1
|
Pius-Sadowska E, Kulig P, Niedźwiedź A, Baumert B, Łuczkowska K, Rogińska D, Sobuś A, Ulańczyk Z, Kawa M, Paczkowska E, Parczewski M, Machalińska A, Machaliński B. VEGFR and DPP-IV as Markers of Severe COVID-19 and Predictors of ICU Admission. Int J Mol Sci 2023; 24:17003. [PMID: 38069327 PMCID: PMC10707633 DOI: 10.3390/ijms242317003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The pathophysiology of the severe course of COVID-19 is multifactorial and not entirely elucidated. However, it is well known that the hyperinflammatory response and cytokine storm are paramount events leading to further complications. In this paper, we investigated the vascular response in the pathophysiology of severe COVID-19 and aimed to identify novel biomarkers predictive of ICU admission. The study group consisted of 210 patients diagnosed with COVID-19 (age range: 18-93; mean ± SD: 57.78 ± 14.16), while the control group consisted of 80 healthy individuals. We assessed the plasma concentrations of various vascular factors using the Luminex technique. Then, we isolated RNA from blood mononuclear cells and performed a bioinformatics analysis investigating various processes related to vascular response, inflammation and angiogenesis. Our results confirmed that severe COVID-19 is associated with vWF/ADAMTS 13 imbalance. High plasma concentrations of VEGFR and low DPP-IV may be potential predictors of ICU admission. SARS-CoV-2 infection impairs angiogenesis, hinders the generation of nitric oxide, and thus impedes vasodilation. The hypercoagulable state develops mainly in the early stages of the disease, which may contribute to the well-established complications of COVID-19.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Anna Niedźwiedź
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Miłosz Kawa
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Arkońska 4 Street, 71-455 Szczecin, Poland;
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (A.N.); (B.B.); (K.Ł.); (D.R.); (A.S.); (Z.U.); (E.P.)
| |
Collapse
|
2
|
Pérez-Mies B, Caniego-Casas T, Bardi T, Carretero-Barrio I, Benito A, García-Cosío M, González-García I, Pizarro D, Rosas M, Cristóbal E, Ruano Y, Garrido MC, Rigual-Bobillo J, de Pablo R, Galán JC, Pestaña D, Palacios J. Progression to lung fibrosis in severe COVID-19 patients: A morphological and transcriptomic study in postmortem samples. Front Med (Lausanne) 2022; 9:976759. [PMID: 36405615 PMCID: PMC9669577 DOI: 10.3389/fmed.2022.976759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 09/02/2023] Open
Abstract
The development of lung fibrosis is a major concern in patients recovered from severe COVID-19 pneumonia. This study aimed to document the evolution of diffuse alveolar damage (DAD) to the fibrosing pattern and define the transcriptional programs involved. Morphological, immunohistochemical and transcriptional analysis were performed in lung samples obtained from autopsy of 33 severe COVID-19 patients (median illness duration: 36 days). Normal lung and idiopathic pulmonary fibrosis (IPF) were used for comparison. Twenty-seven patients with DAD and disease evolution of more than 2 weeks had fibrosis. Pathways and genes related with collagen biosynthesis and extracellular matrix (ECM) biosynthesis and degradation, myofibroblastic differentiation and epithelial to mesenchymal transition (EMT) were overexpressed in COVID-19. This pattern had similarities with that observed in IPF. By immunohistochemistry, pathological fibroblasts (pFBs), with CTHRC1 and SPARC expression, increased in areas of proliferative DAD and decreased in areas of mature fibrosis. Immunohistochemical analysis demonstrated constitutive expression of cadherin-11 in normal epithelial cells and a similar pattern of cadherin and catenin expression in epithelial cells from both normal and COVID-19 samples. Transcriptomic analysis revealed downregulation of the Hippo pathway, concordant with the observation of YAP overexpression in hyperplastic alveolar epithelial cells. Progression to fibrosis in severe COVID-19 is associated with overexpression of fibrogenic pathways and increased in CTHRC1- and SPARC-positive pFBs. Whereas the Hippo pathway seemed to be implicated in the response to epithelial cell damage, EMT was not a major process implicated in COVID-19 mediated lung fibrosis.
Collapse
Affiliation(s)
- Belén Pérez-Mies
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Tamara Caniego-Casas
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Tommaso Bardi
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Anesthesiology and Surgical Critical Care, Hospital Ramón y Cajal, Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Amparo Benito
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Mónica García-Cosío
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Irene González-García
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
| | - David Pizarro
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Rosas
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva Cristóbal
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Yolanda Ruano
- Department of Pathology, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Concepción Garrido
- Department of Pathology, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Rigual-Bobillo
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Respiratory, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Raúl de Pablo
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
- Medical Intensive Care Unit, Hospital Ramón y Cajal, Madrid, Spain
| | - Juan Carlos Galán
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Clinical Microbiology Unit, Hospital Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - David Pestaña
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
- Department of Anesthesiology and Surgical Critical Care, Hospital Ramón y Cajal, Madrid, Spain
| | - José Palacios
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| |
Collapse
|
3
|
Ruz-Caracuel I, Pian-Arias H, Corral Í, Carretero-Barrio I, Bueno-Sacristán D, Pérez-Mies B, García-Cosío M, Caniego-Casas T, Pizarro D, García-Narros MI, Piris-Villaespesa M, Pestaña D, de Pablo R, Galán JC, Masjuan J, Palacios J. Neuropathological findings in fatal COVID-19 and their associated neurological clinical manifestations. Pathology 2022; 54:738-745. [PMID: 35691726 PMCID: PMC9182090 DOI: 10.1016/j.pathol.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022]
Abstract
Severe cases of Coronavirus Disease 2019 (COVID-19) can present with multiple neurological symptoms. The available neuropathological studies have described different lesions; the most frequent was the presence of neuroinflammation and vascular-related lesions. The objective of this study was to report the neuropathological studies performed in a medical institution, with abundant long intensive care unit stays, and their associated clinical manifestations. This is a retrospective monocentric case series study based on the neuropathological reports of 13 autopsies with a wide range of illness duration (13–108 days). A neuroinflammatory score was calculated based on the quantification of CD8- and CD68-positive cells in representative areas of the central nervous system. This score was correlated afterwards with illness duration and parameters related to systemic inflammation. Widespread microglial and cytotoxic T-cell activation was found in all patients. There was no correlation between the neuroinflammatory score and the duration of the illness; nor with parameters of systemic inflammation such as the peak of IL-6 or the HScore (a parameter of systemic macrophage activation syndrome). Two patients had global hypoxic ischaemic damage and five patients had subacute infarcts. One patient had many more brain vascular microthrombi compared to the others and multiple subacute pituitary infarcts. SARS-CoV-2 RNA was not detected with qRT-PCR. The proportion of brain lesions in severe COVID-19 patients could be related to illness duration. In our series, with abundant long hospitalisation stays, neuroinflammation was present in all patients and was more prominent between day 34 and day 45 after onset of symptoms. Clinical correlation showed that two patients with the highest neuroinflammatory scores had severe encephalopathies that were not attributable to any other cause. The second most frequent lesions were related to vascular pathology.
Collapse
Affiliation(s)
| | - Héctor Pian-Arias
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Íñigo Corral
- Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain
| | | | - Belén Pérez-Mies
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain; CIBERONC, Madrid, Spain
| | - Mónica García-Cosío
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain; CIBERONC, Madrid, Spain
| | - Tamara Caniego-Casas
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBERONC, Madrid, Spain
| | - David Pizarro
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | | | | | - David Pestaña
- Universidad de Alcalá de Henares, Madrid, Spain; Anesthesiology and Surgical Critical Care Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Raúl de Pablo
- Universidad de Alcalá de Henares, Madrid, Spain; Department of Intensive Care Medicine, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Juan Carlos Galán
- Clinical Microbiology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; CIBERESP, Madrid, Spain
| | - Jaime Masjuan
- Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain.
| | - José Palacios
- Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain; CIBERONC, Madrid, Spain.
| |
Collapse
|
4
|
de Andrade SA, de Souza DA, Torres AL, de Lima CFG, Ebram MC, Celano RMG, Schattner M, Chudzinski-Tavassi AM. Pathophysiology of COVID-19: Critical Role of Hemostasis. Front Cell Infect Microbiol 2022; 12:896972. [PMID: 35719336 PMCID: PMC9205169 DOI: 10.3389/fcimb.2022.896972] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, had its first cases identified in late 2019 and was considered a clinical pandemic in March 2020. In March 2022, more than 500 million people were infected and 6,2 million died as a result of this disease, increasingly associated with changes in human hemostasis, such as hypercoagulation. Numerous factors contribute to the hypercoagulable state, and endothelial dysfunction is the main one, since the activation of these cells can strongly activate platelets and the coagulation system. In addition, there is a dysregulation of the renin-angiotensin system due to the SARS-CoV-2 takeover of the angiotensin converting enzyme 2, resulting in a strong immune response that could further damage the endothelium. Thrombus formation in the pulmonary microvasculature structure in patients with COVID-19 is an important factor to determine the severity of the clinical picture and the outcome of this disease. This review describes the hemostatic changes that occur in SARS-CoV-2 infection, to further improve our understanding of pathogenic mechanisms and the interaction between endothelium dysfunction, kallikrein-kinins, renin angiotensin, and the Coagulation/fibrinolysis systems as underlying COVID-19 effectors. This knowledge is crucial for the development of new effective therapeutic approaches, attenuating the severity of SARS-CoV-2’s infection and to reduce the deaths.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mirta Schattner
- Laboratory of Experimental Thrombosis. Instituto de Medicina Experimental – CONICET -Academia Nacional de Medicina, Buenos Aires, Argentina
- *Correspondence: Ana Marisa Chudzinski-Tavassi, ; Mirta Schattner,
| | - Ana Marisa Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo, Brazil
- Innovation and Development Laboratory, Instituto Butantan, São Paulo, São Paulo, Brazil
- *Correspondence: Ana Marisa Chudzinski-Tavassi, ; Mirta Schattner,
| |
Collapse
|
5
|
Rott G, Boecker F, Maurer C, Sellmann T. Massive hemoptysis two months after an otherwise mild SARS-CoV-2 disease (COVID-19) treated with bronchial artery embolization - A case report. Radiol Case Rep 2022; 17:918-921. [PMID: 35069961 PMCID: PMC8759770 DOI: 10.1016/j.radcr.2021.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
An otherwise healthy young man presented with massive hemoptysis 2 month following a mild coronavirus disease 2019 (COVID-19) and with no other identifiable cause of illness. The patient was successfully treated with bronchial artery embolization. We are strongly convinced that hemoptysis in this case was COVID-related. This unusual case of delayed COVID-related hemoptysis reveals new aspects in the understanding of mid-term and presumable auto-immune triggered effects in patients with initially only mild symptoms of the disease.
Collapse
Affiliation(s)
- Gernot Rott
- Department of Radiology, Bethesda-Hospital, Heerstr. 219, Duisburg, 47053, Germany
| | - Frieder Boecker
- Institute of Clinical Radiology, Lukas-Hospital, Neuss, Germany
| | - Clemens Maurer
- Department of Pneumology, Bethesda-Hospital, Duisburg, Germany
| | - Timur Sellmann
- Department of Anaesthesiology and Intensive Care Medicine, Bethesda-Hospital, Duisburg, Germany
| |
Collapse
|
6
|
Caniego-Casas T, Martínez-García L, Alonso-Riaño M, Pizarro D, Carretero-Barrio I, Martínez-de-Castro N, Ruz-Caracuel I, de Pablo R, Saiz A, Royo RN, Santiago A, Rosas M, Rodríguez-Peralto JL, Pérez-Mies B, Galán JC, Palacios J. RNA SARS-CoV-2 Persistence in the Lung of Severe COVID-19 Patients: A Case Series of Autopsies. Front Microbiol 2022; 13:824967. [PMID: 35173701 PMCID: PMC8841799 DOI: 10.3389/fmicb.2022.824967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
The exact role of viral replication in patients with severe COVID-19 has not been extensively studied, and it has only been possible to demonstrate the presence of replicative virus for more than 3 months in a few cases using different techniques. Our objective was to study the presence of RNA SARS-CoV-2 in autopsy samples of patients who died from COVID-19 long after the onset of symptoms. Secondary superimposed pulmonary infections present in these patients were also studied. We present an autopsy series of 27 COVID-19 patients with long disease duration, where pulmonary and extrapulmonary samples were obtained. In addition to histopathological analysis, viral genomic RNA (gRNA) and viral subgenomic RNA (sgRNA) were detected using RT-PCR and in situ hybridization, and viral protein was detected using immunohistochemistry. This series includes 26 adults with a median duration of 39 days from onset of symptoms to death (ranging 9–108 days), 92% of them subjected to immunomodulatory therapy, and an infant patient. We detected gRNA in the lung of all but one patient, including those with longer disease duration. SgRNA was detected in 11 out of 17 patients (64.7%) with illness duration up to 6 weeks and in 3 out of 9 patients (33.3%) with more than 6 weeks of disease progression. Viral protein was detected using immunohistochemistry and viral mRNA was detected using in situ hybridization in 3 out of 4 adult patients with illness duration of <2 weeks, but in none of the 23 adult patients with an illness duration of >2 weeks. A remarkable result was the detection of viral protein, gRNA and sgRNA in the lung cells of the pediatric patient after 95 days of illness. Additional pulmonary infections included: 9 acute bronchopneumonia, 2 aspergillosis, 2 cytomegalovirus, and 1 BK virus infection. These results suggest that in severe COVID-19, SARS-CoV-2 could persist for longer periods than expected, especially in immunocompromised populations, contributing to the persistence of chronic lung lesions. Additional infections contribute to the fatal course of the disease.
Collapse
Affiliation(s)
- Tamara Caniego-Casas
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Martínez-García
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid, Spain
| | - Marina Alonso-Riaño
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto 12 de Octubre for Health Research, Madrid, Spain
- Faculty of Medicine, Complutense University, Madrid, Spain
| | - David Pizarro
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - Nilda Martínez-de-Castro
- Anaesthesiology and Surgical Critical Care Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Raúl de Pablo
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
- Medical Intensive Care Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ana Saiz
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - Rosa Nieto Royo
- Respiratory Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ana Santiago
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Marta Rosas
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
| | - José L. Rodríguez-Peralto
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto 12 de Octubre for Health Research, Madrid, Spain
- Faculty of Medicine, Complutense University, Madrid, Spain
| | - Belén Pérez-Mies
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - Juan C. Galán
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid, Spain
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Alcalá, Alcalá de Henares, Spain
- *Correspondence: José Palacios,
| |
Collapse
|
7
|
Beasley MB. Acute lung injury-from cannabis to COVID. Mod Pathol 2022; 35:1-7. [PMID: 34504310 PMCID: PMC8428494 DOI: 10.1038/s41379-021-00915-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Recent world events have refocused attention on the pathology associated with clinical acute respiratory distress syndrome (ARDS). The vast majority of cases of clinical ARDS will have diffuse alveolar damage (DAD) histologically, but other histologies may occur less frequently. The aim of this paper is to provide a review of the pathology of DAD and acute fibrinous and organizing pneumonia and provide insights into the pathologic features associated with the E-cigarette/vaping-associated lung-injury outbreak and the ongoing SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Mary Beth Beasley
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Ma Z, Yang KY, Huang Y, Lui KO. Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. J Mol Cell Cardiol 2021; 164:69-82. [PMID: 34838588 PMCID: PMC8610843 DOI: 10.1016/j.yjmcc.2021.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
9
|
Invernizzi A, Schiuma M, Parrulli S, Torre A, Zicarelli F, Colombo V, Marini S, Villella E, Bertoni A, Antinori S, Rizzardini G, Galli M, Meroni L, Giacomelli A, Staurenghi G. Retinal vessels modifications in acute and post-COVID-19. Sci Rep 2021; 11:19373. [PMID: 34588541 PMCID: PMC8481283 DOI: 10.1038/s41598-021-98873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2 primarily affecting the respiratory system which can damage vessels walls virtually in any body district. Changes affecting retinal vessels are a good marker for systemic vascular alterations. This study investigated retinal vessels during the acute phase of COVID-19 and after patients recovery. Fifty-nine eyes from 32 COVID-19 patients and 80 eyes from 53 unexposed subjects were included. Mean arteries diameter (MAD) and mean veins diameter (MVD) were assessed through semi-automatic analysis on fundus color photos at baseline and 6 months later in patients and subjects unexposed to the virus. At baseline MAD and MVD were significantly higher in COVID-19 patients compared to unexposed subjects (p < 0.0001). Both MAD and MVD significantly decreased in COVID-19 patients at follow-up (from 97.5 ± 10.9 to 92.2 ± 11.4 µm, p < 0.0001 and from 133.1 ± 19.3 to 124.6 ± 16.1 µm, p < 0.0001, respectively). Despite this reduction vessels diameter remained significantly higher in severe COVID-19 patients compared to unexposed subjects. Transient retinal vessels dilation could serve a biomarker for systemic inflammation while long-lasting alterations seen in severe COVID-19 likely reflect irreversible structural damage to the vessels walls and should be further investigated for their possible effects on tissues perfusion and function.
Collapse
Affiliation(s)
- Alessandro Invernizzi
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
- Department of Biomedical and Clinical Sciences "L. Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy.
- The Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, Save Sight Institute, Sydney Eye Hospital, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2001, Australia.
| | - Marco Schiuma
- Department of Biomedical and Clinical Sciences "L. Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Salvatore Parrulli
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Alessandro Torre
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Federico Zicarelli
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Valeria Colombo
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Sara Marini
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Elena Villella
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Alice Bertoni
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences "L. Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giuliano Rizzardini
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "L. Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Luca Meroni
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Andrea Giacomelli
- Department of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giovanni Staurenghi
- Eye Clinic, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
- Department of Biomedical and Clinical Sciences "L. Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Henningsen MJ, Khatam-Lashgari A, Olsen KB, Jacobsen C, Brøchner CB, Banner J. Translational deep phenotyping of deaths related to the COVID-19 pandemic: protocol for a prospective observational autopsy study. BMJ Open 2021; 11:e049083. [PMID: 34452963 PMCID: PMC8406463 DOI: 10.1136/bmjopen-2021-049083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The COVID-19 pandemic is an international emergency with an extreme socioeconomic impact and a high mortality and disease burden. The COVID-19 outbreak is neither fully understood nor fully pictured. Autopsy studies can help understand the pathogenesis of COVID-19 and has already resulted in better treatment of patients. Structured and systematic autopsy of COVID-19-related deaths will enhance the mapping of pathophysiological pathways, not possible in the living. Furthermore, it provides an opportunity to envision factors translationally for the purpose of disease prevention in this and future pandemics. This is the protocol for an autopsy study that offers an umbrella for deep and diverse investigations of COVID-19-related deaths, including a systematic investigation of 'long' COVID-19 by means of extensive and systematic tissue sampling. METHODS AND ANALYSIS A COVID-19-specific autopsy algorithm has been created to cover all cases undergoing clinical or forensic autopsy in Denmark. The algorithm describes advanced tissue sampling and a translational analytical follow-up for deep phenotyping. The translational approach covers registry data, postmortem imaging, gross autopsy findings, microscopic organ changes, postmortem toxicology, postmortem biochemical investigation, microbiological profiling and immunological status at the time of death, and future research projects covering genetics and epigenetics on an organ level. ETHICS AND DISSEMINATION This study has been approved by the Regional Ethics Committee of the Region of Greater Copenhagen (No: H-20078436) and the Danish Data Protection Agency (No: 2002-54-1080). Next of kin gave informed consent to research. The study results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER This study is purely observational and, as such, does not meet the criteria of the International Committee of Medical Journal Editors for clinical trials; thus, there is no need for registration in a database of research trials, such as clinical trials. To facilitate cooperation in research, provide transparency on case recruitment for publications to come and to avoid unnecessary duplicate work, we nevertheless wish to publish our protocol.
Collapse
Affiliation(s)
- Mikkel Jon Henningsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Apameh Khatam-Lashgari
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Kristine Boisen Olsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|