1
|
Oluwole-Ojo T, Harris C, Greenough A. Advances in the pharmacological management of bronchopulmonary dysplasia: an update of the literature. Expert Opin Pharmacother 2024; 25:1349-1358. [PMID: 39041726 DOI: 10.1080/14656566.2024.2383628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) is the commonest adverse outcome of extremely prematurely born infants, and its incidence is increasing. Affected infants suffer chronic respiratory morbidity and are at risk of early onset of chronic obstructive pulmonary disease. It is, therefore, important that these infants are appropriately managed, with efficacious pharmacological treatments. AREAS COVERED Searches were made on Embase, PubMed, and the Cochrane database for ('treatment' or 'drug therapy/') and ('bronchopulmonary dysplasia' or 'chronic lung disease') and ('neonatology' or 'newborn' or 'prematurity' or 'baby') between 2019 and 2024. Corticosteroids, diuretics, caffeine, anti-asthmatics, nutritional supplements, and medications treating patent ductus arteriosus and pulmonary hypertension are discussed. EXPERT OPINION Dexamethasone is associated with adverse neurodevelopmental outcomes and impairment of adult lung function. Inhaled corticosteroids have not resulted in significant effects on BPD. Diuretics only result in short-term improvements in lung function and have side-effects. Evidence suggests it is better to wait and see than aggressively treat PDA; inhaled nitric oxide and sildenafil can improve oxygenation, but whether they improve long-term outcomes remains to be tested. Stem cells are a promising therapy, but further research is required. Appropriately designed trials are required to identify efficacious treatments for infants with BPD.
Collapse
Affiliation(s)
- Tolu Oluwole-Ojo
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Christopher Harris
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
- Department of Women and Children's Health, Life Sciences and Medicine, King's College London, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Chen Y, Zhou H, Wu H, Lu W, He Y. Abnormal Fetal Lung of Hoxa1 -/- Piglets Is Rescued by Maternal Feeding with All-Trans Retinoic Acid. Animals (Basel) 2023; 13:2850. [PMID: 37760250 PMCID: PMC10525738 DOI: 10.3390/ani13182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neonatal Hoxa1-/- piglets were characterized by dyspnea owing to the Hoxa1 mutation, and maternal administration with ATRA alleviated the dyspnea of neonatal Hoxa1-/- piglets. The purpose of this experiment was to explore how maternal ATRA administration rescued the abnormal fetal lungs of Hoxa1-/- piglets. Samples of the lungs were collected from neonatal Hoxa1-/- and non-Hoxa1-/- piglets delivered by sows in the control group, and from neonatal Hoxa1-/- piglets born by sows administered with ATRA at 4 mg/kg body weight on dpc 12, 13, or 14, respectively. These were used for the analysis of ELISA, histological morphology, immunofluorescence staining, immunohistochemistry staining, and quantitative real-time PCR. The results indicate that the Hoxa1 mutation had adverse impacts on the development of the alveoli and pulmonary microvessels of Hoxa1-/- piglets. Maternal administration with ATRA at 4 mg/kg body weight on dpc 14 rescued the abnormal lung development of Hoxa1-/- piglets by increasing the IFN-γ concentration (p < 0.05), airspace area (p < 0.01) and pulmonary microvessel density (p < 0.01); increasing the expression of VEGFD (p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), ID1 (p < 0.01), and NEDD4 (p < 0.01); and decreasing the septal wall thickness (p < 0.01) and the expression of SFTPC (p < 0.01) and FOXO3 (p < 0.01). Maternal administration with ATRA plays a vital role in rescuing the abnormal development of lung of Hoxa1-/- fetal piglets.
Collapse
Affiliation(s)
- Yixin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- Department of Animal Science, Ganzhou Polytechnic, Ganzhou 341000, China
| | - Haimei Zhou
- Department of Animal Science, Jiangxi Agricultural Engineering College, Zhangshu 331200, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
3
|
Shah BK, Singh B, Wang Y, Xie S, Wang C. Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease and Its Treatment. Mediators Inflamm 2023; 2023:8840594. [PMID: 37457746 PMCID: PMC10344637 DOI: 10.1155/2023/8840594] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Most patients diagnosed with chronic obstructive pulmonary disease (COPD) present with hallmark features of airway mucus hypersecretion, including cough and expectoration. Airway mucus function as a native immune system of the lung that severs to trap particulate matter and pathogens and allows them to clear from the lung via cough and ciliary transport. Chronic mucus hypersecretion (CMH) is the main factor contributing to the increased risk of morbidity and mortality in specific subsets of COPD patients. It is, therefore, primarily important to develop medications that suppress mucus hypersecretions in these patients. Although there have been some advances in COPD treatment, more work remains to be done to better understand the mechanism underlying airway mucus hypersecretion and seek more effective treatments. This review article discusses the structure and significance of mucus in the lungs focusing on gel-forming mucins and the impacts of CMH in the lungs. Furthermore, we summarize the article with pharmacological and nonpharmacological treatments as well as novel and interventional procedures to control CMH in COPD patients.
Collapse
Affiliation(s)
- Binay Kumar Shah
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University School of Medicine, Shanghai 200092, China
| | - Bivek Singh
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yukun Wang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
4
|
Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Muñoz M, Bhattacharya J, Blaner WS. Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice. Nat Commun 2023; 14:851. [PMID: 36792627 PMCID: PMC9932169 DOI: 10.1038/s41467-023-36475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Retinoids are potent transcriptional regulators that act in regulating cell proliferation, differentiation, and other cellular processes. We carried out studies in male mice to establish the importance of local cellular retinoid stores within the lung alveolus for maintaining its health in the face of an acute inflammatory challenge induced by intranasal instillation of lipopolysaccharide. We also undertook single cell RNA sequencing and bioinformatic analyses to identify roles for different alveolar cell populations involved in mediating these retinoid-dependent responses. Here we show that local retinoid stores and uncompromised metabolism and signaling within the lung are required to lessen the severity of an acute inflammatory challenge. Unexpectedly, our data also establish that alveolar cells other than lipofibroblasts, specifically microvascular endothelial and alveolar epithelial cells, are able to take up lipoprotein-transported retinoid and to accumulate cellular retinoid stores that are directly used to respond to an acute inflammatory challenge.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Galina A Gusarova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mohammad N Islam
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - María Marhuenda-Muñoz
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921, Santa Coloma de Gramenet, Spain
| | - Jahar Bhattacharya
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
5
|
Xu H, Pan G, Wang J. Repairing Mechanisms for Distal Airway Injuries and Related Targeted Therapeutics for Chronic Lung Diseases. Cell Transplant 2023; 32:9636897231196489. [PMID: 37698245 PMCID: PMC10498699 DOI: 10.1177/09636897231196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), involve progressive and irreversible destruction and pathogenic remodeling of airways and have become the leading health care burden worldwide. Pulmonary tissue has extensive capacities to launch injury-responsive repairing programs (IRRPs) to replace the damaged or dead cells upon acute lung injuries. However, the IRRPs are frequently compromised in chronic lung diseases. In this review, we aim to provide an overview of somatic stem cell subpopulations within distal airway epithelium and the underlying mechanisms mediating their self-renewal and trans-differentiation under both physiological and pathological circumstances. We also compared the differences between humans and mice on distal airway structure and stem cell composition. At last, we reviewed the current status and future directions for the development of targeted therapeutics on defective distal airway regeneration and repairment in chronic lung diseases.
Collapse
Affiliation(s)
- Huahua Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Wensvoort G. Human C-peptide is a ligand of the elastin-receptor-complex and therewith central to human vascular remodelling and disease in metabolic syndrome. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Baristaite G, Gurwitz D. d-Galactose treatment increases ACE2, TMPRSS2, and FURIN and reduces SERPINA1 mRNA expression in A549 human lung epithelial cells. Drug Dev Res 2021; 83:622-627. [PMID: 34677831 DOI: 10.1002/ddr.21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Several comorbidities including diabetes, immune deficiency, and chronic respiratory disorders increase the risk of severe Covid-19 and fatalities among SARS-CoV-2 infected individuals. Severe Covid-19 risk among diabetes patients may reflect reduced immune response to viral infections. SARS-CoV-2 initially infects respiratory tract epithelial cells by binding to the host cell membrane ACE2, followed by proteolytic priming for cell entry by the host cell membrane serine protease TMPRSS2. Additionally, the protease FURIN facilitates cell exit of mature SARS-CoV-2 virions. Alpha-1 antitrypsin (AAT), the major plasma serine protease inhibitor, encoded by SERPINA1, is known to promote immune response to viral infections. AAT inhibits neutrophil elastase, a key inflammatory serine protease implicated in alveolar cell damage during respiratory infections, and AAT deficiency is associated with susceptibility to lung infections. AAT is implicated in Covid-19 as it inhibits TMPRSS2, a protease essential for SARS-CoV-2 cell entry. Here we show that treatment of A549 human lung epithelial cells for 7 days with 25 mM d-galactose, an inducer of diabetic-like and oxidative stress cellular phenotypes, leads to increased mRNA levels of ACE2, TMPRSS2, and FURIN, along with reduced SERPINA1 mRNA. Together, the dysregulated transcription of these genes following d-galactose treatment suggests that chronic diabetic-like conditions may facilitate SARS-CoV-2 infection of lung epithelial cells. Our findings may in part explain the higher severe Covid-19 risk in diabetes, and highlight the need to develop special treatment protocols for diabetic patients.
Collapse
Affiliation(s)
- Gabriele Baristaite
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Green CE, Clarke J, Bicknell R, Turner AM. Pulmonary MicroRNA Changes Alter Angiogenesis in Chronic Obstructive Pulmonary Disease and Lung Cancer. Biomedicines 2021; 9:830. [PMID: 34356894 PMCID: PMC8301412 DOI: 10.3390/biomedicines9070830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
The pulmonary endothelium is dysfunctional in chronic obstructive pulmonary disease (COPD), a known risk factor for lung cancer. The pulmonary endothelium is altered in emphysema, which is disproportionately affected by cancers. Gene and microRNA expression differs between COPD and non-COPD lung. We hypothesised that the alteration in microRNA expression in the pulmonary endothelium contributes to its dysfunction. A total of 28 patients undergoing pulmonary resection were recruited and endothelial cells were isolated from healthy lung and tumour. MicroRNA expression was compared between COPD and non-COPD patients. Positive findings were confirmed by quantitative polymerase chain reaction (qPCR). Assays assessing angiogenesis and cellular migration were conducted in Human Umbilical Vein Endothelial Cells (n = 3-4) transfected with microRNA mimics and compared to cells transfected with negative control RNA. Expression of miR-181b-3p, miR-429 and miR-23c (all p < 0.05) was increased in COPD. Over-expression of miR-181b-3p was associated with reduced endothelial sprouting (p < 0.05). miR-429 was overexpressed in lung cancer as well and exhibited a reduction in tubular formation. MicroRNA-driven changes in the pulmonary endothelium thus represent a novel mechanism driving emphysema. These processes warrant further study to determine if they may be therapeutic targets in COPD and lung cancer.
Collapse
Affiliation(s)
- Clara E. Green
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joseph Clarke
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.C.); (R.B.)
| | - Roy Bicknell
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.C.); (R.B.)
| | - Alice M. Turner
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
9
|
Alishahedani ME, Yadav M, McCann KJ, Gough P, Castillo CR, Matriz J, Myles IA. Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing. PLoS One 2021; 16:e0253669. [PMID: 34143844 PMCID: PMC8213172 DOI: 10.1371/journal.pone.0253669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The scratch assay is an in vitro technique used to analyze cell migration, proliferation, and cell-to-cell interaction. In the assay, cells are grown to confluence and then ‘scratched’ with a sterile instrument. For the cells in the leading edge, the resulting polarity induces migration and proliferation in attempt to ‘heal’ the modeled wound. Keloid scars are known to have an accelerated wound closure phenotype in the scratch assay, representing an overactivation of wound healing. We performed a qualitative review of the recent literature searching for inhibitors of scratch assay activity that were already available in topical formulations under the hypothesis that such compounds may offer therapeutic potential in keloid treatment. Although several shortcomings in the scratch assay literature were identified, caffeine and allicin successfully inhibited the scratch assay closure and inflammatory abnormalities in the commercially available keloid fibroblast cell line. Caffeine and allicin also impacted ATP production in keloid cells, most notably with inhibition of non-mitochondrial oxygen consumption. The traditional Chinese medicine, shikonin, was also successful in inhibiting scratch closure but displayed less dramatic impacts on metabolism. Together, our results partially summarize the strengths and limitations of current scratch assay literature and suggest clinical assessment of the therapeutic potential for these identified compounds against keloid scars may be warranted.
Collapse
Affiliation(s)
- Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Manoj Yadav
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Katelyn J. McCann
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Portia Gough
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Carlos R. Castillo
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Jobel Matriz
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ma Z, Ma C, Zhang Q, Bai Y, Mu K, Liu X, Yang Q. Role of CXCL16 in BLM-induced epithelial-mesenchymal transition in human A549 cells. Respir Res 2021; 22:42. [PMID: 33549109 PMCID: PMC7866482 DOI: 10.1186/s12931-021-01646-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/31/2021] [Indexed: 12/01/2022] Open
Abstract
Alveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial–mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-β1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Chunyan Ma
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingfeng Zhang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yang Bai
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Kun Mu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| | - Qingrui Yang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
11
|
Gosens R, Ng-Blichfeldt JP. Rejuvenating old lungs: Ain't no tonic like a drop of retinoic. Thorax 2021; 76:428-429. [PMID: 33479042 DOI: 10.1136/thoraxjnl-2020-216632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Reinoud Gosens
- Molecular Pharmacology, University of Groningen, Groningen, The Netherlands .,Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
12
|
Barnes PJ, Anderson GP, Fagerås M, Belvisi MG. Chronic lung diseases: prospects for regeneration and repair. Eur Respir Rev 2021; 30:30/159/200213. [PMID: 33408088 PMCID: PMC9488945 DOI: 10.1183/16000617.0213-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
COPD and idiopathic pulmonary fibrosis (IPF) together represent a considerable unmet medical need, and advances in their treatment lag well behind those of other chronic conditions. Both diseases involve maladaptive repair mechanisms leading to progressive and irreversible damage. However, our understanding of the complex underlying disease mechanisms is incomplete; with current diagnostic approaches, COPD and IPF are often discovered at an advanced stage and existing definitions of COPD and IPF can be misleading. To halt or reverse disease progression and achieve lung regeneration, there is a need for earlier identification and treatment of these diseases. A precision medicine approach to treatment is also important, involving the recognition of disease subtypes, or endotypes, according to underlying disease mechanisms, rather than the current “one-size-fits-all” approach. This review is based on discussions at a meeting involving 38 leading global experts in chronic lung disease mechanisms, and describes advances in the understanding of the pathology and molecular mechanisms of COPD and IPF to identify potential targets for reversing disease degeneration and promoting tissue repair and lung regeneration. We also discuss limitations of existing disease measures, technical advances in understanding disease pathology, and novel methods for targeted drug delivery. Treatment outcomes with COPD and IPF are suboptimal. Better understanding of the diseases, such as targetable repair mechanisms, may generate novel therapies, and earlier diagnosis and treatment is needed to stop or even reverse disease progression.https://bit.ly/2Ga8J1g
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | | | - Maria G Belvisi
- National Heart & Lung Institute, Imperial College London, London, UK.,Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
13
|
Rakshasbhuvankar AA, Simmer K, Patole SK, Stoecklin B, Nathan EA, Clarke MW, Pillow JJ. Enteral Vitamin A for Reducing Severity of Bronchopulmonary Dysplasia: A Randomized Trial. Pediatrics 2021; 147:peds.2020-009985. [PMID: 33386338 DOI: 10.1542/peds.2020-009985] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Evidence suggests that intramuscular vitamin A reduces the risk of bronchopulmonary dysplasia (BPD) in preterm infants. Our objective was to compare enteral water-soluble vitamin A with placebo supplementation to reduce the severity of BPD in extremely preterm infants. METHODS We conducted a double-blind randomized controlled trial in infants <28 weeks' gestation who were to receive either enteral water-soluble vitamin A (5000 IU per day) or a placebo. Supplementation was started within 24 hours of introduction of feeds and continued until 34 weeks' postmenstrual age (PMA). The primary outcome was the severity of BPD, assessed by using the right shift of the pulse oximeter saturation versus the inspired oxygen pressure curve. RESULTS A total of 188 infants were randomly assigned. The mean ± SD birth weight (852 ± 201 vs 852 ± 211 g) and gestation (25.8 ± 1.49 vs 26.0 ± 1.39 weeks) were comparable between the vitamin A and placebo groups. There was no difference in the right shift (median [25th-75th percentiles]) of the pulse oximeter saturation versus inspired oxygen pressure curve (in kilopascals) between the vitamin A (11.1 [9.5-13.7]) and placebo groups (10.7 [9.5-13.1]) (P = .73). Enteral vitamin A did not affect diagnosis of BPD or other clinical outcomes. Plasma retinol levels were significantly higher in the vitamin A group versus the placebo group on day 28 and at 34 weeks' PMA. CONCLUSIONS Enteral water-soluble vitamin A supplementation improves plasma retinol levels in extremely preterm infants but does not reduce the severity of BPD.
Collapse
Affiliation(s)
- Abhijeet A Rakshasbhuvankar
- Neonatal Clinical Care Unit and .,Neonatal Clinical Care Unit, Perth Children's Hospital, Perth, Western Australia, Australia.,Centre for Child Health Research, Medical School, The University of Western Australia and Telethon Kids Institute, Perth, Western Australia, Australia.,Division of Anatomy and Human Biology, School of Human Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia; and
| | - Karen Simmer
- Neonatal Clinical Care Unit and.,Neonatal Clinical Care Unit, Perth Children's Hospital, Perth, Western Australia, Australia.,Centre for Child Health Research, Medical School, The University of Western Australia and Telethon Kids Institute, Perth, Western Australia, Australia
| | - Sanjay K Patole
- Neonatal Clinical Care Unit and.,Neonatal Clinical Care Unit, Perth Children's Hospital, Perth, Western Australia, Australia.,Centre for Child Health Research, Medical School, The University of Western Australia and Telethon Kids Institute, Perth, Western Australia, Australia
| | - Benjamin Stoecklin
- Neonatal Clinical Care Unit and.,Centre for Child Health Research, Medical School, The University of Western Australia and Telethon Kids Institute, Perth, Western Australia, Australia.,Division of Anatomy and Human Biology, School of Human Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia; and.,Department of Neonatology, University Children's Hospital Basel, Basel, Switzerland
| | - Elizabeth A Nathan
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, Western Australia, Australia.,Division of Obstetrics and Gynaecology, Faculty of Health and Medical Sciences
| | - Michael W Clarke
- Metabolomics Australia, Centre for Microscopy, Characterization, and Analysis.,School of Biomedical Sciences, Faculty of Health and Medical Sciences, and
| | - J Jane Pillow
- Centre for Child Health Research, Medical School, The University of Western Australia and Telethon Kids Institute, Perth, Western Australia, Australia.,Division of Anatomy and Human Biology, School of Human Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia; and
| |
Collapse
|
14
|
Portas L, Pereira M, Shaheen SO, Wyss AB, London SJ, Burney PGJ, Hind M, Dean CH, Minelli C. Lung Development Genes and Adult Lung Function. Am J Respir Crit Care Med 2020; 202:853-865. [PMID: 32392078 PMCID: PMC7491406 DOI: 10.1164/rccm.201912-2338oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rationale: Poor lung health in adult life may occur partly through
suboptimal growth and development, as suggested by epidemiological evidence
pointing to early life risk factors. Objectives: To systematically investigate the effects of lung
development genes on adult lung function. Methods: Using UK Biobank data, we tested the association of 391
genes known to influence lung development with FVC and FEV1/FVC. We
split the dataset into two random subsets of 207,616 and 138,411 individuals,
using the larger subset to select the most promising signals and the smaller
subset for replication. Measurements and Main Results: We identified 55 genes, of which 36
(16 for FVC, 19 for FEV1/FVC, and one for both) had not been
identified in the largest, most recent genome-wide study of lung function. Most
of these 36 signals were intronic variants; expression data from blood and lung
tissue showed that the majority affect the expression of the genes they lie
within. Further testing of 34 of these 36 signals in the CHARGE and SpiroMeta
consortia showed that 16 replicated after Bonferroni correction and another 12
replicated at nominal significance level. Of the 55 genes, 53 fell into four
biological categories whose function is to regulate organ size and cell
integrity (growth factors; transcriptional regulators; cell-to-cell adhesion;
extracellular matrix), suggesting that these specific processes are important
for adult lung health. Conclusions: Our study demonstrates the importance of lung
development genes in regulating adult lung function and influencing both
restrictive and obstructive patterns. Further investigation of these
developmental pathways could lead to druggable targets.
Collapse
Affiliation(s)
- Laura Portas
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Miguel Pereira
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Congenica Ltd., Wellcome Genome Campus, Cambridge, United Kingdom
| | - Seif O Shaheen
- Institute of Population Health Sciences, Queen Mary University of London, London, United Kingdom
| | - Annah B Wyss
- Department of Health and Human Services, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Peter G J Burney
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom; and
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Kim SY, Mongey R, Wang P, Rothery S, Gaboriau DCA, Hind M, Griffiths M, Dean CH. The acid injury and repair (AIR) model: A novel ex-vivo tool to understand lung repair. Biomaterials 2020; 267:120480. [PMID: 33157373 DOI: 10.1016/j.biomaterials.2020.120480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/11/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Research into mechanisms underlying lung injury and subsequent repair responses is currently of paramount importance. There is a paucity of models that bridge the gap between in vitro and in vivo research. Such intermediate models are critical for researchers to decipher the mechanisms that drive repair and to test potential new treatments for lung repair and regeneration. Here we report the establishment of a new tool, the Acid Injury and Repair (AIR) model, that will facilitate studies of lung tissue repair. In this model, injury is applied to a restricted area of a precision-cut lung slice using hydrochloric acid, a clinically relevant driver. The surrounding area remains uninjured, thus mimicking the heterogeneous pattern of injury frequently observed in lung diseases. We show that in response to injury, the percentage of progenitor cells (pro surfactant protein C, proSP-C and TM4SF1 positive) significantly increases in the injured region. Whereas in the uninjured area, the percentage of proSP-C/TM4SF1 cells remains unchanged but proliferating cells (Ki67 positive) increase. These effects are modified in the presence of inhibitors of proliferation (Cytochalasin D) and Wnt secretion (C59) demonstrating that the AIR model is an important new tool for research into lung disease pathogenesis and potential regenerative medicine strategies.
Collapse
Affiliation(s)
- Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peizhu Wang
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen Rothery
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK; National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK; Peri-Operative Medicine Department, St Bartholomew's Hospital, London, UK
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Harwell Institute, Harwell Campus, Oxfordshire, UK.
| |
Collapse
|
16
|
Taylor B, Rice A, Nicholson AG, Hind M, Dean CH. Mechanism of lung development in the aetiology of adult congenital pulmonary airway malformations. Thorax 2020; 75:1001-1003. [PMID: 32732323 PMCID: PMC7569368 DOI: 10.1136/thoraxjnl-2020-214752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022]
Abstract
Congenital pulmonary airway malformations (CPAMs) are rare lung abnormalities that result in cyst formation and are associated with respiratory distress in infants and malignant potential in adults. The pathogenesis of CPAMs remains unknown but data suggest disruption of the normal proximo-distal programme of airway branching and differentiation. Here, we demonstrate that adult human CPAM are lined with epithelium that retains SOX-2 and thyroid transcription factor-1 immunohistochemical markers, characteristic of the developing lung. However, RALDH-1, another key marker, is absent. This suggests a more complex aetiology for CPAM than complete focal arrest of lung development and may provide insight to the associated risk of malignancy.
Collapse
Affiliation(s)
- Bethany Taylor
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexandra Rice
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Medicine, Department of Respiratory Medicine and National Institute for Health research Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College, London, UK
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
17
|
Basil MC, Morrisey EE. Lung regeneration: a tale of mice and men. Semin Cell Dev Biol 2020; 100:88-100. [PMID: 31761445 PMCID: PMC7909713 DOI: 10.1016/j.semcdb.2019.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023]
Abstract
The respiratory system is the main site of gas exchange with the external environment in complex terrestrial animals. Within the trachea and lungs are multiple different tissue niches each consisting of a myriad of cells types with critical roles in air conduction, gas exchange, providing important niche specific cell-cell interactions, connection to the cardiovascular system, and immune surveillance. How the respiratory system responds to external insults and executes the appropriate regenerative response remains challenging to study given the plethora of cell and tissue interactions for this to occur properly. This review will examine the various cell types and tissue niches found within the respiratory system and provide a comparison between mouse and human lungs and trachea to highlight important similarities and differences. Defining the critical gaps in knowledge in human lung and tracheal regeneration is critical for future development of therapies directed towards respiratory diseases.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Edward E Morrisey
- Department of Medicine; Department of Cell and Developmental Biology; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS. Retinoic Acid: A Key Regulator of Lung Development. Biomolecules 2020; 10:biom10010152. [PMID: 31963453 PMCID: PMC7022928 DOI: 10.3390/biom10010152] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid (RA) is a key molecular player in embryogenesis and adult tissue homeostasis. In embryo development, RA plays a crucial role in the formation of different organ systems, namely, the respiratory system. During lung development, there is a spatiotemporal regulation of RA levels that assures the formation of a fully functional organ. RA signaling influences lung specification, branching morphogenesis, and alveolarization by regulating the expression of particular target genes. Moreover, cooperation with other developmental pathways is essential to shape lung organogenesis. This review focuses on the events regulated by retinoic acid during lung developmental phases and pulmonary vascular development; also, it aims to provide a snapshot of RA interplay with other well-known regulators of lung development.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- PhDOC PhD Program, ICVS/3B’s, School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-12-5360-4911
| |
Collapse
|
19
|
Retinoic acid signalling adjusts tight junction permeability in response to air-liquid interface conditions. Cell Signal 2020; 65:109421. [DOI: 10.1016/j.cellsig.2019.109421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
20
|
Ng-Blichfeldt JP, Gosens R, Dean C, Griffiths M, Hind M. Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax 2019; 74:890-897. [PMID: 30940772 DOI: 10.1136/thoraxjnl-2018-212630] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 11/04/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health concern with few effective treatments. Widespread destruction of alveolar tissue contributes to impaired gas exchange in severe COPD, and recent radiological evidence suggests that destruction of small airways is a major contributor to increased peripheral airway resistance in disease. This important finding might in part explain the failure of conventional anti-inflammatory treatments to restore lung function even in patients with mild disease. There is a clear need for alternative pharmacological strategies for patients with COPD/emphysema. Proposed regenerative strategies such as cell therapy and tissue engineering are hampered by poor availability of exogenous stem cells, discouraging trial results, and risks and cost associated with surgery. An alternative therapeutic approach is augmentation of lung regeneration and/or repair by biologically active factors, which have potential to be employed on a large scale. In favour of this strategy, the healthy adult lung is known to possess a remarkable endogenous regenerative capacity. Numerous preclinical studies have shown induction of regeneration in animal models of COPD/emphysema. Here, we argue that given the widespread and irreversible nature of COPD, serious consideration of regenerative pharmacology is necessary. However, for this approach to be feasible, a better understanding of the cell-specific molecular control of regeneration, the regenerative potential of the human lung and regenerative competencies of patients with COPD are required.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK .,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Charlotte Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK.,Barts Heart Centre, St Bartholomews Hospital, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Morichika D, Miyahara N, Fujii U, Taniguchi A, Oda N, Senoo S, Kataoka M, Tanimoto M, Kakuta H, Kiura K, Maeda Y, Kanehiro A. A retinoid X receptor partial agonist attenuates pulmonary emphysema and airway inflammation. Respir Res 2019; 20:2. [PMID: 30606200 PMCID: PMC6318915 DOI: 10.1186/s12931-018-0963-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022] Open
Abstract
Background Retinoid X receptors (RXRs) are members of the nuclear receptor (NR) superfamily that mediate signalling by 9-cis retinoic acid, a vitamin A derivative. RXRs play key roles not only as homodimers but also as heterodimeric partners, e.g., for retinoic acid receptors, vitamin D receptors, and peroxisome proliferator-activated receptors. The NR family may also play important roles in the development of emphysema. However, the role of RXRs in the pathogenesis of emphysema is not well defined. Methods We developed a novel RXR partial agonist (NEt-4IB) and investigated its effect and mechanism compared to a full agonist (bexarotene) in a murine model of emphysema. For emphysema induction, BALB/c mice received intraperitoneal cigarette smoke extract (CSE) or intratracheal porcine pancreas elastase (PPE). Treatment with RXR agonists was initiated before or after emphysema induction. Results Treatment with NEt-4IB significantly suppressed the increase in static lung compliance and emphysematous changes in CSE-induced emphysema and PPE-induced established and progressive emphysema. NEt-4IB significantly suppressed PPE-induced neutrophilic airway inflammation and the levels of keratinocyte chemoattractant (KC), C-X-C motif ligand5 (CXCL5), interferon (IFN)-γ and IL-17. NEt-4IB also improved the matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinase-1 (TIMP-1) imbalance and the reduced anti-oxidant activity in bronchoalveolar lavage (BAL) fluid. NEt-4IB suppressed PPE-induced vascular endothelial growth factor (VEGF) expression in the airway. Treatment with NEt-4IB and bexarotene significantly suppressed the increase in static lung compliance and emphysematous changes. However, adverse effects of RXR agonists, including hypertriglyceridemia and hepatomegaly, were observed in bexarotene-treated mice but not in NEt-4IB-treated mice. Conclusion These data suggest that RXRs play crucial roles in emphysema and airway inflammation, and novel partial RXR agonists could be potential therapeutic strategies for the treatment of PPE- and CSE-induced emphysema. Electronic supplementary material The online version of this article (10.1186/s12931-018-0963-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisuke Morichika
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Nobuaki Miyahara
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Utako Fujii
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Naohiro Oda
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Satoru Senoo
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Mikio Kataoka
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Mitsune Tanimoto
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Hiroki Kakuta
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Arihiko Kanehiro
- Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan. .,Department of Allergy and Respiratory Medicine, Okayama Rosai Hospital, Okayama, Japan.
| |
Collapse
|
22
|
Meng LB, Chen K, Zhang YM, Gong T. Common Injuries and Repair Mechanisms in the Endothelial Lining. Chin Med J (Engl) 2018; 131:2338-2345. [PMID: 30246720 PMCID: PMC6166454 DOI: 10.4103/0366-6999.241805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Endothelial cells (ECs) are important metabolic and endocrinal organs which play a significant role in regulating vascular function. Vascular ECs, located between the blood and vascular tissues, can not only complete the metabolism of blood and interstitial fluid but also synthesize and secrete a variety of biologically active substances to maintain vascular tension and keep a normal flow of blood and long-term patency. Therefore, this article presents a systematic review of common injuries and healing mechanisms for the vascular endothelium. Data Sources: An extensive search in the PubMed database was undertaken, focusing on research published after 2003 with keywords including endothelium, vascular, wounds and injuries, and wound healing. Study Selection: Several types of articles, including original studies and literature reviews, were identified and reviewed to summarize common injury and repair processes of the endothelial lining. Results: Endothelial injury is closely related to the development of multiple cardiovascular and cerebrovascular diseases. However, the mechanism of vascular endothelial injury is not fully understood. Numerous studies have shown that the mechanisms of EC injury mainly involve inflammatory reactions, physical stimulation, chemical poisons, concurrency of related diseases, and molecular changes. Endothelial progenitor cells play an important role during the process of endothelial repair after such injuries. What's more, a variety of restorative cells, changes in cytokines and molecules, chemical drugs, certain RNAs, regulation of blood pressure, and physical fitness training protect the endothelial lining by reducing the inducing factors, inhibiting inflammation and oxidative stress reactions, and delaying endothelial caducity. Conclusions: ECs are always in the process of being damaged. Several therapeutic targets and drugs were seeked to protect the endothelium and promote repair.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Kun Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yuan-Meng Zhang
- Department of Internal Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| |
Collapse
|
23
|
Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation. EBioMedicine 2018; 36:461-474. [PMID: 30236449 PMCID: PMC6197151 DOI: 10.1016/j.ebiom.2018.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Despite compelling data describing pro-regenerative effects of all-trans retinoic acid (ATRA) in pre-clinical models of chronic obstructive pulmonary disease (COPD), clinical trials using retinoids for emphysema patients have failed. Crucial information about the specific role of RA signaling in adult rodent and human lung epithelial progenitor cells is largely missing. Methods Adult lung organoid cultures were generated from isolated primary mouse and human lung epithelial cells, and incubated with pharmacological pathway modulators and recombinant proteins. Organoid number and size were measured, and differentiation was assessed with quantitative immunofluorescence and gene expression analyses. Findings We unexpectedly found that ATRA decreased lung organoid size, whereas RA pathway inhibition increased mouse and human lung organoid size. RA pathway inhibition stimulated mouse lung epithelial proliferation via YAP pathway activation and epithelial-mesenchymal FGF signaling, while concomitantly suppressing alveolar and airway differentiation. HDAC inhibition rescued differentiation in growth-augmented lung organoids. Interpretation In contrast to prevailing notions, our study suggests that regenerative pharmacology using transient RA pathway inhibition followed by HDAC inhibition might hold promise to promote lung epithelial regeneration in diseased adult lung tissue. Fund This project is funded by the Lung Foundation Netherlands (Longfonds) grant 6.1.14.009 (RG, MK, JS, PSH) and W2/W3 Professorship Award by the Helmholtz Association, Berlin, Germany (MK).
Collapse
|
24
|
Vitamin A Deficiency and the Lung. Nutrients 2018; 10:nu10091132. [PMID: 30134568 PMCID: PMC6164133 DOI: 10.3390/nu10091132] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Vitamin A (all-trans-retinol) is a fat-soluble micronutrient which together with its natural derivatives and synthetic analogues constitutes the group of retinoids. They are involved in a wide range of physiological processes such as embryonic development, vision, immunity and cellular differentiation and proliferation. Retinoic acid (RA) is the main active form of vitamin A and multiple genes respond to RA signalling through transcriptional and non-transcriptional mechanisms. Vitamin A deficiency (VAD) is a remarkable public health problem. An adequate vitamin A intake is required in early lung development, alveolar formation, tissue maintenance and regeneration. In fact, chronic VAD has been associated with histopathological changes in the pulmonary epithelial lining that disrupt the normal lung physiology predisposing to severe tissue dysfunction and respiratory diseases. In addition, there are important alterations of the structure and composition of extracellular matrix with thickening of the alveolar basement membrane and ectopic deposition of collagen I. In this review, we show our recent findings on the modification of cell-junction proteins in VAD lungs, summarize up-to-date information related to the effects of chronic VAD in the impairment of lung physiology and pulmonary disease which represent a major global health problem and provide an overview of possible pathways involved.
Collapse
|