1
|
De Rubis G, Paudel KR, Liu G, Agarwal V, MacLoughlin R, de Jesus Andreoli Pinto T, Singh SK, Adams J, Nammi S, Chellappan DK, Oliver BGG, Hansbro PM, Dua K. Berberine-loaded engineered nanoparticles attenuate TGF-β-induced remodelling in human bronchial epithelial cells. Toxicol In Vitro 2023; 92:105660. [PMID: 37591407 DOI: 10.1016/j.tiv.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-β. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Srinivas Nammi
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
3
|
Chee YJ, Fan BE, Young BE, Dalan R, Lye DC. Clinical trials on the pharmacological treatment of long COVID: A systematic review. J Med Virol 2023; 95:e28289. [PMID: 36349400 PMCID: PMC9878018 DOI: 10.1002/jmv.28289] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
The postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC), also known as post-acute coronavirus disease 19 (COVID-19) or the long COVID syndrome (long COVID) is an emerging public health concern. A substantial proportion of individuals may remain symptomatic months after initial recovery. An updated review of published and ongoing trials focusing on managing long COVID will help identify gaps and address the unmet needs of patients suffering from this potentially debilitating syndrome. A comprehensive literature search was conducted on the international databases and clinical trial registries from inception to 31 July 2022. This review included 6 published trials and 54 trial registration records. There is significant heterogeneity in the characterization of long COVID and ascertainment of primary outcomes. Most of the trials are focused on individual symptoms of long COVID or isolated organ dysfunction, classified according to cardiovascular, respiratory and functional capacity, neurological and psychological, fatigue, and olfactory dysfunction. Most of the interventions are related to the mechanisms causing the individual symptoms. Although the six published trials showed significant improvement in the symptoms or organ dysfunction studied, these initial studies lack internal and external validity limiting the generalizability. This review provides an update of the pharmacological agents that could be used to treat long COVID. Further standardization of the diagnostic criteria, inclusion of participants with concomitant chronic cardiometabolic diseases and standardization of outcomes will be essential in future clinical trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of EndocrinologyTan Tock Seng HospitalSingaporeSingapore
| | | | - Barnaby Edward Young
- National Centre for Infectious DiseasesSingaporeSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Rinkoo Dalan
- Department of EndocrinologyTan Tock Seng HospitalSingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - David C. Lye
- National Centre for Infectious DiseasesSingaporeSingapore,Department of Infectious DiseasesTan Tock Seng HospitalSingaporeSingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore,Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
4
|
Perna A, Hay E, Sellitto C, Del Genio E, De Falco M, Guerra G, De Luca A, De Blasiis P, Lucariello A. Antiinflammatory Activities of Curcumin and Spirulina: Focus on Their Role against COVID-19. J Diet Suppl 2023; 20:372-389. [PMID: 36729019 DOI: 10.1080/19390211.2023.2173354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nutraceuticals have for several years aroused the interest of researchers for their countless properties, including the management of viral infections. In the context of the COVID-19 pandemic, studies and research on the antiviral properties of nutraceuticals have greatly increased. More specifically, over the past two years, researchers have focused on analyzing the possible role of nutraceuticals in reducing the risk of SARS-CoV-2 infection or mitigating the symptoms of COVID-19. Among nutraceuticals, turmeric, extracted from the rhizome of the Curcuma Longa plant, and spirulina, commercial name of the cyanobacterium Arthrospira platensis, have assumed considerable importance in recent years. The purpose of this review is to collect, through a search of the most recent articles on Pubmed, the scientific evidence on the role of these two compounds in the fight against COVID-19. In the last two years many hypotheses, some confirmed by clinical and experimental studies, have been made on the possible use of turmeric against COVID-19, while on spirulina and its possible role against SARS-CoV-2 infection information is much less. The demonstrated antiviral properties of spirulina and the fact that these cyanobacteria may modulate or modify some mechanisms also involved in the onset of COVID-19, lead us to think that it may have the same importance as curcumin in fighting this disease and to speculate on the possible combined use of these two substances to obtain a synergistic effect.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmine Sellitto
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emiliano Del Genio
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ''Federico II'', Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
5
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|