1
|
Griffiths S, Power L, Breen D. Pulmonary endoscopy - central to an interventional pulmonology program. Expert Rev Respir Med 2024; 18:843-860. [PMID: 39370862 DOI: 10.1080/17476348.2024.2413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Pulmonary endoscopy occupies a central role in Interventional Pulmonology and is frequently the mainstay of diagnosis of respiratory disease, in particular lung malignancy. Older techniques such as rigid bronchoscopy maintain an important role in central airway obstruction. Renewed interest in the peripheral pulmonary nodule is driving major advances in technologies to increase the diagnostic accuracy and advance new potential endoscopic therapeutic options. AREAS COVERED This paper describes the role of pulmonary endoscopy, in particular ultrasound in the diagnosis and staging of lung malignancy. We will explore the recent expansion of ultrasound to include endoscopic ultrasound - bronchoscopy (EUS-B) and combined ultrasound (CUS) techniques. We will discuss in detail the advances in the workup of the peripheral pulmonary nodule.We performed a non-systematic, narrative review of the literature to summarize the evidence regarding the indications, diagnostic yield, and safety of current bronchoscopic sampling techniques. EXPERT OPINION EBUS/EUS-B has revolutionized the diagnosis and staging of thoracic malignancy resulting in more accurate assessment of the mediastinum compared to mediastinoscopy alone, thus reducing the rate of futile thoracotomies. Although major advances in the assessment of the peripheral pulmonary nodule have been made, the role of endoscopy in this area requires further clarification and investigation.
Collapse
Affiliation(s)
- Sally Griffiths
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| | - Lucy Power
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| | - David Breen
- Interventional Respiratory Unit, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
2
|
Xie F, Zhang Q, Mu C, Zhang Q, Yang H, Mao J, Simoff MJ, Huang J, Zhang X, Sun J. Shape-sensing Robotic-assisted Bronchoscopy (SS-RAB) in Sampling Peripheral Pulmonary Nodules: A Prospective, Multicenter Clinical Feasibility Study in China. J Bronchology Interv Pulmonol 2024; 31:e0981. [PMID: 39115240 DOI: 10.1097/lbr.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/26/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND The ION system is a shape-sensing robotic-assisted bronchoscopy (SS-RAB) platform developed to biopsy peripheral pulmonary nodules (PPNs). There is a lack of data describing the use of this system in the Chinese population. The study aimed to assess the feasibility and safety of using SS-RAB to diagnose PPNs across multiple centers within China. METHODS This prospective, multicenter study used SS-RAB in consecutive patients with solid or sub-solid PPNs 8 to 30 mm in largest diameter. Primary endpoints were diagnostic yield and the rates of procedure- or device-related complications. Radial endobronchial ultrasound (rEBUS) was to confirm lesion localization, followed by sampling, using the Flexision biopsy needle, biopsy forceps, and cytology brush. Subjects with nonmalignant index biopsy results were followed up to 6 months. RESULTS A total of 90 PPNs were biopsied from 90 subjects across 3 centers using SS-RAB. The median nodule size was 19.4 mm (IQR: 19.3, 24.6) in the largest dimension. In all (100%) cases, the catheter successfully reached the target nodule with tissue samples obtained. The diagnostic yield was 87.8% with a sensitivity for malignancy of 87.7% (71/81). In a univariate analysis, nodule lobar location, presence of bronchus sign, and rEBUS view were associated with a diagnostic sample, but only rEBUS view showed an association in a multivariate analysis. The overall pneumothorax rate was 1.1% without pneumothorax requiring intervention, and there was no periprocedural bleeding. CONCLUSION As an emerging technology in the Chinese population, SS-RAB can safely biopsy PPNs with strong diagnostic performance.
Collapse
Affiliation(s)
- Fangfang Xie
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou
| | - Chuanyong Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qin Zhang
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai
| | - Huizhen Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou
| | - Jingyu Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Michael J Simoff
- Bronchoscopy and Interventional Pulmonology, Lung Cancer Screening Program, Department of Pulmonary and Critical Care Medicine, Henry Ford Hospital, Wayne State University School of Medicine, Detroit, MI
| | - Jian'an Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai
| |
Collapse
|
3
|
van Heumen S, Kramer T, Korevaar DA, Gompelmann D, Bal C, Hetzel J, Jahn K, Poletti V, Ravaglia C, Sadoughi A, Stratakos G, Bakiri K, Koukaki E, Anagnostopoulos N, Votruba J, Šestáková Z, Heuvelmans MA, Daniels JMA, de Bruin DM, Bonta PI, Annema JT. Bronchoscopy with and without needle-based confocal laser endomicroscopy for peripheral lung nodule diagnosis: protocol for a multicentre randomised controlled trial (CLEVER trial). BMJ Open 2024; 14:e081148. [PMID: 38964802 PMCID: PMC11227804 DOI: 10.1136/bmjopen-2023-081148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Despite many technological advances, the diagnostic yield of bronchoscopic peripheral lung nodule analysis remains limited due to frequent mispositioning. Needle-based confocal laser endomicroscopy (nCLE) enables real-time microscopic feedback on needle positioning, potentially improving the sampling location and diagnostic yield. Previous studies have defined and validated nCLE criteria for malignancy, airway and lung parenchyma. Larger studies demonstrating the effect of nCLE on diagnostic yield are lacking. We aim to investigate if nCLE-imaging integrated with conventional bronchoscopy results in a higher diagnostic yield compared with conventional bronchoscopy without nCLE. METHODS AND ANALYSIS This is a parallel-group randomised controlled trial. Recruitment is performed at pulmonology outpatient clinics in universities and general hospitals in six different European countries and one hospital in the USA. Consecutive patients with a for malignancy suspected peripheral lung nodule (10-30 mm) with an indication for diagnostic bronchoscopy will be screened, and 208 patients will be included. Web-based randomisation (1:1) between the two procedures will be performed. The primary outcome is diagnostic yield. Secondary outcomes include diagnostic sensitivity for malignancy, needle repositionings, procedure and fluoroscopy duration, and complications. Pathologists will be blinded to procedure type; patients and endoscopists will not. ETHICS AND DISSEMINATION Primary approval by the Ethics Committee of the Amsterdam University Medical Center. Dissemination involves publication in a peer-reviewed journal. SUPPORT Financial and material support from Mauna Kea Technologies. TRIAL REGISTRATION NUMBER NCT06079970.
Collapse
Affiliation(s)
- Saskia van Heumen
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tess Kramer
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniël A Korevaar
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christina Bal
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Juergen Hetzel
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Kathleen Jahn
- Department of Pneumology, University Hospital Basel, Basel, Switzerland
| | - Venerino Poletti
- Pulmonary Unit, Department of Thoracic Diseases, GB Morgagni-Pierantoni Hospital, Forli, Italy
| | - Claudia Ravaglia
- Pulmonary Unit, Department of Thoracic Diseases, GB Morgagni-Pierantoni Hospital, Forli, Italy
| | - Ali Sadoughi
- Department of Pulmonary Medicine, Montefiore Medical Center Einstein Campus, New York, New York, USA
| | - Grigoris Stratakos
- Interventional Pulmonology Unit of the 1st Respiratory Medicine Department, "Sotiria" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Bakiri
- Interventional Pulmonology Unit of the 1st Respiratory Medicine Department, "Sotiria" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Koukaki
- Interventional Pulmonology Unit of the 1st Respiratory Medicine Department, "Sotiria" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Anagnostopoulos
- Interventional Pulmonology Unit of the 1st Respiratory Medicine Department, "Sotiria" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Jiří Votruba
- 1st Department of Tuberculosis and Respiratory Diseases, General University Hospital in Prague, Prague, Czech Republic
| | - Zuzana Šestáková
- 1st Department of Tuberculosis and Respiratory Diseases, General University Hospital in Prague, Prague, Czech Republic
| | - Marjolein A Heuvelmans
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes M A Daniels
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel M de Bruin
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke T Annema
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kalifa J, Plat G, Brindel A, Héluain V, Brouchet L, Rouch A, Mazières J, Chapda MCP, Villeneuve T, Guibert N. Combination of electromagnetic navigation and probe-based LASER endomicroscopy to guide non-solid nodules sampling: Results from the CELTICS 2 study. Respir Med Res 2024; 85:101092. [PMID: 38657300 DOI: 10.1016/j.resmer.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Jules Kalifa
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France
| | - Gavin Plat
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France
| | - Aurélien Brindel
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France
| | - Valentin Héluain
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France
| | - Laurent Brouchet
- Department of Thoracic Surgery, Toulouse University Hospital, Toulouse, France
| | - Axel Rouch
- Department of Thoracic Surgery, Toulouse University Hospital, Toulouse, France
| | - Julien Mazières
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France
| | - Marie-Christelle Pajiep Chapda
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France; MeDatas, CIC (Centre d'Investigation Clinique), CHU Toulouse, Toulouse, France
| | - Thomas Villeneuve
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France
| | - Nicolas Guibert
- Department of Pulmonology, Toulouse University Hospital, Toulouse, France.
| |
Collapse
|
5
|
Bratash O, Buhot A, Leroy L, Engel E. Optical fiber biosensors toward in vivo detection. Biosens Bioelectron 2024; 251:116088. [PMID: 38335876 DOI: 10.1016/j.bios.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
This review takes stock of the various optical fiber-based biosensors that could be used for in vivo applications. We discuss the characteristics that biosensors must have to be suitable for such applications and the corresponding transduction modes. In particular, we focus on optical fiber biosensors based on fluorescence, evanescent wave, plasmonics, interferometry, and Raman phenomenon. The operational principles, implemented solutions, and performances are described and debated. The different sensing configurations, such as the side- and tip-based fiber biosensors, are illustrated, and their adaptation for in vivo measurements is discussed. The required implementation of multiplexed biosensing on optical fibers is shown. In particular, the use of multi-fiber assemblies, one of the most optimal configurations for multiplexed detection, is discussed. Different possibilities for multiple localized functionalizations on optical fibers are presented. A final section is devoted to the practical in vivo use of fiber-based biosensors, covering regulatory, sterilization, and packaging aspects. Finally, the trends and required improvements in this promising and emerging field are analyzed and discussed.
Collapse
Affiliation(s)
- Oleksii Bratash
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Loïc Leroy
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Elodie Engel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
6
|
Abdelghani R, Omballi M, Abia-Trujillo D, Casillas E, Villalobos R, Badar F, Bansal S, Kheir F. Imaging modalities during navigational bronchoscopy. Expert Rev Respir Med 2024; 18:175-188. [PMID: 38794918 DOI: 10.1080/17476348.2024.2359601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Lung nodules are commonly encountered in clinical practice. Technological advances in navigational bronchoscopy and imaging modalities have led to paradigm shift from nodule screening or follow-up to early lung cancer detection. This is due to improved nodule localization and biopsy confirmation with combined modalities of navigational platforms and imaging tools. To conduct this article, relevant literature was reviewed via PubMed from January 2014 until January 2024. AREAS COVERED This article highlights the literature on different imaging modalities combined with commonly used navigational platforms for diagnosis of peripheral lung nodules. Current limitations and future perspectives of imaging modalities will be discussed. EXPERT OPINION The development of navigational platforms improved localization of targets. However, published diagnostic yield remains lower compared to percutaneous-guided biopsy. The discordance between the actual location of lung nodule during the procedure and preprocedural CT chest is the main factor impacting accurate biopsies. The utilization of advanced imaging tools with navigation-based bronchoscopy has been shown to assist with localizing targets in real-time and improving biopsy success. However, it is important for interventional bronchoscopists to understand the strengths and limitations of these advanced imaging technologies.
Collapse
Affiliation(s)
- Ramsy Abdelghani
- Division of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Mohamed Omballi
- Department of Pulmonary and Critical Care Medicine, University of Toledo, Toledo, OH, USA
| | - David Abia-Trujillo
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ernesto Casillas
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina Villalobos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Faraz Badar
- Department of Pulmonary and Critical Care Medicine, University of Toledo, Toledo, OH, USA
| | - Sandeep Bansal
- The Lung Center, Penn Highlands Healthcare, DuBois, PA, USA
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Bonhomme O, Heinen V, Louis R, Corhay JL, Duysinx B. [Probe based confocal laser endomicroscopy in thoracic endoscopy]. Rev Mal Respir 2024; 41:145-155. [PMID: 38030554 DOI: 10.1016/j.rmr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Probe based confocal laser endomicroscopy (pCLE) is a new endoscopic imaging technology. It uses mini probes which can be introduced through the working channels of endoscopes. Whenever applied on the tissue of interest, they allow imaging of tissue at a cellular level. STATE OF ART In the filed of pleuropulmonary malignancies, pCLE showed mostly its ability to guide biopsies samplings. Those results need to be validated in larger prospective studies. In interstitial lung diseases, pCLE provides information complementary to other clinical and paraclinical data. The valuability of these informations need to be investigated further, prospectively in randomized trials. In obstructive pulmonary diseases, pCLE is able to investigate the structural and functional relationships between pulmonary structures. pCLE showed good ability in the identification of acute cellular rejection after lung transplantation. PERSPECTIVES AND CONCLUSION For the time being, pCLE is not part of routine clinical practice. The data available need to be validated in larger randomized prospective trials, before it can be recommended as a guiding tool for biopsies or as a diagnostic tool for pathologic process. New fluorophores are now available. They are specific of some molecular sequences, allowing the enhancement of specific targets within the sample studied.
Collapse
Affiliation(s)
- O Bonhomme
- Pneumologues, CHU de Liège, 4000 Liège, Belgique.
| | - V Heinen
- Pneumologues, CHU de Liège, 4000 Liège, Belgique
| | - R Louis
- Pneumologues, CHU de Liège, 4000 Liège, Belgique
| | - J-L Corhay
- Pneumologues, CHU de Liège, 4000 Liège, Belgique
| | - B Duysinx
- Pneumologues, CHU de Liège, 4000 Liège, Belgique
| |
Collapse
|
8
|
Lachkar S, Guisier F, Thiberville L, Dantoing E, Salaün M. [Advanced bronchoscopic techniques for the diagnosis of peripheral lung nodule]. Rev Mal Respir 2023; 40:810-819. [PMID: 37798173 DOI: 10.1016/j.rmr.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
The endoscopic diagnosis of peripheral lung nodules is a challenging aspect of oncological practice. More often than not inaccessible by traditional endoscopy, these nodules necessitate multiple imagery tests, as well as diagnostic surgery for benign lesions. Even though transthoracic ultrasonography has a high diagnostic yield, a sizeable complication rate renders it suboptimal. Over recent years, a number of safe and accurate navigational bronchoscopic procedures have been developed. In this first part, we provide an overview of the bronchoscopic techniques currently applied for the excision and diagnostic analysis of peripheral lung nodules; emphasis is laid on electromagnetic navigation bronchoscopy and the association of virtual bronchoscopy planner with radial endobronchial ultrasound. We conclude by considering recent innovations, notably robotic bronchoscopy.
Collapse
Affiliation(s)
- S Lachkar
- Department of Pneumology, CHU de Rouen, 76000 Rouen, France.
| | - F Guisier
- Department of Pneumology, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU de Rouen, Normandie University, Inserm CIC-CRB 1404, 76000 Rouen, France
| | - L Thiberville
- Department of Pneumology, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU de Rouen, Normandie University, Inserm CIC-CRB 1404, 76000 Rouen, France
| | - E Dantoing
- Department of Pneumology, CHU de Rouen, 76000 Rouen, France
| | - M Salaün
- Department of Pneumology, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU de Rouen, Normandie University, Inserm CIC-CRB 1404, 76000 Rouen, France
| |
Collapse
|
9
|
Kramer T, Wijmans L, van Heumen S, Bansal S, Jeannerat D, Manley C, de Bruin M, Bonta PI, Annema JT. Needle-based confocal laser endomicroscopy for real-time granuloma detection. Respirology 2023; 28:934-941. [PMID: 37562791 DOI: 10.1111/resp.14542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Needle-based confocal laser endomicroscopy (nCLE) allows real-time microscopic imaging at the needle tip. nCLE malignancy criteria are used for tool-in-lesion confirmation during bronchoscopic lung nodule analysis. However, to date, nCLE criteria for granulomas are lacking. The aim was to identify and validate nCLE granuloma criteria and assess if blinded raters can distinguish malignant from granulomatous nCLE videos. METHODS In patients with suspected sarcoidosis, nCLE-imaging of mediastinal lymph nodes was performed during endoscopic ultrasound procedures, followed by needle aspiration. nCLE granuloma criteria were identified by comparison with pathology and final diagnoses. Additionally, nCLE-videos of granulomatous lung nodules part of prospective trials and clinical care were compared to the proposed nCLE granuloma criteria. Blinded raters validated nCLE videos of sarcoid and reactive mediastinal lymph nodes and malignant and granulomatous lung nodules twice. RESULTS Granuloma criteria were identified (brighter-toned, homogeneous and well-demarcated lesions) based on nCLE-imaging in 14 sarcoidosis patients. Raters evaluated 26 nCLE-videos obtained in lymph nodes (n = 15 sarcoidosis; n = 11 reactive and total of 260 ratings). Granuloma criteria were recognized with 88% accuracy. The inter-observer (κ = 0.63, 95% CI 0.54-0.72) and intra-observer reliability (κ = 0.70 ± 0.06) were substantial. Based on 12 nCLE-videos obtained in lung nodules (n = 4 granulomas, n = 6 malignancy, n = 2 malignancy + granulomas and total of 120 ratings) granuloma and malignancy criteria were recognized with 92% and 75% accuracy. CONCLUSION nCLE imaging facilitates real-time granuloma visualization. Blinded raters accurately and consistently recognized granulomas on nCLE-imaging and distinguished nCLE granuloma criteria from malignancy. Our data show the potential of nCLE as a real-time bronchoscopic guidance tool for lung nodule analysis.
Collapse
Affiliation(s)
- Tess Kramer
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lizzy Wijmans
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia van Heumen
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandeep Bansal
- The Lung Center, Penn Highlands Healthcare, DuBois, Pennsylvania, USA
| | - Dawn Jeannerat
- The Lung Center, Penn Highlands Healthcare, DuBois, Pennsylvania, USA
| | - Christopher Manley
- Department of Respiratory Medicine and Critical Care, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Martijn de Bruin
- Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Zuo CY, Xue KY, Wu XM, Lin LC, Luo BQ, Chen ZD, Lin YL, Tian XQ, Ke MY. Value of needle confocal laser microendoscopy combined with endobronchial ultrasound bronchoscopy in the diagnosis of hilar and mediastinal lymph node lesions. Kaohsiung J Med Sci 2023; 39:936-942. [PMID: 37283416 DOI: 10.1002/kjm2.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Endobronchial ultrasound bronchoscopy (EBUS) and needle confocal laser endomicroscopy (nCLE) are techniques for screening benign and malignant lesions of the hilar and mediastinal lymph node (HMLN). This study investigated the diagnostic potential of EBUS, nCLE, and combined EBUS and nCLE in HMLN lesions. We recruited 107 patients with HMLN lesions who were examined by EBUS and nCLE. A pathological examination was performed, and the diagnostic potential of EBUS, nCLE, and combined EBUS-nCLE approach was analyzed according to the results. Among the 107 cases of HMLN lesions, 43 cases were benign and 64 cases were malignant on pathological examination, 41 cases were benign and 66 cases were malignant on EBUS examination; 42 cases were benign and 65 cases were malignant on nCLE examination; 43 cases were benign and 64 cases were malignant on combined EBUS-nCLE examination. The combination approach had 93.8% sensitivity, 90.7% specificity, and 0.922 area under the curve, which was higher than those of EBUS (84.4%, 72.1%, and 0.782, respectively) and nCLE diagnosis (90.6%, 83.7%, and 0.872, respectively). The combination approach had a higher positive predictive value (0.908), negative predictive value (0.881), and positive likelihood ratio (10.09) than that of EBUS (0.813, 0.721, and 3.03, respectively) and nCLE (0.892, 0.857, and 5.56, respectively), whereas, the negative likelihood ratio was lower than that for EBUS (0.22) and nCLE (0.11). No serious complications occurred in patients with HMLN lesions. To summarize, the diagnostic efficacy of nCLE was better than EBUS. The EBUS-nCLE combination is a suitable approach for diagnosing HMLN lesions.
Collapse
Affiliation(s)
- Cui-Yun Zuo
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Ke-Ying Xue
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xue-Mei Wu
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Lian-Cheng Lin
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Bing-Qing Luo
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Zhi-De Chen
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yan-Li Lin
- Department of Pathology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiao-Qin Tian
- Department of Pathology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Ming-Yao Ke
- Department of Respiratory Center, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
11
|
Kennedy GT, Azari FS, Chang A, Nadeem B, Bernstein E, Segil A, Din A, Desphande C, Okusanya O, Keating J, Predina J, Newton A, Kucharczuk JC, Singhal S. Single-institution experience of 500 pulmonary resections guided by intraoperative molecular imaging. J Thorac Cardiovasc Surg 2023; 165:1928-1938.e1. [PMID: 36863974 PMCID: PMC10311075 DOI: 10.1016/j.jtcvs.2022.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Intraoperative molecular imaging (IMI) using tumor-targeted optical contrast agents can improve thoracic cancer resections. There are no large-scale studies to guide surgeons in patient selection or imaging agent choice. Here, we report our institutional experience with IMI for lung and pleural tumor resection in 500 patients over a decade. METHODS Between December 2011 and November 2021, patients with lung or pleural nodules undergoing resection were preoperatively infused with 1 of 4 optical contrast tracers: EC17, TumorGlow, pafolacianine, or SGM-101. Then, during resection, IMI was used to identify pulmonary nodules, confirm margins, and identify synchronous lesions. We retrospectively reviewed patient demographic data, lesion diagnoses, and IMI tumor-to-background ratios (TBRs). RESULTS Five hundred patients underwent resection of 677 lesions. We found that there were 4 types of clinical utility of IMI: detection of positive margins (n = 32, 6.4% of patients), identification of residual disease after resection (n = 37, 7.4%), detection of synchronous cancers not predicted on preoperative imaging (n = 26, 5.2%), and minimally invasive localization of nonpalpable lesions (n = 101 lesions, 14.9%). Pafolacianine was most effective for adenocarcinoma-spectrum malignancies (mean TBR, 2.84), and TumorGlow was most effective for metastatic disease and mesothelioma (TBR, 3.1). False-negative fluorescence was primarily seen in mucinous adenocarcinomas (mean TBR, 1.8), heavy smokers (>30 pack years; TBR, 1.9), and tumors greater than 2.0 cm from the pleural surface (TBR, 1.3). CONCLUSIONS IMI may be effective in improving resection of lung and pleural tumors. The choice of IMI tracer should vary by the surgical indication and the primary clinical challenge.
Collapse
Affiliation(s)
- Gregory T Kennedy
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Feredun S Azari
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Ashley Chang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Bilal Nadeem
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Elizabeth Bernstein
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Alix Segil
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Azra Din
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | | | - Jane Keating
- Department of Surgery, Hartford Hospital, Hartford, Conn
| | - Jarrod Predina
- Department of Surgery, Massachusetts General Hospital, Boston, Mass
| | - Andrew Newton
- Department of Surgery, MD Anderson Cancer Center, Houston, Tex
| | - John C Kucharczuk
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa.
| |
Collapse
|
12
|
Manley CJ, Kramer T, Kumar R, Gong Y, Ehya H, Ross E, Bonta PI, Annema JT. Robotic bronchoscopic needle-based confocal laser endomicroscopy to diagnose peripheral lung nodules. Respirology 2023; 28:475-483. [PMID: 36535801 PMCID: PMC11590500 DOI: 10.1111/resp.14438] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Robotic bronchoscopy has demonstrated high navigational success in small peripheral lung nodules but the diagnostic yield is discrepantly lower. Needle based confocal laser endomicroscopy (nCLE) enables real-time microscopic imaging at the needle tip. We aim to assess feasibility, safety and needle repositioning based on real-time nCLE-guidance during robotic bronchoscopy in small peripheral lung nodules. METHODS Patients with suspected peripheral lung cancer underwent fluoroscopy and radial EBUS assisted robotic bronchoscopy. After radial EBUS nodule identification, nCLE-imaging of the target area was performed. nCLE-malignancy and airway/lung parenchyma criteria were used to identify the optimal sampling location. In case airway was visualized, repositioning of the biopsy needle was performed. After nCLE tool-in-nodule confirmation, needle passes and biopsies were performed at the same location. MEASUREMENTS AND MAIN RESULTS Twenty patients were included (final diagnosis n = 17 (lung) cancer) with a median lung nodule size of 14.5 mm (range 8-28 mm). No complications occurred. In 19/20 patients, good quality nCLE-videos were obtained. In 9 patients (45%), real-time nCLE-imaging revealed inadequate positioning of the needle and repositioning was performed. After repositioning, nCLE-imaging provided tool-in-nodule-confirmation in 19/20 patients. Subsequent ROSE demonstrated representative material in 9/20 patients (45%) and overall diagnostic yield was 80% (16/20). Of the three patients with malignant nCLE-imaging but inadequate pathology, two were diagnosed with malignancy during follow-up. CONCLUSION Robotic bronchoscopic nCLE-imaging is feasible and safe. nCLE-imaging in small, difficult-to-access lung nodules provided additional real-time feedback on the correct needle positioning with the potential to optimize the sampling location and diagnostic yield.
Collapse
Affiliation(s)
- Christopher J Manley
- Department of Pulmonary and Critical Care, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tess Kramer
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Rohit Kumar
- Department of Pulmonary and Critical Care, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yulan Gong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Hormoz Ehya
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Eric Ross
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Peter I Bonta
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
13
|
Ward T, Jha A, Daynes E, Ackland J, Chalmers JD. Review of the British Thoracic Society Winter Meeting 23 November 2022 23-25 November 2022. Thorax 2023; 78:e1. [PMID: 36717241 DOI: 10.1136/thorax-2022-219941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
The British Thoracic Society Winter Meeting at the QEII Centre in London provided the first opportunity for the respiratory community to meet and disseminate research findings face to face since the start of the COVID-19 pandemic. World-leading researchers from the UK and abroad presented their latest findings across a range of respiratory diseases. This article aims to represent the range of the conference and as such is written from the perspective of a basic scientist, a physiotherapist and two doctors. The authors reviewed showcase sessions plus a selection of symposia based on their personal highlights. Content ranged from exciting new developments in basic science to new and unpublished results from clinical trials, delivered by leading scientists from their fields including former deputy chief medical officer Professor Sir Jonathan Van-Tam and former WHO chief scientist Dr Soumya Swaminathan.
Collapse
Affiliation(s)
- Tom Ward
- Department Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Akhilesh Jha
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Enya Daynes
- Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jodie Ackland
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
14
|
Diaz‐Churion F, Yu Lee‐Mateus A, Abia‐Trujillo D, Johnson MM, Khoor A, Patel NM, Reisenauer J, Fernandez‐Bussy S. Real-time visualization of lung malignancy with needle-based confocal laser endomicroscopy during shape-sensing robotic-assisted bronchoscopy. Respirol Case Rep 2023; 11:e01092. [PMID: 36751399 PMCID: PMC9892892 DOI: 10.1002/rcr2.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Robotic-assisted bronchoscopy (RAB) improves endoscopic diagnostic yield of solitary pulmonary nodules (SPN). Needle-based confocal laser endomicroscopy (nCLE) is an emerging technology that allows high-resolution, in-vivo, real-time assessment of living tissues at a cellular and subcellular level. Their combined use has been scarcely reported. We used them simultaneously in three patients with SPNs. For each, the nodule was evaluated with nCLE and sampled for pathology, followed by mediastinal staging. Median age was 77 years (67% male). Median nodule minimum size was 1.8 cm and maximum was 2.1 cm. nCLE detected abnormal patterns suggestive of malignancy for all nodules and pathology confirmed primary lung adenocarcinomas in two patients and lung primary squamous cell carcinoma in the other. The combined use of RAB with nCLE may potentially enhance the differentiation of malignant cells in real-time and increase sample adequacy, accuracy, and diagnostic yield when biopsying a suspicious pulmonary lesion.
Collapse
Affiliation(s)
- Fabiana Diaz‐Churion
- Division of Pulmonary, Allergy, and Sleep MedicineMayo ClinicJacksonvilleFloridaUSA
| | | | - David Abia‐Trujillo
- Division of Pulmonary, Allergy, and Sleep MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Margaret M. Johnson
- Division of Pulmonary, Allergy, and Sleep MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Andras Khoor
- Department of Laboratory Medicine and PathologyMayo ClinicJacksonvilleFloridaUSA
| | - Neal M. Patel
- Division of Pulmonary, Allergy, and Sleep MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Janani Reisenauer
- Division of General Thoracic SurgeryMayo Clinic RochesterRochesterMinnesotaUSA
| | | |
Collapse
|
15
|
Tian S, Huang H, Zhang Y, Shi H, Dong Y, Zhang W, Bai C. The role of confocal laser endomicroscopy in pulmonary medicine. Eur Respir Rev 2023; 32:32/167/220185. [PMID: 36697210 PMCID: PMC9879334 DOI: 10.1183/16000617.0185-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Accurate diagnosis and subsequent therapeutic options in pulmonary diseases mainly rely on imaging methods and histological assessment. However, imaging examinations are hampered by the limited spatial resolution of images and most procedures that are related to histological assessment are invasive with associated complications. As a result, a high-resolution imaging technology - confocal laser endomicroscopy (CLE), which is at the forefront and enables real-time microscopic visualisation of the morphologies and architectures of tissues or cells - has been developed to resolve the clinical dilemma pertaining to current techniques. The current evidence has shown that CLE has the potential to facilitate advanced diagnostic capabilities, to monitor and to aid the tailored treatment regime for patients with pulmonary diseases, as well as to expand the horizon for unravelling the mechanism and therapeutic targets of pulmonary diseases. In the future, if CLE can be combined with artificial intelligence, early, rapid and accurate diagnosis will be achieved through identifying the images automatically. As promising as this technique may be, further investigations are required before it can enter routine clinical practice.
Collapse
Affiliation(s)
- Sen Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,These authors contributed equally to this work
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,These authors contributed equally to this work
| | - Yifei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai, China,These authors contributed equally to this work
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai, China,Corresponding author: Chong Bai ()
| |
Collapse
|
16
|
Advances in bronchoscopic optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr Opin Pulm Med 2023; 29:11-20. [PMID: 36474462 PMCID: PMC9780043 DOI: 10.1097/mcp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Imaging techniques play a crucial role in the diagnostic work-up of pulmonary diseases but generally lack detailed information on a microscopic level. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are imaging techniques which provide microscopic images in vivo during bronchoscopy. The purpose of this review is to describe recent advancements in the use of bronchoscopic OCT- and CLE-imaging in pulmonary medicine. RECENT FINDINGS In recent years, OCT- and CLE-imaging have been evaluated in a wide variety of pulmonary diseases and demonstrated to be complementary to bronchoscopy for real-time, near-histological imaging. Several pulmonary compartments were visualized and characteristic patterns for disease were identified. In thoracic malignancy, OCT- and CLE-imaging can provide characterization of malignant tissue with the ability to identify the optimal sampling area. In interstitial lung disease (ILD), fibrotic patterns were detected by both (PS-) OCT and CLE, complementary to current HRCT-imaging. For obstructive lung diseases, (PS-) OCT enables to detect airway wall structures and remodelling, including changes in the airway smooth muscle and extracellular matrix. SUMMARY Bronchoscopic OCT- and CLE-imaging allow high resolution imaging of airways, lung parenchyma, pleura, lung tumours and mediastinal lymph nodes. Although investigational at the moment, promising clinical applications are on the horizon.
Collapse
|
17
|
Kennedy GT, Azari FS, Chang A, Nadeem B, Bernstein E, Segil A, Din A, Marfatia I, Desphande C, Okusanya O, Keating J, Predina J, Newton A, Kucharczuk JC, Singhal S. Comparative Experience of Short-wavelength Versus Long-wavelength Fluorophores for Intraoperative Molecular Imaging of Lung Cancer. Ann Surg 2022; 276:711-719. [PMID: 35837887 PMCID: PMC9463092 DOI: 10.1097/sla.0000000000005596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Intraoperative molecular imaging (IMI) using tumor-targeted optical contrast agents can improve cancer resections. The optimal wavelength of the IMI tracer fluorophore has never been studied in humans and has major implications for the field. To address this question, we investigated 2 spectroscopically distinct fluorophores conjugated to the same targeting ligand. METHODS Between December 2011 and November 2021, patients with primary lung cancer were preoperatively infused with 1 of 2 folate receptor-targeted contrast tracers: a short-wavelength folate-fluorescein (EC17; λ em =520 nm) or a long-wavelength folate-S0456 (pafolacianine; λ em =793 nm). During resection, IMI was utilized to identify pulmonary nodules and confirm margins. Demographic data, lesion diagnoses, and fluorescence data were collected prospectively. RESULTS Two hundred eighty-two patients underwent resection of primary lung cancers with either folate-fluorescein (n=71, 25.2%) or pafolacianine (n=211, 74.8%). Most tumors (n=208, 73.8%) were invasive adenocarcinomas. We identified 2 clinical applications of IMI: localization of nonpalpable lesions (n=39 lesions, 13.8%) and detection of positive margins (n=11, 3.9%). In each application, the long-wavelength tracer was superior to the short-wavelength tracer regarding depth of penetration, signal-to-background ratio, and frequency of event. Pafolacianine was more effective for detecting subpleural lesions (mean signal-to-background ratio=2.71 vs 1.73 for folate-fluorescein, P <0.0001). Limit of signal detection was 1.8 cm from the pleural surface for pafolacianine and 0.3 cm for folate-fluorescein. CONCLUSIONS Long-wavelength near-infrared fluorophores are superior to short-wavelength IMI fluorophores in human tissues. Therefore, future efforts in all human cancers should likely focus on long-wavelength agents.
Collapse
Affiliation(s)
- Gregory T Kennedy
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Feredun S Azari
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Ashley Chang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Bilal Nadeem
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Elizabeth Bernstein
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Alix Segil
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Azra Din
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Isvita Marfatia
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Jane Keating
- Department of Surgery, Hartford Hospital, Hartford, CT
| | - Jarrod Predina
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Andrew Newton
- Department of Surgery, MD Anderson Cancer Center, Houston, TX
| | - John C Kucharczuk
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
18
|
Shining new light on lung cancer diagnosis using a pafolacianine molecular tracer. Eur J Nucl Med Mol Imaging 2022; 49:3979-3980. [PMID: 35947177 DOI: 10.1007/s00259-022-05929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
|
19
|
Manley CJ, Pritchett MA. Nodules, Navigation, Robotic Bronchoscopy, and Real-Time Imaging. Semin Respir Crit Care Med 2022; 43:473-479. [PMID: 36104024 DOI: 10.1055/s-0042-1747930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The process of detection, diagnosis, and management of lung nodules is complex due to the heterogeneity of lung pathology and a relatively low malignancy rate. Technological advances in bronchoscopy have led to less-invasive diagnostic procedures and advances in imaging technology have helped to improve nodule localization and biopsy confirmation. Future research is required to determine which modality or combination of complimentary modalities is best suited for safe, accurate, and cost-effective management of lung nodules.
Collapse
Affiliation(s)
- Christopher J Manley
- Division of Pulmonary and Critical Care, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael A Pritchett
- Division of Pulmonary and Critical Care Medicine, Chest Center of the Carolinas at FirstHealth, FirstHealth of the Carolinas and Pinehurst Medical Clinic, Pinehurst, North Carolina
| |
Collapse
|
20
|
Stone E, Leong TL. Contemporary Concise Review 2021: Pulmonary nodules from detection to intervention. Respirology 2022; 27:776-785. [PMID: 35581532 DOI: 10.1111/resp.14296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
The US Preventive Task Force (USPSTF) has updated screening criteria by expanding age range and reducing smoking history required for eligibility; the International Lung Screen Trial (ILST) data have shown that PLCOM2012 performs better for eligibility than USPSTF criteria. Screening adherence is low (4%-6% of potential eligible candidates in the United States) and depends upon multiple system and patient/candidate-related factors. Smoking cessation in lung cancer improves survival (past prospective trial data, updated meta-analysis data); smoking cessation is an essential component of lung cancer screening. Circulating biomarkers are emerging to optimize screening and early diagnosis. COVID-19 continues to affect lung cancer treatment and screening through delays and disruptions; specific operational challenges need to be met. Over 70% of suspected malignant lesions develop in the periphery of the lungs. Bronchoscopic navigational techniques have been steadily improving to allow greater accuracy with target lesion approximation and therefore diagnostic yield. Fibre-based imaging techniques provide real-time microscopic tumour visualization, with potential diagnostic benefits. With significant advances in peripheral lung cancer localization, bronchoscopically delivered ablative therapies are an emerging field in limited stage primary and oligometastatic disease. In advanced stage lung cancer, small-volume samples acquired through bronchoscopic techniques yield material of sufficient quantity and quality to support clinically relevant biomarker assessment.
Collapse
Affiliation(s)
- Emily Stone
- Department of Thoracic Medicine and Lung Transplantation, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia.,School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia.,School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tracy L Leong
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Kennedy GT, Azari FS, Bernstein E, Nadeem B, Chang A, Segil A, Carlin S, Sullivan NT, Encarnado E, Desphande C, Kularatne S, Gagare P, Thomas M, Kucharczuk JC, Christien G, Lacombe F, Leonard K, Low PS, Criton A, Singhal S. Targeted detection of cancer at the cellular level during biopsy by near-infrared confocal laser endomicroscopy. Nat Commun 2022; 13:2711. [PMID: 35581212 PMCID: PMC9114105 DOI: 10.1038/s41467-022-30265-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
Suspicious nodules detected by radiography are often investigated by biopsy, but the diagnostic yield of biopsies of small nodules is poor. Here we report a method-NIR-nCLE-to detect cancer at the cellular level in real-time during biopsy. This technology integrates a cancer-targeted near-infrared (NIR) tracer with a needle-based confocal laser endomicroscopy (nCLE) system modified to detect NIR signal. We develop and test NIR-nCLE in preclinical models of pulmonary nodule biopsy including human specimens. We find that the technology has the resolution to identify a single cancer cell among normal fibroblast cells when co-cultured at a ratio of 1:1000, and can detect cancer cells in human tumors less than 2 cm in diameter. The NIR-nCLE technology rapidly delivers images that permit accurate discrimination between tumor and normal tissue by non-experts. This proof-of-concept study analyzes pulmonary nodules as a test case, but the results may be generalizable to other malignancies.
Collapse
Affiliation(s)
- Gregory T Kennedy
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Feredun S Azari
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Elizabeth Bernstein
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Bilal Nadeem
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ashley Chang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alix Segil
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sean Carlin
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Neil T Sullivan
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Emmanuel Encarnado
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | - Mini Thomas
- On Target Laboratories, West Lafayette, IN, USA
| | - John C Kucharczuk
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Bal C, Falster C, Carvalho A, Hersch N, Brock J, Laursen CB, Walsh S, Annema J, Gompelmann D. ERS International Congress 2021: highlights from the Clinical Techniques, Imaging and Endoscopy Assembly. ERJ Open Res 2022; 8:00116-2022. [PMID: 35615419 PMCID: PMC9124868 DOI: 10.1183/23120541.00116-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
This article summarises the highlights from the European Respiratory Society's “Clinical techniques, imaging and endoscopy” Assembly 14 presented at the virtual 2021 European Respiratory Society International Congress. Cutting-edge innovative developments in both diagnostic approaches and therapeutic strategies in patients with lung cancer, interstitial lung disease, obstructive airway disorders and infectious diseases were presented on this year's interactive congress platform. In this article, the Assembly 14 subgroups summarise the key take home messages given new research outcomes and place them in the context of the current knowledge.
Collapse
|
23
|
Dooms C, Yserbyt J. Getting innovative bronchoscopic techniques into real clinical practice. Thorax 2021; 77:327-328. [PMID: 34937803 DOI: 10.1136/thoraxjnl-2021-217745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Christophe Dooms
- Department of Respiratory Diseases, University Hospitals KU Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Department of Respiratory Diseases, University Hospitals KU Leuven, Leuven, Belgium
| |
Collapse
|