1
|
Chakraborty A, Wang C, Hodgson-Garms M, Broughton BRS, Frith JE, Kelly K, Samuel CS. Induced pluripotent stem cell-derived mesenchymal stem cells reverse bleomycin-induced pulmonary fibrosis and related lung stiffness. Biomed Pharmacother 2024; 178:117259. [PMID: 39116786 DOI: 10.1016/j.biopha.2024.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by lung scarring and stiffening, for which there is no effective cure. Based on the immunomodulatory and anti-fibrotic effects of induced pluripotent stem cell (iPSC) and mesenchymoangioblast-derived mesenchymal stem cells (iPSCs-MSCs), this study evaluated the therapeutic effects of iPSCs-MSCs in a bleomycin (BLM)-induced model of pulmonary fibrosis. Adult male C57BL/6 mice received a double administration of BLM (0.15 mg/day) 7-days apart and were then maintained for a further 28-days (until day-35), whilst control mice were administered saline 7-days apart and maintained for the same time-period. Sub-groups of BLM-injured mice were intravenously-injected with 1×106 iPSC-MSCs on day-21 alone or on day-21 and day-28 and left until day-35 post-injury. Measures of lung inflammation, fibrosis and compliance were then evaluated. BLM-injured mice presented with lung inflammation characterised by increased immune cell infiltration and increased pro-inflammatory cytokine expression, epithelial damage, lung transforming growth factor (TGF)-β1 activity, myofibroblast differentiation, interstitial collagen fibre deposition and topology (fibrosis), in conjunction with reduced matrix metalloproteinase (MMP)-to-tissue inhibitor of metalloproteinase (TIMP) ratios and dynamic lung compliance. All these measures were ameliorated by a single or once-weekly intravenous-administration of iPSC-MSCs, with the latter reducing dendritic cell infiltration and lung epithelial damage, whilst promoting anti-inflammatory interleukin (IL)-10 levels to a greater extent. Proteomic profiling of the conditioned media of cultured iPSC-MSCs that were stimulated with TNF-α and IFN-γ, revealed that these stem cells secreted protein levels of immunosuppressive factors that contributed to the anti-fibrotic and therapeutic potential of iPSCs-MSCs as a novel treatment option for IPF.
Collapse
Affiliation(s)
- Amlan Chakraborty
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Division of Immunology, Immunity to Infection and Respiratory Medicine, The University of Manchester, Manchester, England, UK
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics Ltd, Cremorne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Lv W, Xie H, Wu S, Dong J, Jia Y, Ying H. Identification of key metabolism-related genes and pathways in spontaneous preterm birth: combining bioinformatic analysis and machine learning. Front Endocrinol (Lausanne) 2024; 15:1440436. [PMID: 39229380 PMCID: PMC11368757 DOI: 10.3389/fendo.2024.1440436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Spontaneous preterm birth (sPTB) is a global disease that is a leading cause of death in neonates and children younger than 5 years of age. However, the etiology of sPTB remains poorly understood. Recent evidence has shown a strong association between metabolic disorders and sPTB. To determine the metabolic alterations in sPTB patients, we used various bioinformatics methods to analyze the abnormal changes in metabolic pathways in the preterm placenta via existing datasets. Methods In this study, we integrated two datasets (GSE203507 and GSE174415) from the NCBI GEO database for the following analysis. We utilized the "Deseq2" R package and WGCNA for differentially expressed genes (DEGs) analysis; the identified DEGs were subsequently compared with metabolism-related genes. To identify the altered metabolism-related pathways and hub genes in sPTB patients, we performed multiple functional enrichment analysis and applied three machine learning algorithms, LASSO, SVM-RFE, and RF, with the hub genes that were verified by immunohistochemistry. Additionally, we conducted single-sample gene set enrichment analysis to assess immune infiltration in the placenta. Results We identified 228 sPTB-related DEGs that were enriched in pathways such as arachidonic acid and glutathione metabolism. A total of 3 metabolism-related hub genes, namely, ANPEP, CKMT1B, and PLA2G4A, were identified and validated in external datasets and experiments. A nomogram model was developed and evaluated with 3 hub genes; the model could reliably distinguish sPTB patients and term labor patients with an area under the curve (AUC) > 0.75 for both the training and validation sets. Immune infiltration analysis revealed immune dysregulation in sPTB patients. Conclusion Three potential hub genes that influence the occurrence of sPTB through shadow participation in placental metabolism were identified; these results provide a new perspective for the development and targeting of treatments for sPTB.
Collapse
Affiliation(s)
- Wenqi Lv
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Shengyu Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Jiaqi Dong
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Yuanhui Jia
- Department of Clinical Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, sChina
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
- Department of Clinical Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, sChina
| |
Collapse
|
3
|
Zhang N, An B, Zhao L, Zhao D, Lv B, Liu S. Investigation of the mechanism of nephrotoxicity of nux-vomica by PTGS2/CYP2C9-mediated arachidonic acid pathway and Jian Pi Tong Luo compound's protective effect. Biomed Chromatogr 2024; 38:e5859. [PMID: 38618996 DOI: 10.1002/bmc.5859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 04/16/2024]
Abstract
The clinical effectiveness of nux-vomica in treating rheumatism and arthralgia is noteworthy; however, its nephrotoxicity has sparked global concerns. Hence, there is value in conducting studies on detoxification methods based on traditional Chinese medicine compatibility theory. Blood biochemistry, enzyme-linked immunosorbent assay, and pathological sections were used to evaluate both the nephrotoxicity of nux-vomica and the efficacy of the Jian Pi Tong Luo (JPTL) compound in mitigating this toxicity. Kidney metabolomics, using ultra-high-performance liquid chromatography-quadrupole-time-of-flight-MS (UPLC-Q-TOF-MS), was applied to elucidate the alterations in small-molecule metabolites in vivo. In addition, network pharmacology analysis was used to verify the mechanism and pathways underlying the nephrotoxicity associated with nux-vomica. Finally, essential targets were validated through molecular docking and western blotting. The findings indicated significant nephrotoxicity associated with nux-vomica, while the JPTL compound demonstrated the ability to alleviate this toxicity. The mechanism potentially involves nux-vomica activating the "PTGS2/CYP2C9-phosphatidylcholine-arachidonic acid metabolic pathway." This study establishes a scientific foundation for the clinical use of nux-vomica and lays groundwork for further research and safety assessment of toxic Chinese herbal medicines.
Collapse
Affiliation(s)
- Na Zhang
- Drug Safety Evaluation Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baisong An
- Drug Safety Evaluation Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liangyou Zhao
- Drug Safety Evaluation Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dapeng Zhao
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bochuan Lv
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Zeng WT, Zhou LT, Jia R, Liu Y, Cai Q, Qu Y. Aconitum coreanum and processed products on its base prevent stroke via the PI3K/Akt and KEAP1/NRF2 in the in vivo study. Metab Brain Dis 2024; 39:705-718. [PMID: 38795262 DOI: 10.1007/s11011-024-01357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
Aconitum coreanum (A. coreanum), a traditional Chinese medicine, has been proved to treat ischemic stroke (IS). However, the mechanisms of A. coreanum's anti-stroke is currently unknown. This study aimed to uncover the effect and mechanisms of A. coreanum. And study raw Aconitum coreanum (RA) and steamed Aconitum coreanum (SA) and Aconitum coreanum processed with ginger and Alumen (GA) on the mechanism of the pharmacological action of treating IS. Determining whether the efficacy is affected after processing. The right unilateral ligation of the carotid artery of gerbils was used to mimic IS. The neurological function score, infarct volume, oxidative stress level and inflammatory factor expression were measured in gerbils after IS. Western blot and immunofluorescence analyses were conducted to evaluate the expression of related proteins. Metabolomic analyzes IS-related metabolic pathways in urinary metabolites. RA, SA and GA significantly improved the infarct volume and behavioral score of IS gerbils, increased the expression of brain tissue superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO) and decreased the content of malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α). Western blot and immunofluorescence analysis results showed that RA, SA and GA significantly increased the expression of P-Akt, PI3K, HO-1 and KEAP1. Metabolomic studies identified 112 differential metabolites, including L-Proline, Riboflavin, Leukotriene D4, and 7-Methylxanthine, as potential biomarkers of stroke, involving 14 metabolic pathways including riboflavin metabolism, pyrimidine metabolism, and purine metabolism. Our findings indicated that A. coreanum protected against cerebral ischemia injury probably via the PI3K/Akt and KEAP1/NRF2 pathway. A. coreanum before and after processing both had a protective effect against IS brain injury in gerbils. The A. coreanum efficacy was not reduced after processing. Even compared to RA, SA had better efficacy.
Collapse
Affiliation(s)
- Wan-Ting Zeng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Li-Ting Zhou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ru Jia
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yue Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Qian Cai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Yang Qu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
5
|
Ren H, Wu W, Chen J, Li Q, Wang H, Qian D, Guo S, Duan JA. Integrated serum metabolomics and network pharmacology analysis on the bioactive metabolites and mechanism exploration of Bufei huoxue capsule on chronic obstructive pulmonary disease rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117816. [PMID: 38286154 DOI: 10.1016/j.jep.2024.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufei Huoxue capsule (BHC) as a classic Chinese patent medicine formula, has the efficacy of tonifying the lungs and activating the blood. It has been extensively used in China for the treatment of chronic obstructive pulmonary disease (COPD) clinically. However, its mechanism is still unclear, which hampers the applications of BHC in treating COPD. AIM OF THE STUDY The purpose of the present study was to demonstrate the protective efficacy and mechanism of BHC on COPD model rats by integrating serum metabolomics analysis and network pharmacology study. MATERIALS AND METHODS A COPD rat model was established by cigarette fumigation combined with lipopolysaccharide (LPS) airway drip for 90 consecutive days. After oral administration for 30 days, the rats were placed in the body tracing box of the EMKA Small Animal Noninvasive Lung Function Test System to determine lung function related indexes. Histopathological alteration was observed by H&E staining and Masson staining. The serum levels of inflammatory cytokine, matrix metalloprotein 9, and laminin were determined by ELISA kits. Oxidative stress levels were tested by biochemical methods. UHPLC-Q-TOF/MS analysis of serum metabolomics and network pharmacology were performed to reveal the bioactive metabolites, key components and pathways for BHC treating COPD. WB and ELISA kits were used to verify the effects of BHC on key pathway. RESULTS BHC could improve lung function, immunity, lung histopathological changes and collagen deposition in COPD model rats. It also could significantly reduce inflammatory response in vivo, regulate oxidative stress level, reduce laminin content, and regulate protease-antiprotease balance. Metabolomics analysis found 46 biomarkers of COPD, of which BHC significantly improved the levels of 23 differential metabolites including arachidonic acid, leukotriene B4 and prostaglandin E2. Combined with the results of network pharmacology, the components of BHC, such as calycosin, oxypaeoniflora, (S)-bavachin and neobavaisoflavone could play therapeutic roles through the arachidonic acid pathway. In addition, the results of WB and ELISA indicated that BHC could suppress the expressions of COX2 and 5-LOX in lung tissues and inhibit the generation of AA and its metabolites in serum samples. Regulation of arachidonic acid metabolic pathway may be the crucial mechanism for BHC treating COPD. CONCLUSIONS In summary, the studies indicated that BHC exhibited the protective effect on COPD model rats by anti-inflammatory and anti-oxidative properties through arachidonic acid metabolism pathway. This study provided beneficial support for the applications of BHC in treating COPD.
Collapse
Affiliation(s)
- Hui Ren
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxing Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangyan Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Quan Li
- Leiyunshang Pharmaceutical Co. Limited, Suzhou, 215003, China
| | - Hengbin Wang
- Leiyunshang Pharmaceutical Co. Limited, Suzhou, 215003, China
| | - Dawei Qian
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Yan M, Yao J, Xie Y, Jiang P, Yan J, Li X. Bioreactor-based stem cell therapy for liver fibrosis. Biofabrication 2024; 16:025028. [PMID: 38442726 DOI: 10.1088/1758-5090/ad304d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Stem cell therapy, achieved using mesenchymal stem cells (MSCs), has been highlighted for the treatment of liver fibrosis. Infusion into the circulatory system is a traditional application of MSCs; however, this approach is limited by phenotypic drift, stem cell senescence, and vascular embolism. Maintaining the therapeutic phenotype of MSCs while avoiding adverse infusion-related reactions is the key to developing next-generation stem cell therapy technologies. Here, we propose a bioreactor-based MSCs therapy to avoid cell infusion. In this scheme, 5% liver fibrosis serum was used to induce the therapeutic phenotype of MSCs, and a fluid bioreactor carrying a co-culture system of hepatocytes and MSCs was constructed to produce the therapeutic medium. In a rat model of liver fibrosis, the therapeutic medium derived from the bioreactor significantly alleviated liver fibrosis. Therapeutic mechanisms include immune regulation, inhibition of hepatic stellate cell activation, establishment of hepatocyte homeostasis, and recovery of liver stem cell subsets. Overall, the bioreactor-based stem cell therapy (scheme) described here represents a promising new strategy for the treatment of liver fibrosis and will be beneficial for the development of 'cell-free' stem cell therapy.
Collapse
Affiliation(s)
- Mengchao Yan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jia Yao
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, People's Republic of China
| | - Ye Xie
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Jun Yan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, People's Republic of China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
- The Medical School, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Li XJ, Suo P, Wang YN, Zou L, Nie XL, Zhao YY, Miao H. Arachidonic acid metabolism as a therapeutic target in AKI-to-CKD transition. Front Pharmacol 2024; 15:1365802. [PMID: 38523633 PMCID: PMC10957658 DOI: 10.3389/fphar.2024.1365802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Arachidonic acid (AA) is a main component of cell membrane lipids. AA is mainly metabolized by three enzymes: cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). Esterified AA is hydrolysed by phospholipase A2 into a free form that is further metabolized by COX, LOX and CYP450 to a wide range of bioactive mediators, including prostaglandins, lipoxins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. Increased mitochondrial oxidative stress is considered to be a central mechanism in the pathophysiology of the kidney. Along with increased oxidative stress, apoptosis, inflammation and tissue fibrosis drive the progressive loss of kidney function, affecting the glomerular filtration barrier and the tubulointerstitium. Recent studies have shown that AA and its active derivative eicosanoids play important roles in the regulation of physiological kidney function and the pathogenesis of kidney disease. These factors are potentially novel biomarkers, especially in the context of their involvement in inflammatory processes and oxidative stress. In this review, we introduce the three main metabolic pathways of AA and discuss the molecular mechanisms by which these pathways affect the progression of acute kidney injury (AKI), diabetic nephropathy (DN) and renal cell carcinoma (RCC). This review may provide new therapeutic targets for the identification of AKI to CKD continuum.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Suo
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiao-Li Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Kopp BT, Ross SE, Bojja D, Guglani L, Chandler JD, Tirouvanziam R, Thompson M, Slaven JE, Chmiel JF, Siracusa C, Sanders DB. Nasal airway inflammatory responses and pathogen detection in infants with cystic fibrosis. J Cyst Fibros 2024; 23:219-225. [PMID: 37977937 DOI: 10.1016/j.jcf.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Detecting airway inflammation non-invasively in infants with cystic fibrosis (CF) is difficult. We hypothesized that markers of inflammation in CF [IL-1β, IL-6, IL-8, IL-10, IL-17A, neutrophil elastase (NE) and tumor necrosis factor (TNF-α)] could be measured in infants with CF from nasal fluid and would be elevated during viral infections or clinician-defined pulmonary exacerbations (PEx). METHODS We collected nasal fluid, nasal swabs, and hair samples from 34 infants with CF during monthly clinic visits, sick visits, and hospitalizations. Nasal fluid was isolated and analyzed for cytokines. Respiratory viral detection on nasal swabs was performed using the Luminex NxTAG® Respiratory Pathogen Panel. Hair samples were analyzed for nicotine concentration by reverse-phase high-performance liquid chromatography. We compared nasal cytokine concentrations between the presence and absence of detected respiratory viruses, PEx, and smoke exposure. RESULTS A total of 246 samples were analyzed. Compared to measurements in the absence of respiratory viruses, mean concentrations of IL-6, IL-8, TNF-α, and NE were significantly increased while IL-17A was significantly decreased in infants positive for respiratory viruses. IL-17A was significantly decreased and NE increased in those with a PEx. IL-8 and NE were significantly increased in infants with enteric pathogen positivity on airway cultures, but not P. aeruginosa or S. aureus. Compared to those with no smoke exposure, there were significantly higher levels of IL-6, IL-10, and NE in infants with detectable levels of nicotine. CONCLUSIONS Noninvasive collection of nasal fluid may identify inflammation in infants with CF during changing clinical or environmental exposures.
Collapse
Affiliation(s)
- Benjamin T Kopp
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sydney E Ross
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dinesh Bojja
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lokesh Guglani
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Joshua D Chandler
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rabindra Tirouvanziam
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Misty Thompson
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James E Slaven
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James F Chmiel
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Siracusa
- Division of Pulmonary Medicine, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Don B Sanders
- Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
He K, Zhou X, Du H, Zhao J, Deng R, Wang J. A review on the relationship between Arachidonic acid 15-Lipoxygenase (ALOX15) and diabetes mellitus. PeerJ 2023; 11:e16239. [PMID: 37849828 PMCID: PMC10578307 DOI: 10.7717/peerj.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15), as one of the lipoxygenase family, is mainly responsible for catalyzing the oxidation of various fatty acids to produce a variety of lipid components, contributing to the pathophysiological processes of various immune and inflammatory diseases. Studies have shown that ALOX15 and its related products are widely distributed in human tissues and related to multiple diseases such as liver, cardiovascular, cerebrovascular diseases, diabetes mellitus and other diseases. Diabetes mellitus (DM), the disease studied in this article, is a metabolic disease characterized by a chronic increase in blood glucose levels, which is significantly related to inflammation, oxidative stress, ferroptosis and other mechanisms, and it has a high incidence in the population, accompanied by a variety of complications. Figuring out how ALOX15 is involved in DM is critical to understanding its role in diseases. Therefore, ALOX15 inhibitors or combination therapy containing inhibitors may deliver a novel research direction for the treatment of DM and its complications. This article aims to review the biological effect and the possible function of ALOX15 in the pathogenesis of DM.
Collapse
Affiliation(s)
- Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Xiaochun Zhou
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Hongxuan Du
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Jing Zhao
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Rongrong Deng
- Lanzhou University, Lanzhou, Gansu, China
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| | - Jianqin Wang
- Lanzhou University Second Hospital, Lanzhou University, LanZhou, Gansu, China
| |
Collapse
|
10
|
Oates GR, Schechter MS. Aiming to Improve Equity in Pulmonary Health: Cystic Fibrosis. Clin Chest Med 2023; 44:555-573. [PMID: 37517835 PMCID: PMC10458995 DOI: 10.1016/j.ccm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
This review summarizes the evidence of health disparities in cystic fibrosis (CF), an autosomal recessive genetic disorder with substantial variation in disease progression and outcomes. We review disparities by race, ethnicity, socioeconomic status, geographic location, gender identity, or sexual orientation documented in the literature. We outline the mechanisms that generate and perpetuate such disparities across levels and domains of influence and assess the implications of this evidence. We then recommend strategies for improving equity in CF outcomes, drawing on recommendations for the general population and considering approaches specific to people living with CF.
Collapse
Affiliation(s)
- Gabriela R Oates
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Michael S Schechter
- Division of Pulmonary Medicine, Department of Pediatrics, Virginia Commonwealth University and Children's Hospital of Richmond at VCU, Richmond, VA, USA
| |
Collapse
|
11
|
Reifenberg J, Gecili E, Pestian T, Andrinopoulou ER, Ryan PH, Brokamp C, Collaco JM, Szczesniak RD. Lung function and secondhand smoke exposure among children with cystic fibrosis: A Bayesian meta-analysis. J Cyst Fibros 2023; 22:694-701. [PMID: 37142525 PMCID: PMC10524940 DOI: 10.1016/j.jcf.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Secondhand smoke exposure, an important environmental health factor in cystic fibrosis (CF), remains uniquely challenging to children with CF as they strive to maintain pulmonary function during early stages of growth and throughout adolescence. Despite various epidemiologic studies among CF populations, little has been done to coalesce estimates of the association between secondhand smoke exposure and lung function decline. METHODS A systematic review was performed using PRISMA guidelines. A Bayesian random-effects model was employed to estimate the association between secondhand smoke exposure and change in lung function (measured as FEV1% predicted). RESULTS Quantitative synthesis of study estimates indicated that second-hand smoke exposure corresponded to a significant drop in FEV1 (estimated decrease: -5.11% predicted; 95% CI: -7.20, -3.47). The estimate of between-study heterogeneity was 1.32% predicted (95% CI: 0.05, 4.26). There was moderate heterogeneity between the 6 analyzed studies that met review criteria (degree of heterogeneity: I2=61.9% [95% CI: 7.3-84.4%] and p = 0.022 from the frequentist method.) CONCLUSIONS: Our results quantify the impact at the pediatric population level and corroborate the assertion that secondhand smoke exposure negatively affects pulmonary function in children with CF. Findings highlight challenges and opportunities for future environmental health interventions in pediatric CF care.
Collapse
Affiliation(s)
| | - Emrah Gecili
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave (MLC 5041), Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Teresa Pestian
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patrick H Ryan
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave (MLC 5041), Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Cole Brokamp
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave (MLC 5041), Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Joseph M Collaco
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Rhonda D Szczesniak
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave (MLC 5041), Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
12
|
Zhou N, Wang Y, Zhang Z, Liu T, Zhang J, Cao Y, Zhang B, Feng W, Zheng X, Li K. Exploring the efficacy mechanism and material basis of three processed Coptidis Rhizoma via metabolomics strategy. J Pharm Biomed Anal 2023; 232:115450. [PMID: 37196375 DOI: 10.1016/j.jpba.2023.115450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Wine/zingiberis rhizoma recens/euodiae fructus processed Coptidis Rhizoma (wCR/zCR/eCR) are the major processed products of CR in clinic, and the role of CR is highlighted in different aspects after being processed with different excipients. To explore the mechanism and material basis for the highlighted efficacy of wCR/zCR/eCR, the metabolomics strategy was introduced to the comparative study between wCR/zCR/eCR and CR. Firstly, the metabolomics approach was applied to compare the chemical profiling and differential components between wCR/zCR/eCR and CR extract. Secondly, the rats were treated with CR/wCR/zCR/eCR extracts and a serum metabolomics approach was adopted to compare the metabolic profiling and significantly changed metabolites in CR/wCR/zCR/eCR groups, base on which the metabolic pathways were enriched, the metabolic network was constructed and the highlighted efficacy wCR/zCR/eCR was investigated. Lastly, the pathological and biochemical assessments (VIP, COX, HSL and HMGR) were implemented to validate the results inferred from metabolomics study. In chemical research, 23 differential components between wCR/zCR/eCR and CR extracts were identified. Thereinto, the content of alkaloids and organic acids decreased in wCR extract, the content of partial alkaloids and most organic acids increased in zCR extract, the content of alkaloids decreased, and partial organic acids increased in eCR extract. In serum metabolomics study, wCR had no outstanding effect, zCR played a more prominent role in resisting inflammation of gastrointestinal tissue by interfering with arachidonic acid metabolism, eCR exhibited the hottest drug property and the strongest effect on smoothing the liver and harmonizing the stomach by interfering with of bile acids biosynthesis. Based on the changes in chemical composition and efficacy before and after processing, as well as biochemical validation, it can be concluded that the above activity of zCR might be related to the increased alkaloids and organic acids in zCR extract, and the prominent role of eCR may be related to the increased organic acids in eCR extract. In brief, hot processing excipients could alleviate the cold property of CR, and different excipients have different effects on the chemical composition and efficacy mechanism. The present study fully reflects the advantage of metabolomics and provides guidance for the rational use of CR.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, PR China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, PR China.
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
13
|
Drozd A, Kotlęga D, Dmytrów K, Szczuko M. Smoking Affects the Post-Stroke Inflammatory Response of Lipid Mediators in a Gender-Related Manner. Biomedicines 2022; 11:biomedicines11010092. [PMID: 36672599 PMCID: PMC9855814 DOI: 10.3390/biomedicines11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The main goal of our study was to determine the effect of cigarette smoking on selected derivatives of arachidonic acid, linoleic acid, DHA, and EPA, which may be markers of post-stroke inflammation. The eicosanoid profile was compared in both smoking and non-smoking patients, without division and with division into gender. In the group of non-smokers, we observed higher levels of the linolenic acid derivative (LA) 9S HODE (p ≤ 0.05) than in smokers. However, after dividing the results by sex, it turned out that the level of this derivative was higher in non-smoking women compared to smoking women (p ≤ 0.01) and did not differentiate the group of men. Similarly, the level of the arachidonic acid metabolite LTX A4 (p ≤ 0.05) differed only in the group of women. In this group, we also observed a decreased level of 15S HETE in smoking women, but it was statistically insignificant (p ≤ 0.08). On the other hand, the level of this derivative was statistically significantly higher in the group of non-smoking women compared to male non-smokers. The group of men was differentiated by two compounds: TXB2 and NPD1. Male smokers had an almost two-fold elevation of TXB2 (p ≤ 0.01) compared with non-smokers, and in this group, we also observed an increased level of NPD1 compared with male non-smokers. On the other hand, when comparing female non-smokers and male non-smokers, in addition to the difference in 15S HETE levels, we also observed elevated levels of TXB2 in the group of non-smokers. We also analyzed a number of statistically significant correlations between the analyzed groups. Generally, men and women smokers showed a much smaller amount of statistically significant correlations than non-smokers. We believe that this is related to the varying degrees of inflammation associated with acute ischemic stroke and post-stroke response. On the one hand, tobacco smoke inhibits the activity of enzymes responsible for the conversion of fatty acids, but on the other hand, it can cause the failure of the inflammatory system, which is also the body's defense mechanism. Smoking cigarettes is a factor that increases oxidative stress even before the occurrence of a stroke incident, and at the same time accelerates it and inhibits post-stroke repair mechanisms. This study highlights the effect of smoking on inflammation in both genders mediated by lipid mediators, which makes smoking cessation undeniable.
Collapse
Affiliation(s)
- Arleta Drozd
- Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4414810; Fax: +48-91-441-4807
| | - Dariusz Kotlęga
- Department of Pharmacology and Toxicology, University of Zielona Góra, 65-417 Zielona Góra, Poland
| | - Krzysztof Dmytrów
- Institute of Economics and Finance, University of Szczecin, 70-453 Szczecin, Poland
| | | |
Collapse
|
14
|
Oates GR, Schechter MS. Socioeconomic determinants of respiratory health in patients with cystic fibrosis: implications for treatment strategies. Expert Rev Respir Med 2022; 16:637-650. [PMID: 35705523 DOI: 10.1080/17476348.2022.2090928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Great variation exists in the progression and outcomes of cystic fibrosis (CF) lung disease, due to both genetic and environmental influences. Social determinants mediate environmental exposures and treatment success; people with CF from socioeconomically disadvantaged backgrounds have worse health and die younger than those in more advantaged positions. AREAS COVERED This paper reviews the literature on the mechanisms that are responsible for generating and sustaining disparities in CF health, and the ways by which social determinants translate into health advantages or disadvantages in people with CF. The authors make recommendations for addressing social risk factors in CF clinical practice. EXPERT OPINION Socioeconomic factors are not dichotomous and their impact is felt at every step of the social ladder. CF care programs need to adopt a systematic protocol to screen for health-related social risk factors, and then connect patients to available resources to meet individual needs. Considerations such as daycare, schooling options, living and working conditions, and opportunities for physical exercise and recreation as well as promotion of self-efficacy are often overlooked. In addition, advocacy for changes in public policies on health insurance, environmental regulations, social welfare, and education would all help address the root causes of CF health inequities.
Collapse
Affiliation(s)
- Gabriela R Oates
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael S Schechter
- Division of Pulmonary Medicine, Department of Pediatrics, Virginia Commonwealth University and Children's Hospital of Richmond at VCU, USA
| |
Collapse
|
15
|
Lahiri T, Sullivan JS. Recent advances in the early treatment of cystic fibrosis: Bridging the gap to highly effective modulator therapy. Pediatr Pulmonol 2022; 57 Suppl 1:S60-S74. [PMID: 34473419 DOI: 10.1002/ppul.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
Highly effective modulator therapy (HEMT) for cystic fibrosis (CF) has been touted as one of the greatest advances to date in CF care. As these therapies are now available for many older children and adults with CF, marked improvement of their nutritional status, pulmonary and gastrointestinal symptoms has been observed. However, most infants and younger children are not current candidates for HEMT due to age and/or cystic fibrosis transmembrane conductance regulator (CFTR) mutation. For these young children, it is essential to provide rigorous monitoring and care to avoid potential disease sequelae while awaiting HEMT availability. The following article highlights recent advances in the care of infants and young children with CF with regard to surveillance and treatment of nutritional, pulmonary, and gastrointestinal disorders. Recent clinical trials in this population are also reviewed.
Collapse
Affiliation(s)
- Thomas Lahiri
- Divisions of Pediatric Pulmonology and Gastroenterology, University of Vermont Children's Hospital, Burlington, Vermont, USA
| | - Jillian S Sullivan
- Divisions of Pediatric Pulmonology and Gastroenterology, University of Vermont Children's Hospital, Burlington, Vermont, USA
| |
Collapse
|
16
|
Lafont M, Morin C, Arrouy A, Rabeau A, Labouret G, Roditis L, Michelet M, Mittaine M. Pediatrician intervention impacts parental smoking in cystic fibrosis, diabetes, and bronchiolitis. Pediatr Pulmonol 2021; 56:1716-1723. [PMID: 33480170 DOI: 10.1002/ppul.25277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Child exposure to cigarette smoke is harmful. It should be reduced through parental smoking cessation interventions. The aim of our study was to determine the impact of simple advice provided by the pediatrician on the smoking habits of parents of children with cystic fibrosis (CF), diabetes mellitus (DM), and infants hospitalized for bronchiolitis. METHODS Parents were interviewed on their smoking habits. Smoking cessation advice was provided by the pediatrician. A new smoking habits assessment was done at 3 months by phone interviews. RESULTS A total of 260 parents were interviewed (91 in the CF group, 136 in the DM group, and 33 in the bronchiolitis group). A total of 70 parents were active smokers: 33% of parents of children with CF, 23.5% of parents of children with DM, and 24.2% for those with infants hospitalized for bronchiolitis (p = .42). In the CF group, smoking cessation had been significantly more frequently discussed with the medical team previously. A total of 67 smoking parents (95.7%) answered the 3-month assessment: 29.8% reported having started a smoking cessation process; 10.4% had quit smoking. The quitting rate was significantly higher in the groups of patients followed for a respiratory disorder (37.5% for bronchiolitis, 15% for CF vs. 0% for DM, p = .005). CONCLUSION This study shows the important role that information and simple advice from pediatricians can have in initiating smoking cessation in parents of patients followed in specialized clinics or who are hospitalized, with a greater efficiency in parents of patients suffering from lung disorders.
Collapse
Affiliation(s)
- Maxime Lafont
- Service de Pneumologie et Allergologie pédiatrique-CRCM, CHU Toulouse, Toulouse, France
| | - Carole Morin
- Service de Diabétologie pédiatrique, CHU Toulouse, Toulouse, France
| | - Amélie Arrouy
- Service de Diabétologie pédiatrique, CHU Toulouse, Toulouse, France
| | - Audrey Rabeau
- Unité de Coordination d'Aide au Sevrage Tabagique, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Géraldine Labouret
- Service de Pneumologie et Allergologie pédiatrique-CRCM, CHU Toulouse, Toulouse, France
| | - Léa Roditis
- Service de Pneumologie et Allergologie pédiatrique-CRCM, CHU Toulouse, Toulouse, France
| | - Marine Michelet
- Service de Pneumologie et Allergologie pédiatrique-CRCM, CHU Toulouse, Toulouse, France
| | - Marie Mittaine
- Service de Pneumologie et Allergologie pédiatrique-CRCM, CHU Toulouse, Toulouse, France
| |
Collapse
|
17
|
Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes (Basel) 2021; 12:genes12060803. [PMID: 34070354 PMCID: PMC8229033 DOI: 10.3390/genes12060803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) lung disease has the greatest impact on the morbidity and mortality of patients suffering from this autosomal-recessive multiorgan disorder. Although CF is a monogenic disorder, considerable phenotypic variability of lung disease is observed in patients with CF, even in those carrying the same mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene or CFTR mutations with comparable functional consequences. In most patients with CF, lung disease progresses from childhood to adulthood, but is already present in infants soon after birth. In addition to the CFTR genotype, the variability of early CF lung disease can be influenced by several factors, including modifier genes, age at diagnosis (following newborn screening vs. clinical symptoms) and environmental factors. The early onset of CF lung disease requires sensitive, noninvasive measures to detect and monitor changes in lung structure and function. In this context, we review recent progress with using multiple-breath washout (MBW) and lung magnetic resonance imaging (MRI) to detect and quantify CF lung disease from infancy to adulthood. Further, we discuss emerging data on the impact of variability of lung disease severity in the first years of life on long-term outcomes and the potential use of this information to improve personalized medicine for patients with CF.
Collapse
|
18
|
Chen S, Tan S, Yang S, Chen G, Zhu L, Sun Z, Li H, Yao S. Nicotine induces apoptosis through exacerbation of blocked alveolar macrophage autophagic degradation in silicosis. Toxicol Lett 2020; 334:94-101. [PMID: 33010382 DOI: 10.1016/j.toxlet.2020.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
Silica dust mainly attacks alveolar macrophages (AMs). The apoptosis of AMs is correlated with the progress of silicosis. Our previous study showed that autophagic degradation was blocked in AMs from silicosis patients. However, the effects of nicotine on AM autophagy and apoptosis in silicosis are unknown. In this study, we collected AMs from twenty male workers exposed to silica and divided them into observer and silicosis patient groups, according to the tuberous pathological changes observed by X-ray. The AMs from both groups were exposed to nicotine. We found increased levels of LC3, p62, and cleaved caspase-3, decreased levels of LAMP2, and damaged lysosomes after nicotine stimulation of the AMs from both groups. We also found that the autophagy inhibitor 3-methyladenine (3MA) inhibited nicotine-induced apoptosis in the AMs. Furthermore, 3MA reversed both the nicotine-induced decrease in Bcl-2 and the increase in Bax in both groups. These results suggest that nicotine may induce apoptosis by blocking AM autophagic degradation in human silicosis.
Collapse
Affiliation(s)
- Shi Chen
- School of Medicine, Hunan Normal University, Changsha, Hunan Province 410013, PR China
| | - Shiyi Tan
- School of Medicine, Hunan Normal University, Changsha, Hunan Province 410013, PR China
| | - Shang Yang
- School of Medicine, Hunan Normal University, Changsha, Hunan Province 410013, PR China
| | - Gang Chen
- Department of Pneumoconiosis, Beidaihe Sanitarium for China Coal Miners, Qinhuangdao, Hebei Province 066104, PR China
| | - Li Zhu
- Department of Pneumoconiosis, Beidaihe Sanitarium for China Coal Miners, Qinhuangdao, Hebei Province 066104, PR China
| | - Zhiqian Sun
- Department of Pneumoconiosis, Beidaihe Sanitarium for China Coal Miners, Qinhuangdao, Hebei Province 066104, PR China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
19
|
Oates GR, Harris WT, Gutierrez HH, Mims C, Rutland SB, Ott C, Niranjan SJ, Scarinci IC, Walley SC. Tobacco smoke exposure in pediatric cystic fibrosis: A qualitative study of clinician and caregiver perspectives on smoking cessation. Pediatr Pulmonol 2020; 55:2330-2340. [PMID: 32511883 PMCID: PMC7686064 DOI: 10.1002/ppul.24879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Tobacco smoke exposure has negative impacts on the lung health of children with cystic fibrosis (CF), yet evidence-based strategies for smoking cessation have not been tested with or tailored to CF caregivers. This qualitative study identified barriers and facilitators of smoking cessation in this population and outlined potential interventional approaches. METHODS We conducted semi-structured interviews with CF familial caregivers who were current or former smokers, and with members of the CF care team. We asked about experiences, practices, and prerequisites for a successful program. Interviews were recorded, transcribed verbatim, and coded by two investigators. Analysis used a thematic approach guided by the PRECEDE model, which identifies predisposing (intrapersonal), reinforcing (interpersonal), and enabling (structural) factors relevant to health behaviors and programs. RESULTS Seventeen interviews were conducted-eight with familial caregivers and nine with CF team members. Whereas caregivers provided greater insight into internal difficulties and motivators to quit smoking, clinicians offered more extensive input on barriers and solutions related to the clinical environment. Based on study recommendations, a successful tobacco cessation program should include (a) family education about the harms of smoke exposure for children with CF; (b) screening for exposure, ideally with biochemical verification; (c) access to trained tobacco counselors; (d) affordable pharmacotherapy; and (e) outpatient follow-up of those undergoing tobacco treatment. CONCLUSION This qualitative study revealed intrapersonal, interpersonal, and structural barriers to eliminating tobacco smoke exposure in children with CF, outlined opportunities to address these barriers, and made recommendations for a comprehensive tobacco cessation strategy.
Collapse
Affiliation(s)
- Gabriela R Oates
- Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - William T Harris
- Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hector H Gutierrez
- Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cathy Mims
- Children's of Alabama, Birmingham, Alabama
| | - Sarah B Rutland
- Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Corilyn Ott
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Soumya J Niranjan
- Department of Health Services Administration, School of Health Professions, University of Alabama at Birmingham, Birmingham, Alabama
| | - Isabel C Scarinci
- Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan C Walley
- Pediatric Hospital Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Wisniewski BL, Shrestha CL, Zhang S, Thompson R, Gross M, Groner JA, Uppal K, Ramilo O, Mejias A, Kopp BT. Metabolomics profiling of tobacco exposure in children with cystic fibrosis. J Cyst Fibros 2020; 19:791-800. [PMID: 32487493 PMCID: PMC7492400 DOI: 10.1016/j.jcf.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammation is integral to early disease progression in children with CF. The effect of modifiable environmental factors on infection and inflammation in persons with CF is poorly understood. Our prior studies determined that secondhand smoke exposure (SHSe) is highly prevalent in young children with CF. SHSe is associated with increased inflammation, heightened bacterial burden, and worsened clinical outcomes. However, the specific metabolite and signaling pathways that regulate responses to SHSe in CF are relatively unknown. METHODS High-resolution metabolomics was performed on plasma samples from infants (n = 25) and children (n = 40) with CF compared to non-CF controls (n = 15). CF groups were stratified according to infant or child age and SHSe status. RESULTS Global metabolomic profiles segregated by age and SHSe status. SHSe in CF was associated with changes in pathways related to steroid biosynthesis, fatty acid metabolism, cysteine metabolism, and oxidative stress. CF infants with SHSe demonstrated enrichment for altered metabolite localization to the small intestine, liver, and striatum. CF children with SHSe demonstrated metabolite enrichment for organs/tissues associated with oxidative stress including mitochondria, peroxisomes, and the endoplasmic reticulum. In a confirmatory analysis, SHSe was associated with changes in biomarkers of oxidative stress and cellular adhesion including MMP-9, MPO, and ICAM-1. CONCLUSIONS SHSe in young children and infants with CF is associated with altered global metabolomics profiles and specific biochemical pathways, including enhanced oxidative stress. SHSe remains an important but understudied modifiable variable in early CF disease.
Collapse
Affiliation(s)
- Benjamin L Wisniewski
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Myron Gross
- Minnesota CHEAR Exposure Assessment Hub, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Judith A Groner
- Section of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Karan Uppal
- National Exposure Assessment Laboratory at Emory, Emory University, Atlanta, GA, USA
| | - Octavio Ramilo
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
21
|
Loman BR, Shrestha CL, Thompson R, Groner JA, Mejias A, Ruoff KL, O'Toole GA, Bailey MT, Kopp BT. Age and environmental exposures influence the fecal bacteriome of young children with cystic fibrosis. Pediatr Pulmonol 2020; 55:1661-1670. [PMID: 32275127 PMCID: PMC7593804 DOI: 10.1002/ppul.24766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mechanisms that facilitate early infection and inflammation in cystic fibrosis (CF) are unclear. We previously showed that young CF children with secondhand smoke exposure (SHSe) have increased susceptibility to respiratory infections. We aimed to define the impact of SHSe and other external factors upon the fecal bacteriome in early CF. METHODS Twenty CF infants and children were enrolled, clinical data recorded, and hair nicotine measured as an objective surrogate of SHSe. Fecal samples were collected at clinic visits and bacteriome 16S rRNA gene sequencing performed. RESULTS SHSe was associated with increased alpha diversity and increased relative abundance of Acinetobacter and Akkermansia, along with decreased Bifidobacterium and Lactobacillus. Recent antibiotic exposure predicted bacterial population structure in children less than 2 years of age and was associated with decreased Bacteroides relative abundance. Age was the strongest predictor of overall fecal bacterial composition and positively associated with Blautia and Parabacteroides. Weight for length was negatively associated with Staphylococcus relative abundance. CONCLUSIONS SHSe and other external factors such as antibiotics appear to alter fecal bacterial composition in young CF children, but the strongest predictor of overall composition was age. These findings have implications for understanding the intestinal microbiome in young CF children.
Collapse
Affiliation(s)
- Brett R Loman
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio
| | - Chandra L Shrestha
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Judith A Groner
- Division of Primary Care, Nationwide Children's Hospital, Columbus, Ohio
| | - Asuncion Mejias
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Vaccines and Immunity, Columbus, Ohio.,Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Kathryn L Ruoff
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Michael T Bailey
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio
| | - Benjamin T Kopp
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, Ohio.,Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
22
|
Braun M, Klingelhöfer D, Oremek GM, Quarcoo D, Groneberg DA. Influence of Second-Hand Smoke and Prenatal Tobacco Smoke Exposure on Biomarkers, Genetics and Physiological Processes in Children-An Overview in Research Insights of the Last Few Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3212. [PMID: 32380770 PMCID: PMC7246681 DOI: 10.3390/ijerph17093212] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Children are commonly exposed to second-hand smoke (SHS) in the domestic environment or inside vehicles of smokers. Unfortunately, prenatal tobacco smoke (PTS) exposure is still common, too. SHS is hazardous to the health of smokers and non-smokers, but especially to that of children. SHS and PTS increase the risk for children to develop cancers and can trigger or worsen asthma and allergies, modulate the immune status, and is harmful to lung, heart and blood vessels. Smoking during pregnancy can cause pregnancy complications and poor birth outcomes as well as changes in the development of the foetus. Lately, some of the molecular and genetic mechanisms that cause adverse health effects in children have been identified. In this review, some of the current insights are discussed. In this regard, it has been found in children that SHS and PTS exposure is associated with changes in levels of enzymes, hormones, and expression of genes, micro RNAs, and proteins. PTS and SHS exposure are major elicitors of mechanisms of oxidative stress. Genetic predisposition can compound the health effects of PTS and SHS exposure. Epigenetic effects might influence in utero gene expression and disease susceptibility. Hence, the limitation of domestic and public exposure to SHS as well as PTS exposure has to be in the focus of policymakers and the public in order to save the health of children at an early age. Global substantial smoke-free policies, health communication campaigns, and behavioural interventions are useful and should be mandatory.
Collapse
Affiliation(s)
- Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, D-60590 Frankfurt, Germany; (D.K.); (G.M.O.); (D.Q.); (D.A.G.)
| | | | | | | | | |
Collapse
|
23
|
Szczesniak R, Rice JL, Brokamp C, Ryan P, Pestian T, Ni Y, Andrinopoulou ER, Keogh RH, Gecili E, Huang R, Clancy JP, Collaco JM. Influences of environmental exposures on individuals living with cystic fibrosis. Expert Rev Respir Med 2020; 14:737-748. [PMID: 32264725 DOI: 10.1080/17476348.2020.1753507] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Natural, social, and constructed environments play a critical role in the development and exacerbation of respiratory diseases. However, less is known regarding the influence of these environmental/community risk factors on the health of individuals living with cystic fibrosis (CF), compared to other pulmonary disorders. AREAS COVERED Here, we review current knowledge of environmental exposures related to CF, which suggests that environmental/community risk factors do interact with the respiratory tract to affect outcomes. Studies discussed in this review were identified in PubMed between March 2019 and March 2020. Although the limited data available do not suggest that avoiding potentially detrimental exposures other than secondhand smoke could improve outcomes, additional research incorporating novel markers of environmental exposures and community characteristics obtained at localized levels is needed. EXPERT OPINION As we outline, some environmental exposures and community characteristics are modifiable; if not by the individual, then by policy. We recommend a variety of strategies to advance understanding of environmental influences on CF disease progression.
Collapse
Affiliation(s)
- Rhonda Szczesniak
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati , Cincinnati, OH, USA
| | - Jessica L Rice
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Cole Brokamp
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati , Cincinnati, OH, USA
| | - Patrick Ryan
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati , Cincinnati, OH, USA
| | - Teresa Pestian
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA
| | - Yizhao Ni
- Department of Pediatrics, University of Cincinnati , Cincinnati, OH, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA
| | | | - Ruth H Keogh
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine , London, UK
| | - Emrah Gecili
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA
| | - Rui Huang
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH, USA.,Department of Mathematical Sciences, University of Cincinnati , Cincinnati, OH, USA
| | - John P Clancy
- Department of Pediatrics, University of Cincinnati , Cincinnati, OH, USA.,Department of Clinical Research, Cystic Fibrosis Foundation , Bethesda, MD, USA
| | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
24
|
Abstract
OBJECTIVE The objective of this study was to determine if infants carrying 1 cystic fibrosis transmembrane receptor (CFTR) mutation demonstrate pancreatic inflammation in response to tobacco exposure. METHODS Cystic fibrosis carrier infants aged 4 to 16 weeks were prospectively enrolled. Tobacco exposure was assessed by survey and maternal hair nicotine analysis. Serum immunoreactive trypsinogen (IRT) levels at birth and at the time of recruitment were analyzed relative to the presence or absence of tobacco exposure. The effect of the severity of the CFTR mutation carried by the infant on the tobacco-IRT relationship was also analyzed. RESULTS Forty-eight infants completed the study. Newborn screen and follow-up IRT levels were not different between exposed infants (19 by hair analysis) and nonexposed infants (29 by hair analysis). Follow-up IRT levels were lower in infants with more severe CFTR mutations (P = 0.005). There was no difference in follow-up IRT based on CFTR mutation severity in exposed infants. Nonexposed infants with milder CFTR mutations had higher median IRT values on follow-up testing than those with more severe CFTR mutations (P < 0.05). CONCLUSIONS The pancreas of cystic fibrosis carrier infants is affected by tobacco exposure, and those carrying less severe CFTR mutations may be more susceptible to tobacco effects.
Collapse
|
25
|
Kopp BT, Fitch J, Jaramillo L, Shrestha CL, Robledo-Avila F, Zhang S, Palacios S, Woodley F, Hayes D, Partida-Sanchez S, Ramilo O, White P, Mejias A. Whole-blood transcriptomic responses to lumacaftor/ivacaftor therapy in cystic fibrosis. J Cyst Fibros 2019; 19:245-254. [PMID: 31474496 DOI: 10.1016/j.jcf.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) remains without a definitive cure. Novel therapeutics targeting the causative defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are in clinical use. Lumacaftor/ivacaftor is a CFTR modulator approved for patients homozygous for the CFTR variant p.Phe508del, but there are wide variations in treatment responses preventing prediction of patient responses. We aimed to determine changes in gene expression related to treatment initiation and response. METHODS Whole-blood transcriptomics was performed using RNA-Seq in 20 patients with CF pre- and 6 months post-lumacaftor/ivacaftor (drug) initiation and 20 non-CF healthy controls. Correlation of gene expression with clinical variables was performed by stratification via clinical responses. RESULTS We identified 491 genes that were differentially expressed in CF patients (pre-drug) compared with non-CF controls and 36 genes when comparing pre-drug to post-drug profiles. Both pre- and post-drug CF profiles were associated with marked overexpression of inflammation-related genes and apoptosis genes, and significant under-expression of T cell and NK cell-related genes compared to non-CF. CF patients post-drug demonstrated normalized protein synthesis expression, and decreased expression of cell-death genes compared to pre-drug profiles, irrespective of clinical response. However, CF clinical responders demonstrated changes in eIF2 signaling, oxidative phosphorylation, IL-17 signaling, and mitochondrial function compared to non-responders. Top overexpressed genes (MMP9 and SOCS3) that decreased post-drug were validated by qRT-PCR. Functional assays demonstrated that CF monocytes normalized calcium (increases MMP9 expression) concentrations post-drug. CONCLUSIONS Transcriptomics revealed differentially regulated pathways in CF patients at baseline compared to non-CF, and in clinical responders to lumacaftor/ivacaftor.
Collapse
Affiliation(s)
- Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA.
| | - James Fitch
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lisa Jaramillo
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sabrina Palacios
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Fred Woodley
- Division of Gastroenterology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Octavio Ramilo
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
26
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|
27
|
Zielen S, Fussbroich D. Impact of secondhand smoke on cystic fibrosis: is there a link to fatty acid metabolism? Thorax 2019; 74:529-530. [PMID: 31048510 DOI: 10.1136/thoraxjnl-2019-213042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Stefan Zielen
- University Hospital Frankfurt, Division of Paediatric Pulmonology, Allergy, and Cystic Fibrosis, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Daniela Fussbroich
- University Hospital Frankfurt, Division of Paediatric Pulmonology, Allergy, and Cystic Fibrosis, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany
| |
Collapse
|