosis, histological verification, exposure assessment, results, adjustment, and statistical analysis, and subsequently assessed study quality. We calculated the meta-analysis relative risk (meta-RR) and CIs using the fixed effect and random effect models, as well as assessing publication bias. FINDINGS Our search yielded 2481 articles. After screening and removal of duplicates, 20 case-control studies and eight cohort studies were included in our meta-analysis, which included a total of 9587 patients with non-Hodgkin lymphoma. We reported an increased meta-relative risk (meta-RR) of 33% in highly exposed groups, when data were available (meta-RR 1·33 [95% CI 1·13-1·57], n=28). The meta-RR rose to 1·51 (1·22-1·87, n=18) in the studies that provided results specifically for highly exposed individuals. In particular, we reported a doubling of this risk for diffuse large B-cell lymphoma, a major non-Hodgkin lymphoma subtype (1·67 [1·01-2·77]). We also detected increased risks for follicular lymphoma (1·47 [0·95-2·27]) and hairy cell leukaemia (1·77 [0·99-3·16]), though they were not statistically significant. Funnel plot, Egger's test (p=0·77) and Begg's test (p=0·98) did not show evidence of publication bias. We evaluated the major aspects of causal inference and found evidence to support all the Hill considerations for assigning causation. INTERPRETATION Our findings suggest a causal link between benzene exposure and non-Hodgkin lymphoma, especially for diffuse large B-cell lymphoma. FUNDING National Institute of Environmental Health Sciences.
Collapse
Affiliation(s)
- Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Sarah Dahlberg
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Craig Steinmaus
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA; Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Bou Zerdan M, Moussa S, Atoui A, Assi HI. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int J Mol Sci 2021; 22:8242. [PMID: 34361007 PMCID: PMC8348050 DOI: 10.3390/ijms22158242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends the body against certain tumor cells and against foreign agents such as fungi, parasites, bacteria, and viruses. One of its main roles is to distinguish endogenous components from non-self-components. An unproperly functioning immune system is prone to primary immune deficiencies caused by either primary immune deficiencies such as genetic defects or secondary immune deficiencies such as physical, chemical, and in some instances, psychological stressors. In the manuscript, we will provide a brief overview of the immune system and immunotoxicology. We will also describe the biochemical mechanisms of immunotoxicants and how to evaluate immunotoxicity.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Sara Moussa
- Faculty of Medicine, University of Balamand, 1100 Beirut, Lebanon;
| | - Ali Atoui
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| |
Collapse
|
27
|
Wei T, Jiao R, Nakyeyune R, Zang Z, Shao Y, Shen Y, Niu C, Zhu L, Ruan X, Liu F. Exposure to outdoor air pollution at different periods and the risk of leukemia: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35376-35391. [PMID: 34009571 DOI: 10.1007/s11356-021-14053-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The causes of leukemia remain largely unknown; our aims were to examine the association between the exposure to outdoor air pollution and leukemia risk and to explore the effect of this exposure during different periods of pregnancy and early life. We searched for all case-control and cohort studies published before February 20, 2021, which measured the risk of leukemia in relation to exposure to the air pollutants: particulate matter, benzene, nitrogen dioxide (NO2), and nitrogen oxides (NOx). We then carried out a meta-analysis and calculated the summary relative risks (RRs) of leukemia by using a random-effects model. The potential dose-response relationship was further explored. The results showed that the highest exposure to benzene (RR: 1.20, 95%CI: 1.06-1.35) and NO2 (RR: 1.04, 95%CI; 1.02-1.08) were positively correlated with leukemia risk when compared to the lowest exposure categories for each air pollutant. During pregnancy, exposure to benzene in the third trimester, as well as exposure to NO2 in the second trimester and entire pregnancy, could also increase the risk of leukemia. In the dose-response analysis, benzene exposure and NO2 exposure were linearly associated with the risk of leukemia. Other air pollutants did not have a statistical correlation with leukemia risk. There was a certain degree of publication bias in studies on benzene. Overall, our results support a link between outdoor air pollution and leukemia risk, particularly due to benzene and NO2. Prospero Registration Number: PROSPERO CRD42020207025.
Collapse
Affiliation(s)
- Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Rong Jiao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Rena Nakyeyune
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Zhaoping Zang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Yi Shao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Yi Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Chen Niu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Lingyan Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Xiaoli Ruan
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, 10# Xitoutiao, Youanmenwai Street, Beijing, 100069, China.
| |
Collapse
|
28
|
Epigenetic Effects of Benzene in Hematologic Neoplasms: The Altered Gene Expression. Cancers (Basel) 2021; 13:cancers13102392. [PMID: 34069279 PMCID: PMC8156840 DOI: 10.3390/cancers13102392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Benzene is produced by diverse petroleum transformation processes and it is widely employed in industry despite its oncogenic effects. In fact, occupational exposure to benzene may cause hematopoietic malignancy. The leukemogenic action of benzene is particularly complex. Possible processes of onset of hematological malignancies have been recognized as a genotoxic action and the provocation of immunosuppression. However, benzene can induce modifications that do not involve alterations in the DNA sequence, the so-called epigenetics changes. Acquired epigenetic modification may also induce leukemogenesis, as benzene may alter nuclear receptors, and cause changes at the protein level, thereby modifying the function of regulatory proteins, including oncoproteins and tumor suppressor proteins. Abstract Benzene carcinogenic ability has been reported, and chronic exposure to benzene can be one of the risk elements for solid cancers and hematological neoplasms. Benzene is acknowledged as a myelotoxin, and it is able to augment the risk for the onset of acute myeloid leukemia, myelodysplastic syndromes, aplastic anemia, and lymphomas. Possible mechanisms of benzene initiation of hematological tumors have been identified, as a genotoxic effect, an action on oxidative stress and inflammation and the provocation of immunosuppression. However, it is becoming evident that genetic alterations and the other causes are insufficient to fully justify several phenomena that influence the onset of hematologic malignancies. Acquired epigenetic alterations may participate with benzene leukemogenesis, as benzene may affect nuclear receptors, and provoke post-translational alterations at the protein level, thereby touching the function of regulatory proteins, comprising oncoproteins and tumor suppressor proteins. DNA hypomethylation correlates with stimulation of oncogenes, while the hypermethylation of CpG islands in promoter regions of specific tumor suppressor genes inhibits their transcription and stimulates the onset of tumors. The discovery of the systems of epigenetic induction of benzene-caused hematological tumors has allowed the possibility to operate with pharmacological interventions able of stopping or overturning the negative effects of benzene.
Collapse
|
29
|
Cassidy-Bushrow AE, Burmeister C, Birbeck J, Chen Y, Lamerato L, Lemke LD, Li J, Mor G, O'Leary BF, Peters RM, Reiners JJ, Sperone FG, Westrick J, Wiewiora E, Straughen JK. Ambient BTEX exposure and mid-pregnancy inflammatory biomarkers in pregnant African American women. J Reprod Immunol 2021; 145:103305. [PMID: 33725526 DOI: 10.1016/j.jri.2021.103305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Air pollution is associated with preterm birth (PTB), potentially via inflammation. We recently showed the mixture benzene, toluene, ethylbenzene, and xylene (BTEX) is associated with PTB. We examined if ambient BTEX exposure is associated with mid-pregnancy inflammation in a sample of 140 African-American women residing in Detroit, Michigan. The Geospatial Determinants of Health Outcomes Consortium study collected outdoor air pollution measurements in Detroit; these data were coupled with Michigan Air Sampling Network measurements to develop monthly BTEX concentration estimates at a spatial density of 300 m2. First trimester and mid-pregnancy BTEX exposure estimates were assigned to maternal address. Mid-pregnancy (mean 21.3 ± 3.7 weeks gestation) inflammatory biomarkers (high-sensitivity C-reactive protein, interleukin [IL]-6, IL-10, IL-1β, and tumor necrosis factor-α) were measured with enzyme immunoassays. After covariate adjustment, for every 1-unit increase in first trimester BTEX, there was an expected mean increase in log-transformed IL-1β of 0.05 ± 0.02 units (P = 0.014) and an expected mean increase in log-transformed tumor necrosis factor-α of 0.07 ± 0.02 units (P = 0.006). Similarly, for every 1-unit increase in mid-pregnancy BTEX, there was a mean increase in log IL-1β of 0.06 ± 0.03 units (P = 0.027). There was no association of either first trimester or mid-pregnancy BTEX with high-sensitivity C-reactive protein, IL-10, or IL-6 (all P > 0.05). Ambient BTEX exposure is associated with inflammation in mid-pregnancy in African-American women. Future studies examining if inflammation mediates associations between BTEX exposure and PTB are needed.
Collapse
Affiliation(s)
- Andrea E Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA.
| | - Charlotte Burmeister
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Johnna Birbeck
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Lois Lamerato
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Lawrence D Lemke
- Department of Earth and Atmospheric Sciences, Central Michigan University, Brooks Hall 314, Mount Pleasant, MI, 48859, USA
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Brendan F O'Leary
- Department of Civil and Environmental Engineering, Wayne State University, 2100 Engineering Building, Detroit, MI, 48202, USA
| | - Rosalind M Peters
- College of Nursing, Wayne State University, 5557 Cass Avenue, Detroit, MI, 48202, USA
| | - John J Reiners
- Center for Urban Responses to Environmental Stressors, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - F Gianluca Sperone
- Department of Environmental Science and Geology, Wayne State University, 4841 Cass Avenue, Detroit, MI, 48201, USA
| | - Judy Westrick
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Evan Wiewiora
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA
| | - Jennifer K Straughen
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI, 48202, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| |
Collapse
|