1
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Duan W, Cen Y, Lin C, Ouyang H, Du K, Kumar A, Wang B, Avolio J, Grasemann H, Moraes TJ. Inflammatory epithelial cytokines after in vitro respiratory syncytial viral infection are associated with reduced lung function. ERJ Open Res 2021; 7:00365-2021. [PMID: 34527729 PMCID: PMC8435810 DOI: 10.1183/23120541.00365-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections in early life predispose children with cystic fibrosis (CF) to more severe lung function decline in later life. The mechanisms explaining the associations between RSV and progression of CF lung disease are not clear. In this study, a human bronchial epithelial cell line and primary human nasal epithelial cells (PNECs) from individuals with CF and healthy control donors were infected with RSV. Real-time PCR, plaque assay, cytokine detection, immunofluorescence and Western blot analyses were performed. RSV is replicated to a higher degree in CF epithelial cells as compared to control cells; however, no defects in innate immune pathways were identified in CF cells. Rather, primary p.Phe508del cystic fibrosis transmembrane conductance regulator PNECs produced more cytokines after RSV infection than control cells. Moreover, interleukin-8 and tumour necrosis factor-α production post RSV negatively correlated with lung function (% predicted forced expiratory volume in 1 s) in the individuals who donated the cells. These data suggest that CF epithelium has a dysfunctional response to RSV allowing for enhanced viral replication and an exaggerated inflammatory response that ultimately may predispose to greater airway inflammation and reduced lung function. This work demonstrates an association between epithelial inflammatory cytokines after in vitro viral infection and lung function in cystic fibrosis, and reinforces the importance of studying innate immune epithelial cell function in cystic fibrosishttps://bit.ly/3gDNwwo
Collapse
Affiliation(s)
- Wenming Duan
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Yuchen Cen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Cindy Lin
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Kai Du
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Anushree Kumar
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Borui Wang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hartmut Grasemann
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Division of Respiratory Medicine, Dept of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Respiratory Medicine, Dept of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
3
|
Chen P, Li Z, Cui S. Picornaviral 2C proteins: A unique ATPase family critical in virus replication. Enzymes 2021; 49:235-264. [PMID: 34696834 DOI: 10.1016/bs.enz.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 2C proteins of Picornaviridae are unique members of AAA+ protein family. Although picornavirus 2C shares many conserved motifs with Super Family 3 DNA helicases, duplex unwinding activity of many 2C proteins remains undetected, and high-resolution structures of 2C hexamers are unavailable. All characterized 2C proteins exhibit ATPase activity, but the purpose of ATP hydrolysis is not fully understood. 2C is highly conserved among picornaviruses and plays crucial roles in nearly all steps of the virus lifecycle. It is therefore considered as an effective target for broad-spectrum antiviral drug development. Crystallographic investigation of enterovirus 2C proteins provide structural details important for the elucidation of 2C function and development of antiviral drugs. This chapter summarizes not only the findings of enzymatic activities, biochemical and structural characterizations of the 2C proteins, but also their role in virus replication, immune evasion and morphogenesis. The linkage between structure and function of the 2C proteins is discussed in detail. Inhibitors targeting the 2C proteins are also summarized to provide an overview of drug development. Finally, we raise several key questions to be addressed in this field and provide future research perspective on this unique class of ATPases.
Collapse
Affiliation(s)
- Pu Chen
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijian Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng Cui
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune Function of Airway Epithelium. Front Cell Infect Microbiol 2020; 10:277. [PMID: 32637363 PMCID: PMC7316886 DOI: 10.3389/fcimb.2020.00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Airway epithelial cells, which lines the respiratory mucosa is in direct contact with the environment. Airway epithelial cells are the primary target for rhinovirus and other inhaled pathogens. In response to rhinovirus infection, airway epithelial cells mount both pro-inflammatory responses and antiviral innate immune responses to clear the virus efficiently. Some of the antiviral responses include the expression of IFNs, endoplasmic reticulum stress induced unfolded protein response and autophagy. Airway epithelial cells also recruits other innate immune cells to establish antiviral state and resolve the inflammation in the lungs. In patients with chronic lung disease, these responses may be either defective or induced in excess leading to deficient clearing of virus and sustained inflammation. In this review, we will discuss the mechanisms underlying antiviral innate immunity and the dysregulation of some of these mechanisms in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Haleh Ganjian
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Charu Rajput
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Manal Elzoheiry
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Umadevi Sajjan
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
- Department of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
O Loughlin DW, Coughlan S, De Gascun CF, McNally P, Cox DW. The role of rhinovirus infections in young children with cystic fibrosis. J Clin Virol 2020; 129:104478. [PMID: 32521465 PMCID: PMC7263235 DOI: 10.1016/j.jcv.2020.104478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 12/29/2022]
Abstract
Rhinovirus (RV) is an important virus in children with chronic respiratory conditions such as asthma; however, little is known about its role in CF. Our aim was to examine the prevalence and clinical impact of different RV species in young children with CF. We collected clinical data and nasal swabs on patients at home and in the hospital setting. Parents filled out symptom diaries and collected nasal swabs when their children were symptomatic and asymptomatic. A novel RV typing PCR assay was used to determine the RV species present. We collected 55 nasal swab samples from ten preschool CF patients over a six month period. The quality of parent collected samples at home was sufficient for PCR analysis. RV was the most common virus detected in young children with CF. There was no difference in the frequency of RV species between symptomatic and asymptomatic subjects. However, parental home-sampling is an acceptable and feasible approach to monitoring young children with CF.
Collapse
Affiliation(s)
- D W O Loughlin
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland.
| | - S Coughlan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - C F De Gascun
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - P McNally
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin 12, Ireland; Department of Paediatrics, Royal College of Surgeons in Ireland, Ireland
| | - D W Cox
- Respiratory Department, Children's Health Ireland, Crumlin, Dublin 12, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
6
|
Sörensen M, Kantorek J, Byrnes L, Boutin S, Mall MA, Lasitschka F, Zabeck H, Nguyen D, Dalpke AH. Pseudomonas aeruginosa Modulates the Antiviral Response of Bronchial Epithelial Cells. Front Immunol 2020; 11:96. [PMID: 32117250 PMCID: PMC7025480 DOI: 10.3389/fimmu.2020.00096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/14/2020] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) patients frequently acquire Pseudomonas aeruginosa infections that have been associated with a bad prognosis and an increased rate of pulmonary exacerbations. Respiratory viruses can cause exacerbations in chronic pulmonary diseases including COPD or asthma and have been suggested to contribute to exacerbations also in CF. In this study we investigated a possible link between P. aeruginosa infection and susceptibility to respiratory viruses. We show that P. aeruginosa is able to block the antiviral response of airway epithelial cells thereby promoting virus infection and spread. Mechanistically, P. aeruginosa secretes the protease AprA in a LasR dependent manner, which is able of directly degrading epithelial-derived IFNλ resulting in inhibition of IFN signaling. In addition, we correlate the virus infection status of CF patients with the ability of patients' P. aeruginosa isolates to degrade IFNλ. In line with this, the infection status of CF patients correlated significantly with the amount of respiratory viruses in sputum. Our data suggest that the interplay between P. aeruginosa and respiratory virus infections might partially explain the association of increased rates of pulmonary exacerbations and P. aeruginosa infections in CF patients.
Collapse
Affiliation(s)
- Michael Sörensen
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Laboratory Enders and Partners, Stuttgart, Germany
| | - Julia Kantorek
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Lauren Byrnes
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,TI Biobanking, German Centre for Infection Research (DZIF), Heidelberg, Germany
| | - Heike Zabeck
- Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University Hospital Heidelberg, Heidelberg, Germany.,Institute of Medical Microbiology and Hygiene, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Interferon lambda receptor 1 (IFNL1R) transcript is highly expressed in rhinovirus bronchiolitis and correlates with disease severity. J Clin Virol 2018; 102:101-109. [PMID: 29549834 DOI: 10.1016/j.jcv.2018.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND As the expression of type III IFN receptor is restricted to the mucosal surfaces, its evaluation could be crucial to characterize the role of IFNλs during bronchiolitis. OBJECTIVES This study was designed to investigate airway type III IFN receptor (IFNLR1/IL10RB) expression during respiratory syncytial virus (RSV) or human rhinovirus (HRV) bronchiolitis. STUDY DESIGN Seventy-one 1-6 month old infants hospitalized with their first episode of acute RSV or HRV bronchiolitis were selected for this study. Expression of IFNLR1, IL10RB and IFN-stimulated genes (ISGs) MxA and ISG56 in cells of nasopharyngeal washings taken within the first 48 h of admission were determined by a real-time hydrolysis probe RT-PCR assay. The ability of types I and III IFNs to induce the expression of both IFNLR1 and IL10RB in vitro was also evaluated. RESULTS Airway IFNLR1 transcript levels were significantly higher in HRV bronchiolitis infants compared to those with RSV bronchiolitis. No differences were recorded for IL10RB-mRNA between RSV or HRV infection. IFNLR1 mRNA levels increased significantly in infants infected with the C species of HRV and in those with a higher clinical score index and with an eosinophil count >3%. There were no correlations in vivo between type III IFN receptors and those of ISGs and neither IFNLR1 nor IL10RB were induced in vitro by IFNs. CONCLUSIONS These results suggest that IFNLR1 are increased in HRV-infected infants with more severe bronchiolitis and blood eosinophilia and in those infected with the HRVC species.
Collapse
|
8
|
Heinrich A, Haarmann H, Zahradnik S, Frenzel K, Schreiber F, Klassert TE, Heyl KA, Endres AS, Schmidtke M, Hofmann J, Slevogt H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells. FASEB J 2016; 30:2426-34. [PMID: 26979086 DOI: 10.1096/fj.201500172r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is complicated by infectious exacerbations with acute worsening of respiratory symptoms. Coinfections of bacterial and viral pathogens are associated with more severe exacerbations. Moraxella catarrhalis is one of the most frequent lower respiratory tract pathogens detected in COPD. We therefore studied the impact of M. catarrhalis on the antiviral innate immune response that is mediated via TLR3 and p53. Molecular interactions between M. catarrhalis and normal human bronchial epithelial (NHBE) cells as well as Beas-2B cells were studied using flow cytometry, quantitative PCR analysis, chromatin immunoprecipitation, RNA interference, and ELISA. M. catarrhalis induces a significant down-regulation of TLR3 in human bronchial epithelial cells. In M. catarrhalis-infected cells, expression of p53 was decreased. We detected a reduced binding of p53 to the tlr3 promoter, resulting in reduced TLR3 gene transcription. M. catarrhalis diminished the TLR3-dependent secretion of IFN-β, IFN-λ, and chemokine (C-X-C motif) ligand 8. In addition in M. catarrhalis infected cells, expression of rhinovirus type 1A RNA was increased compared with uninfected cells. M. catarrhalis reduces antiviral defense functions of bronchial epithelial cells, which may increase susceptibility to viral infections.-Heinrich, A., Haarmann, H., Zahradnik, S., Frenzel, K., Schreiber, F., Klassert, T. E., Heyl, K. A., Endres, A.-S., Schmidtke, M., Hofmann, J., Slevogt, H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Annina Heinrich
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Helge Haarmann
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabrina Zahradnik
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Frenzel
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frauke Schreiber
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Kerstin A Heyl
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, School of Medicine, Jena University Hospital, Jena, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany;
| |
Collapse
|
9
|
Kim JH, Kim YS, Cho GS, Kim NH, Gong CH, Lee BJ, Jang YJ. Human Rhinovirus-induced Proinflammatory Cytokine and Interferon-β Responses in Nasal Epithelial Cells From Chronic Rhinosinusitis Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:489-96. [PMID: 26122508 PMCID: PMC4509662 DOI: 10.4168/aair.2015.7.5.489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/27/2015] [Accepted: 03/27/2015] [Indexed: 12/14/2022]
Abstract
Purpose Asthma exacerbation from human rhinovirus (HRV) infection is associated with deficient antiviral interferon (IFN) secretion. Although chronic rhinosinusitis (CRS), an inflammatory upper airway disease, is closely linked to asthma, IFN-β responses to HRV infections in human nasal epithelial cells (HNECs) from CRS patients remain to be studied. We evaluated inflammatory and antiviral responses to HRV infection in HNECs from CRS patients. Methods HNECs, isolated from turbinate tissue of 13 patients with CRS and 14 non-CRS controls, were infected with HRV16 for 4 hours. The HRV titer, LDH activity, production of proinflammatory cytokines and IFN-β proteins, and expression levels of RIG-I and MDA5 mRNA were assessed at 8, 24, and 48 hours after HRV16 infection. Results The reduction in viral titer was slightly delayed in the CRS group compared to the non-CRS control group. IL-6 and IL-8 were significantly increased to a similar extent in both groups after HRV infection. In the control group, IFN-β production and MDA5 mRNA expression were significantly increased at 8 and 24 hours after HRV16 infection, respectively. By contrast, in the CRS group, IFN-β was not induced by HRV infection; however, HRV-induced MDA5 mRNA expression was increased, but the increase was slightly delayed compared to the non-CRS control group. The RIG-I mRNA level was not significantly increased by HRV16 infection in either group. Conclusions HRV-induced secretion of proinflammatory cytokines in CRS patients was not different from that in the non-CRS controls. However, reductions in viral titer, IFN-β secretion, and MDA5 mRNA expression in response to HRV infection in CRS patients were slightly impaired compared to those in the controls, suggesting that HRV clearance in CRS patients might be slightly deficient.
Collapse
Affiliation(s)
- Ji Heui Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sun Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Gye Song Cho
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nam Hee Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Hoon Gong
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bong Jae Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Patel DA, You Y, Huang G, Byers DE, Kim HJ, Agapov E, Moore ML, Peebles RS, Castro M, Sumino K, Shifren A, Brody SL, Holtzman MJ. Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. J Allergy Clin Immunol 2014; 134:1402-1412.e7. [PMID: 25216987 PMCID: PMC4261010 DOI: 10.1016/j.jaci.2014.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Some investigators find a deficiency in IFN production from airway epithelial cells infected with human rhinovirus in asthma, but whether this abnormality occurs with other respiratory viruses is uncertain. OBJECTIVE To assess the effect of influenza A virus (IAV) and respiratory syncytial virus (RSV) infection on IFN production and viral level in human bronchial epithelial cells (hBECs) from subjects with and without asthma. METHODS Primary-culture hBECs from subjects with mild to severe asthma (n = 11) and controls without asthma (hBECs; n = 7) were infected with live or ultraviolet-inactivated IAV (WS/33 strain), RSV (Long strain), or RSV (A/2001/2-20 strain) with multiplicity of infection 0.01 to 1. Levels of virus along with IFN-β and IFN-λ and IFN-stimulated gene expression (tracked by 2'-5'-oligoadenylate synthetase 1 and myxovirus (influenza virus) resistance 1 mRNA) were determined up to 72 hours postinoculation. RESULTS After IAV infection, viral levels were increased 2-fold in hBECs from asthmatic subjects compared with nonasthmatic control subjects (P < .05) and this increase occurred in concert with increased IFN-λ1 levels and no significant difference in IFNB1, 2'-5'-oligoadenylate synthetase 1, or myxovirus (influenza virus) resistance 1mRNA levels. After RSV infections, viral levels were not significantly increased in hBECs from asthmatic versus nonasthmatic subjects and the only significant difference between groups was a decrease in IFN-λ levels (P < .05) that correlated with a decrease in viral titer. All these differences were found only at isolated time points and were not sustained throughout the 72-hour infection period. CONCLUSIONS The results indicate that IAV and RSV control and IFN response to these viruses in airway epithelial cells is remarkably similar between subjects with and without asthma.
Collapse
Affiliation(s)
- Dhara A. Patel
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Yingjian You
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Guangming Huang
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Hyun Jik Kim
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Eugene Agapov
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt School of Medicine, Nashville, TN
| | - Mario Castro
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Kaharu Sumino
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Adrian Shifren
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Louis, MO
| |
Collapse
|
11
|
Parker LC, Stokes CA, Sabroe I. Rhinoviral infection and asthma: the detection and management of rhinoviruses by airway epithelial cells. Clin Exp Allergy 2014; 44:20-8. [PMID: 24355017 DOI: 10.1111/cea.12182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022]
Abstract
Human rhinoviruses (HRV) have been linked to the development of childhood asthma and recurrent acute asthma exacerbations throughout life, and contribute considerably to the healthcare and economic burden of this disease. However, the ability of HRV infections to trigger exacerbations, and the link between allergic status and HRV responsiveness, remains incompletely understood. Whilst the receptors on human airway cells that detect and are utilized by most HRV group A and B, but not C serotypes are known, how endosomal pattern recognition receptors (PRRs) detect HRV replication products that are generated within the cytoplasm remains somewhat of an enigma. In this article, we explore a role for autophagy, a cellular homeostatic process that allows the cell to encapsulate its own cytosolic constituents, as the crucial mechanism controlling this process and regulating the innate immune response of airway epithelial cells to viral infection. We will also briefly describe some of the recent insights into the immune responses of the airway to HRV, focusing on neutrophilic inflammation that is a potentially unwanted feature of the acute response to viral infection, and the roles of IL-1 and Pellinos in the regulation of responses to HRV.
Collapse
Affiliation(s)
- L C Parker
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
12
|
The B lymphocyte differentiation factor (BAFF) is expressed in the airways of children with CF and in lungs of mice infected with Pseudomonas aeruginosa. PLoS One 2014; 9:e95892. [PMID: 24847941 PMCID: PMC4029587 DOI: 10.1371/journal.pone.0095892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic lung infection with Pseudomonas aeruginosa remains a major cause of mortality and morbidity among individuals with CF. Expression of mediators promoting recruitment and differentiation of B cells, or supporting antibody production is poorly understood yet could be key to controlling infection. METHODS BAFF was measured in BAL from children with CF, both with and without P. aeruginosa, and controls. Mice were intra-nasally infected with P. aeruginosa strain LESB65 for up to 7 days. Cellular infiltration and expression of B cell chemoattractants and B cell differentiation factor, BAFF were measured in lung tissue. RESULTS BAFF expression was elevated in both P. aeruginosa negative and positive CF patients and in P. aeruginosa infected mice post infection. Expression of the B cell chemoattractants CXCL13, CCL19 and CCL21 increased progressively post infection. CONCLUSIONS In a mouse model, infection with P. aeruginosa was associated with elevated expression of BAFF and other B cell chemoattractants suggesting a role for airway B cell recruitment and differentiation in the local adaptive immune response to P. aeruginosa. The paediatric CF airway, irrespective of pseudomonal infection, was found to be associated with an elevated level of BAFF implying that BAFF expression is not specific to pseudomonas infection and may be a feature of the CF airway. Despite the observed presence of a potent B cell activator, chronic colonisation is common suggesting that this response is ineffective.
Collapse
|
13
|
Chen G, Korfhagen TR, Karp CL, Impey S, Xu Y, Randell SH, Kitzmiller J, Maeda Y, Haitchi HM, Sridharan A, Senft AP, Whitsett JA. Foxa3 induces goblet cell metaplasia and inhibits innate antiviral immunity. Am J Respir Crit Care Med 2014; 189:301-13. [PMID: 24392884 DOI: 10.1164/rccm.201306-1181oc] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Goblet cell metaplasia accompanies common pulmonary disorders that are prone to recurrent viral infections. Mechanisms regulating both goblet cell metaplasia and susceptibility to viral infection associated with chronic lung diseases are incompletely understood. OBJECTIVES We sought to identify the role of the transcription factor FOXA3 in regulation of goblet cell metaplasia and pulmonary innate immunity. METHODS FOXA3 was identified in airways from patients with asthma and chronic obstructive pulmonary disease. We produced transgenic mice conditionally expressing Foxa3 in airway epithelial cells and developed human bronchial epithelial cells expressing Foxa3. Foxa3-regulated genes were identified by immunostaining, Western blotting, and RNA analysis. Direct binding of FOXA3 to target genes was identified by chromatin immunoprecipitation sequencing correlated with RNA sequencing. MEASUREMENTS AND MAIN RESULTS FOXA3 was highly expressed in airway goblet cells from patients with asthma and chronic obstructive pulmonary disease. FOXA3 was induced by either IL-13 or rhinovirus. Foxa3 induced goblet cell metaplasia and enhanced expression of a network of genes mediating mucus production. Paradoxically, FOXA3 inhibited rhinovirus-induced IFN production, IRF-3 phosphorylation, and IKKε expression and inhibited viral clearance and expression of genes required for antiviral defenses, including MDA5, RIG-I, TLR3, IRF7/9, and nuclear factor-κB. CONCLUSIONS FOXA3 induces goblet cell metaplasia in response to infection or Th2 stimulation. Suppression of IFN signaling by FOXA3 provides a plausible mechanism that may serve to limit ongoing Th1 inflammation during the resolution of acute viral infection; however, inhibition of innate immunity by FOXA3 may contribute to susceptibility to viral infections associated with chronic lung disorders accompanied by chronic goblet cell metaplasia.
Collapse
Affiliation(s)
- Gang Chen
- 1 Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Principi N, Daleno C, Esposito S. Human rhinoviruses and severe respiratory infections: is it possible to identify at-risk patients early? Expert Rev Anti Infect Ther 2014; 12:423-30. [PMID: 24559383 DOI: 10.1586/14787210.2014.890048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular methods of viral screening have demonstrated that human rhinoviruses (HRVs) are associated with lower respiratory tract infections (LRTIs, including bronchiolitis and pneumonia), exacerbations of chronic pulmonary disease and the development of asthma. Patients with severe chronic diseases are at greater risk of developing major clinical problems when infected by HRVs, particularly if they are immunocompromised or have a chronic lung disease. Analysing the characteristics of HRVs does not provide any certainty concerning the risk of a poor prognosis and, although viremia seems to be associated with an increased risk of severe HRV infection, the available data are too scanty to be considered conclusive. However, a chest x-ray showing alveolar involvement suggests the potentially negative evolution of a bacterial superinfection. There is therefore an urgent need for more effective diagnostic, preventive and therapeutic measures in order to prevent HRV infection, and identify and treat the patients at highest risk.
Collapse
Affiliation(s)
- Nicola Principi
- Department of Pathophysiology and Transplantation, Pediatric High Intensity Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | |
Collapse
|
15
|
Wu Q, van Dyk LF, Jiang D, Dakhama A, Li L, White SR, Gross A, Chu HW. Interleukin-1 receptor-associated kinase M (IRAK-M) promotes human rhinovirus infection in lung epithelial cells via the autophagic pathway. Virology 2013; 446:199-206. [PMID: 24074582 PMCID: PMC3804030 DOI: 10.1016/j.virol.2013.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/20/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Human rhinovirus (HRV) is the most common viral etiology in acute exacerbations of asthma. However, the exact mechanisms underlying HRV infection in allergic airways are poorly understood. IL-13 increases interleukin-1 receptor associated kinase M (IRAK-M) and subsequently inhibits airway innate immunity against bacteria. However, the role of IRAK-M in lung HRV infection remains unclear. Here, we provide the first evidence that IRAK-M over-expression promotes lung epithelial HRV-16 replication and autophagy, but inhibits HRV-16-induced IFN-β and IFN-λ1 expression. Inhibiting autophagy reduces HRV-16 replication. Exogenous IFN-β and IFN-λ1 inhibit autophagy and HRV-16 replication. Our data indicate the enhancing effect of IRAK-M on epithelial HRV-16 infection, which is partly through the autophagic pathway. Impaired anti-viral interferon production may serve as a direct or an indirect (e.g., autophagy) mechanism of enhanced HRV-16 infection by IRAK-M over-expression. Targeting autophagic pathway or administrating anti-viral interferons may prevent or attenuate viral (e.g., HRV-16) infections in allergic airways.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Linda F. van Dyk
- Department of Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Di Jiang
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Steven R. White
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL, USA
| | - Ashley Gross
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
16
|
Sykes A, Macintyre J, Edwards MR, Del Rosario A, Haas J, Gielen V, Kon OM, McHale M, Johnston SL. Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 2013; 69:240-6. [PMID: 24127021 DOI: 10.1136/thoraxjnl-2012-202909] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Defective rhinovirus (RV)-induced interferon (IFN)-β and IFN-λ production and increased RV replication have been reported in primary human bronchial epithelial cells (HBECs) from subjects with asthma. How universal this defect is in asthma is unknown. Additionally, the IFN subtypes induced by RV infection in primary HBECs have not been comprehensively investigated. OBJECTIVE To study RV induction of IFN-α, IFN-β and IFN-λ and RV replication in HBECs from subjects with atopic asthma and healthy controls. METHODS HBECs were obtained from subjects with asthma and healthy controls and infected with RV16 and RV1B, and cells and supernatants harvested at 8, 24 and 48h. IFN proteins were analysed by ELISA and IFN mRNA and viral RNA expression by quantitative PCR. Virus release was assessed in cell supernatants. RESULTS IFN-β and IFN-λ were the only IFNs induced by RV in HBECs and IFN-λ protein induction was substantially greater than IFN-β. Induction of IFN-λ1 mRNA by RV16 at 48h was significantly greater in HBECs from subjects with asthma; otherwise there were no significant differences between subjects with asthma and controls in RV replication, or in induction of type I or III IFN protein or mRNA. CONCLUSIONS IFN-λ and, to a lesser degree, IFN-β are the major IFN subtypes induced by RV infection of HBECs. Neither defective IFN induction by RV nor increased RV replication was observed in the HBECs from subjects with well controlled asthma reported in this study.
Collapse
Affiliation(s)
- Annemarie Sykes
- National Heart and Lung Institute, Imperial College London, , London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Respiratory syncytial virus infection disrupts monolayer integrity and function in cystic fibrosis airway cells. Viruses 2013; 5:2260-71. [PMID: 24056672 PMCID: PMC3798900 DOI: 10.3390/v5092260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022] Open
Abstract
Background: Respiratory Syncytial Virus (RSV) infection is a common contributor to pulmonary symptoms in children with cystic fibrosis (CF). Here we examined RSV infection in immortalized bronchial epithelial cells (CFBE41o-) expressing wild-type (wt) or F508del cystic fibrosis transmembrane conductance regulator (CFTR), for monolayer integrity and RSV replication. Methods: CFBE41o- monolayers expressing wt or F508del CFTR were grown on permeable supports and inoculated with RSV A2 strain. Control experiments utilized UV-inactivated RSV and heat-killed RSV. Monolayer resistance and RSV production was monitored for up to six days post-infection. Results: Within 24 h, a progressive decrease in monolayer resistance was observed in RSV infected F508del CFBE41o- cells, while the monolayer integrity of RSV infected wt CFTR CFBE41o- cells remained stable. RSV replication was necessary to disrupt F508del CFBE41o- monolayers as UV-irradiated and heat killed RSV had no effect on monolayer integrity, with an earlier and much more pronounced peak in RSV titer noted in F508del relative to wt CFTR-expressing cells. RSV infection of wt CFBE41o- monolayers also resulted in blunting of CFTR response. Conclusions: These findings identify an enhanced sensitivity of CFBE41o- cells expressing F508del CFTR to RSV infection, replication and monolayer disruption independent of the cellular immune response, and provide a novel mechanism by which cystic fibrosis airway epithelia are susceptible to RSV-dependent injury.
Collapse
|
18
|
Patria MF, Longhi B, Esposito S. Influenza vaccination in children with cystic fibrosis. Expert Rev Vaccines 2013; 12:415-20. [PMID: 23560921 DOI: 10.1586/erv.13.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cystic fibrosis (CF) is an inherited autosomal recessive disease characterized by progressive pulmonary damage and respiratory failure. It is known that bacterial infections play a critical role in the development of significant lung damage, whereas the role of respiratory viruses in CF pulmonary exacerbations and the relationship between viral infections and the progression of lung damage are uncertain. Health authorities throughout the world recommend influenza vaccination for CF patients. The aim of this review is to analyze the impact of seasonal and pandemic influenza on CF patients and data concerning influenza vaccination in order to assess the current situation and identify areas for future study. As data are limited, further well-constructed clinical studies of the effectiveness of influenza vaccination on the main clinical outcome measures of pulmonary function and nutritional status in patients with CF are required.
Collapse
Affiliation(s)
- Maria Francesca Patria
- Pediatric Clinic 1, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, Milan, Italy
| | | | | |
Collapse
|
19
|
Woodman LB, Wan WYH, Milone R, Grace K, Sousa A, Williamson R, Brightling CE. Synthetic response of stimulated respiratory epithelium: modulation by prednisolone and iKK2 inhibition. Chest 2013; 143:1656-1666. [PMID: 23238614 PMCID: PMC3673662 DOI: 10.1378/chest.12-1187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The airway epithelium plays a central role in wound repair and host defense
and is implicated in the immunopathogenesis of asthma. Whether there are
intrinsic differences between the synthetic capacity of epithelial cells
derived from subjects with asthma and healthy control subjects and how this
mediator release is modulated by antiinflammatory therapy remains uncertain.
We sought to examine the synthetic function of epithelial cells from
different locations in the airway tree from subjects with and without asthma
and to determine the effects of antiinflammatory therapies upon this
synthetic capacity. Methods: Primary epithelial cells were derived from 17 subjects with asthma and 16
control subjects. The release of 13 cytokines and chemokines from nasal,
bronchial basal, and air-liquid interface differentiated epithelial cells
before and after stimulation with IL-1β, IL-1β and
interferon-γ, or Poly-IC (Toll-like receptor 3 agonist) was measured
using MesoScale discovery or enzyme-linked immunosorbent assay, and the
effects of prednisolone and an inhibitor of nuclear factor κ-B2
(IKK2i) were determined. Results: The pattern of release of cytokines and chemokines was significantly
different between nasal, bronchial basal, and differentiated epithelial
cells but not between health and disease. Stimulation of the epithelial
cells caused marked upregulation of most mediators, which were broadly
corticosteroid unresponsive but attenuated by IKK2i. Conclusion: Synthetic capacity of primary airway epithelial cells varied between location
and degree of differentiation but was not disease specific. Activation of
epithelial cells by proinflammatory cytokines and toll-like receptor 3
agonism is attenuated by IKK2i, but not corticosteroids, suggesting that
IKK2i may represent an important novel therapy for asthma.
Collapse
Affiliation(s)
- Lucy Bianca Woodman
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Department of Respiratory Medicine, Glenfield Hospital, Leicester, England
| | - Wing Yan Heidi Wan
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Department of Respiratory Medicine, Glenfield Hospital, Leicester, England
| | - Roberta Milone
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Ken Grace
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Ana Sousa
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Rick Williamson
- GlaxoSmithKline, Refractory Respiratory Inflammation DPU, Respiratory CEDD Biomarker Discovery Group, Stevenage, England
| | - Christopher Edward Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Department of Respiratory Medicine, Glenfield Hospital, Leicester, England.
| |
Collapse
|
20
|
Jacobs SE, Soave R, Shore TB, Satlin MJ, Schuetz AN, Magro C, Jenkins SG, Walsh TJ. Human rhinovirus infections of the lower respiratory tract in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2013; 15:474-86. [PMID: 23890179 PMCID: PMC3962254 DOI: 10.1111/tid.12111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/19/2012] [Accepted: 01/16/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are a common cause of upper respiratory infection (URI) in hematopoietic stem cell transplant (HSCT) recipients; yet, their role in lower respiratory illness is not well understood. METHODS We performed a retrospective chart review of HSCT recipients with HRV infection from the time molecular detection methods were implemented at our institution in 2008. Factors associated with proven or possible HRV pneumonia at the first HRV detection were evaluated by univariate and multivariate analysis. We then characterized all episodes of proven and possible HRV pneumonia from the initial HRV infection through a 1-year follow-up period. RESULTS Between 2008 and 2011, 63 HSCT recipients had ≥1 documented HRV infections. At first HRV detection, 36 (57%) patients had HRV URI and 27 (43%) had proven or possible HRV pneumonia; in multivariate analysis, hypoalbuminemia (odds ratio [OR] 9.5, 95% confidence interval [CI] 1.3-71.7; P = 0.03) and isolation of respiratory co-pathogen(s) (OR 24.2, 95% CI 2.0-288.4; P = 0.01) were independently associated with pneumonia. During the study period, 22 patients had 25 episodes of proven HRV pneumonia. Fever (60%), cough (92%), sputum production (61%), and dyspnea (60%) were common symptoms. Fifteen (60%) episodes demonstrated bacterial (n = 7), fungal (n = 5), or viral (n = 3) co-infection. Among the remaining 10 (40%) cases of HRV monoinfection, patients' oxygen saturations ranged from 80% to 97% on ambient air, and computed tomography scans showed peribronchiolar, patchy, ground glass infiltrates. CONCLUSIONS HRV pneumonia is relatively common after HSCT and frequently accompanied by bacterial co-infection. As use of molecular assays for respiratory viral diagnosis becomes widespread, HRV will be increasingly recognized as a significant cause of pneumonia in immunocompromised hosts.
Collapse
Affiliation(s)
- S E Jacobs
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
The role of respiratory viruses in adult patients with cystic fibrosis receiving intravenous antibiotics for a pulmonary exacerbation. J Cyst Fibros 2013; 13:49-55. [PMID: 23891398 DOI: 10.1016/j.jcf.2013.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/19/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Respiratory viruses have become increasingly recognised as important agents in pulmonary exacerbations in infants and children with CF. The aim of this study was to determine the prevalence of respiratory viruses during acute pulmonary exacerbations in adults and compare the severity of these exacerbations with non-viral associated exacerbations. METHODS This was a retrospective case control study. Viral throat swabs were taken from all patients presenting with an acute pulmonary exacerbation requiring intravenous antibiotic treatment over a 12 month period. RESULTS There were 432 pulmonary exacerbations in 180 adults. A positive viral PCR in 42 exacerbations indicated a prevalence of 9.7%. The commonest virus isolated was rhinovirus (n = 29, 69%) with influenza A/H1N1 in seven patients (16.7%). Exacerbations associated with a positive viral PCR had a greater fall in lung function at presentation with higher levels of inflammatory markers. They received more days of intravenous antibiotics, showed less response to treatment and had a shorter time to next pulmonary exacerbation compared to matched controls. CONCLUSION Viral associated pulmonary exacerbations in adults with CF are associated with more severe pulmonary involvement and respond less well to standard treatment.
Collapse
|
22
|
Cullinan P, Lloyd C. The double macchiato years; awards for the best basic science and epidemiology papers in 2012. Thorax 2013; 68:777-9. [PMID: 23842817 DOI: 10.1136/thoraxjnl-2013-203961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It's increasingly difficult to get published in Thorax so we commend all those who managed it in 2012; and salute all those who tried and failed. We think that comparisons are invidious but our chief editors, with all their schoolboy charm, disagree so here are our awards for the best basic science and epidemiological manuscripts in the year of the London Olympics.
Collapse
Affiliation(s)
- Paul Cullinan
- Department of Occupational and Environmental Medicine, Imperial College (NHLI), London, UK.
| | | |
Collapse
|
23
|
Kieninger E, Singer F, Tapparel C, Alves MP, Latzin P, Tan HL, Bossley C, Casaulta C, Bush A, Davies JC, Kaiser L, Regamey N. High rhinovirus burden in lower airways of children with cystic fibrosis. Chest 2013. [PMID: 23188200 DOI: 10.1378/chest.12-0954] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Rhinovirus (RV)-induced pulmonary exacerbations are common in cystic fibrosis (CF) and have been associated with impaired virus clearance by the CF airway epithelium in vitro. Here, we assess in vivo the association of RV prevalence and load with antiviral defense mechanisms, airway inflammation, and lung function parameters in children with CF compared with a control group and children with other chronic respiratory diseases. METHODS RV presence and load were measured by real-time reverse transcription-polymerase chain reaction in BAL samples and were related to antiviral and inflammatory mediators measured in BAL and to clinical parameters. RESULTS BAL samples were obtained from children with CF (n = 195), non-CF bronchiectasis (n = 40), or asthma (n = 29) and from a control group (n = 35) at a median (interquartile range [IQR]) age of 8.2 (4.0-11.7) years. RV was detected in 73 samples (24.4%). RV prevalence was similar among groups. RV load (median [IQR] x 10(3) copies/mL) was higher in children with CF (143.0 [13.1-1530.0]), especially during pulmonary exacerbations, compared with children with asthma (3.0 [1.3-25.8], P = .006) and the control group (0.5 [0.3-0.5], P < .001), but similar to patients with non-CF bronchiectasis (122.1 [2.7-4423.5], P = not significant). In children with CF, RV load was negatively associated with interferon (IFN)- b and IFN- l , IL-1ra levels, and FEV 1 , and positively with levels of the cytokines CXCL8 and CXCL10. CONCLUSIONS RV load in CF BAL is high, especially during exacerbated lung disease. Impaired production of antiviral mediators may lead to the high RV burden in the lower airways of children with CF. Whether high RV load is a cause or a consequence of inflammation needs further investigation in longitudinal studies.
Collapse
Affiliation(s)
- Elisabeth Kieninger
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Florian Singer
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland
| | - Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marco P Alves
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Hui-Leng Tan
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Cara Bossley
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Carmen Casaulta
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland
| | - Andrew Bush
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Jane C Davies
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Regamey
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
Edwards MR, Regamey N, Vareille M, Kieninger E, Gupta A, Shoemark A, Saglani S, Sykes A, Macintyre J, Davies J, Bossley C, Bush A, Johnston SL. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013; 6:797-806. [PMID: 23212197 PMCID: PMC3684776 DOI: 10.1038/mi.2012.118] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/22/2012] [Indexed: 02/04/2023]
Abstract
Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA.
Collapse
Affiliation(s)
- M R Edwards
- Respiratory Medicine, St Mary's Campus, National Heart Lung Institute, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lind K, Richardson SJ, Leete P, Morgan NG, Korsgren O, Flodström-Tullberg M. Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. J Virol 2013; 87:7646-54. [PMID: 23637411 PMCID: PMC3700265 DOI: 10.1128/jvi.03431-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/23/2013] [Indexed: 12/23/2022] Open
Abstract
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.
Collapse
Affiliation(s)
- Katharina Lind
- Department of Medicine HS, The Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah J. Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Plymouth, Devon, United Kingdom
| | - Pia Leete
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Plymouth, Devon, United Kingdom
| | - Noel G. Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Plymouth, Devon, United Kingdom
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Malin Flodström-Tullberg
- Department of Medicine HS, The Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Abstract
Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs.
Collapse
Affiliation(s)
- Samantha E. Jacobs
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| | - Daryl M. Lamson
- Laboratory of Viral Diseases, Wadsworth Center, Albany, New York, USA
| | | | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
27
|
Zheng YW, Li H, Yu JP, Zhao H, Wang SE, Ren XB. Interferon-λs: special immunomodulatory agents and potential therapeutic targets. J Innate Immun 2012; 5:209-18. [PMID: 23207147 PMCID: PMC6741515 DOI: 10.1159/000345365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
Interferon (IFN)-λs are a new addition to the old IFN family and share many similarities, such as antiviral and antiproliferative characteristics, with type I IFNs. IFN-λs also exhibit unique characteristics in immunomodulation. Accumulating studies have indicated the interactions between IFN-λs and immune cells, which lead to the regulation of the latter. IFN-λs can influence dendritic cells (DCs) and their product, IFN-λs-DCs, can then regulate the function of T cells. On the other hand, IFN-λs can also directly affect T cells through inhibition of the T helper 2 cell (Th2) responses. IFN-λs have varying immunomodulatory functions under different physiological conditions or in different organs and can inhibit tumor growth via regulation of the immune system. Diseases associated with IFN-λs include asthma, allergy, and systemic lupus erythematosus. In this review, we summarize the current knowledge of the biology of IFN-λs and their immunomodulatory function in relevant human diseases.
Collapse
Affiliation(s)
- Ya-wen Zheng
- Department of Biotherapy, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jin-pu Yu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Zhao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shizhen Emily Wang
- Division of Tumor Cell Biology, Beckman Research Institute of City of Hope, Duarte, Calif., USA
| | | |
Collapse
|
28
|
Schreiber MT, Schuler B, Li L, Hall DJ. Activation of the small G-protein Rac by human rhinovirus attenuates the TLR3/IFN-α axis while promoting CCL2 release in human monocyte-lineage cells. Innate Immun 2012; 19:278-89. [PMID: 23060458 DOI: 10.1177/1753425912460709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although rhinoviral infections, a major cause of asthma exacerbations, occur predominantly in upper airway bronchial epithelial cells, monocytic-lineage cells are implicated in establishing the inflammatory microenvironment observed during the disease. Human rhinovirus (HRV) is unique in that nearly genetically identical viruses bind either the ICAM-1 or low-density lipoprotein receptor (LDL-R). Within minutes of binding, HRV is capable of eliciting a signaling response in both epithelial cells and monocyte-derived macrophages. It is unclear whether this signaling response is important to the subsequent release of inflammatory mediators, particularly in cells not capable of supporting viral replication. We show here that the small molecular mass G-protein Rac is activated following exposure of macrophages to HRV serotypes known to be ICAM-1- and LDL-R-tropic. We demonstrate that inhibiting Rac resulted in the upregulation of TLR3 in macrophages exposed to major- and minor-group HRV, and resulted in increased release of IFN-α. Furthermore, inhibiting Rac in HRV-exposed macrophages attenuated activation of the stress kinase p38 and release of the pro-inflammatory cytokine CCL2, but inhibiting Rac did not affect release of the pro-inflammatory cytokine CCL5. These findings suggest that Rac is an important regulator in establishing the inflammatory microenvironment that is initiated in the human airway upon exposure to rhinovirus.
Collapse
|
29
|
Rhinovirus 16–induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy Clin Immunol 2012; 129:1506-1514.e6. [DOI: 10.1016/j.jaci.2012.03.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/19/2012] [Accepted: 03/14/2012] [Indexed: 01/12/2023]
|
30
|
Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10:27. [PMID: 22420941 PMCID: PMC3353868 DOI: 10.1186/1741-7015-10-27] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | |
Collapse
|