1
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
2
|
Li X, Wang S, Li W, Wang S, Qin X, Wang J, Fu R. Investigating pigeon circovirus infection in a pigeon farm: molecular detection, phylogenetic analysis and complete genome analysis. BMC Genomics 2024; 25:369. [PMID: 38622517 PMCID: PMC11020411 DOI: 10.1186/s12864-024-10303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.
Collapse
Affiliation(s)
- Xiaobo Li
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Shujing Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Wei Li
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Shasha Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Xiao Qin
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Ji Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Rui Fu
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| |
Collapse
|
3
|
Kowalczyk K, Wójcik-Fatla A. Chlamydia psittaci in Faecal Samples of Feral Pigeons (Columba livia forma urbana) in Urban Areas of Lublin city, Poland. Curr Microbiol 2022; 79:367. [PMID: 36253653 PMCID: PMC9576673 DOI: 10.1007/s00284-022-03072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/02/2022] [Indexed: 12/16/2022]
Abstract
Pigeons are a typical host and natural reservoir of Chlamydia psittaci, the etiological agent of avian chlamydiosis, considered as a neglected zoonotic diseases. The aim of the study was to determine the prevalence of C. psittaci in faecal samples of feral pigeons (Columba livia forma urbana) as a potential source of infection related to the presence of synanthropic birds in urban areas. A total of 143 samples of dry and fresh faeces of feral pigeons, were collected in the city of Lublin (Poland), from April to September 2021. Molecular detection of C. psittaci was performed by nested-PCR and real-time PCR, confirmed by sequencing. Among the collected samples, 5 positive results were obtained in nested-PCR (3.5%), while in real-time PCR, the number of positive samples increased to 11 (7.7%). The positive samples showed 100% identity to the C. psittaci strain AMK (CP047319.1). C. psittaci was found in 7 out of 111 (6.3%) faecal samples collected in public places, and in 4 out of 32 (12.5%) samples from the nesting site (4.9% and 2.8% among a total of 143 samples, respectively). The infection was detected in both dry and fresh faeces (9.1% and 4.5%, respectively). The highest number of positive results was obtained in June—5 (3.5%). Feral pigeons occurring in urban areas are a natural reservoir of C. psittaci posing a potential risk of zoonotic infections. However, further studies on exposure to contaminated pigeon faeces in terms of occupational and non-occupational risk of chlamydiosis are needed.
Collapse
Affiliation(s)
- Katarzyna Kowalczyk
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| |
Collapse
|
4
|
Sahindokuyucu I, Yazici Z, Barry G. A retrospective molecular investigation of selected pigeon viruses between 2018–2021 in Turkey. PLoS One 2022; 17:e0268052. [PMID: 36037167 PMCID: PMC9423643 DOI: 10.1371/journal.pone.0268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
A recent first detection of pigeon aviadenovirus-1 and pigeon circovirus co-infection associated with Young Pigeon Disease Syndrome (YPDS) in a pigeon flock in Turkey, prompted a study focused on documenting the distribution of Pigeon aviadenovirus (PiAdV-1 and PiAdV-2), Pigeon circovirus (PiCV), Columbid alphaherpesvirus 1 (pigeon herpesvirus (PiHV)) and Fowl aviadenovirus (FAdV) in the country. These viruses were selected as they are associated with severe disease in pigeons across the world. A total of 192 cloacal swabs were collected from young (<1 year old) pigeons from 16 different private pigeon flocks across Turkey, between 2018 and 2021 as part of routine diagnostic sampling. PiCV genetic material was the most frequently detected 4/16 (25%), PiAdV-1 and CoHV-1 DNA were both found in one flock each, while neither PiAdV-2 and FAdV were detected in any of the studied pigeon flocks. PiCV and PiHV genetic material were both detected in the same pigeon flock’s cloacal samples as a co-infection with the identification of PiHV being a first in Turkey.
Collapse
Affiliation(s)
- Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Poultry Diseases Diagnostic Laboratory, Ministry of Agriculture and Forestry, Izmir, Turkey
- Now at Eville&Jones (GB) Limited Century House, Leeds, United Kingdom
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gerald Barry
- Veterinary Science Center, School of Veterinary Medicine, University College of Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
5
|
Meßmer C, Rubbenstroth D, Mohr L, Peus E, Schreiber T, Rautenschlein S. Pigeon Rotavirus A as the cause of systemic infection in juvenile pigeons (young pigeon disease). TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2022; 50:293-301. [PMID: 36067771 DOI: 10.1055/a-1909-2235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent investigations suggested pigeon associated Rotavirus Typ A genotype G18P[17] (RVA) as a causative agent of the classical 'young pigeon disease' (YPD). YPD was first described in the late 1980 s as an acute, mainly seasonally recurring disorder of mostly juvenile domestic pigeons (Columba livia) with clinical signs such as anorexia, dairrhea, vomiting, congested crops, weight loss and occasionally mortality. Various studies in the past indicated a multifactorial nature of YPD. Several pathogens, such as pigeon circovirus 1, avian adenoviruses and Escherichia coli were also suggested, but none of these could reproduce the disease experimentally. However, the impact of other pathogens on the clinical development of YPD cannot be excluded and requires further investigation. This present review summarizes available information on RVA-induced disease in pigeons, its association with YPD, the transmission, and diagnosis of the infection, and on prophylactic strategies to prevent RVA outbreaks.
Collapse
Affiliation(s)
- Christian Meßmer
- Clinic for Poultry, University of Veterinary Medicine in Hannover
| | | | - Lydia Mohr
- Clinic for Poultry, University of Veterinary Medicine in Hannover
| | - Elisabeth Peus
- Clinic for Pigeons of the German Pigeon Breeders Association
| | - Tim Schreiber
- Clinic for Pigeons of the German Pigeon Breeders Association
| | | |
Collapse
|
6
|
Silva BBI, Urzo MLR, Encabo JR, Simbulan AM, Lunaria AJD, Sedano SA, Hsu KC, Chen CC, Tyan YC, Chuang KP. Pigeon Circovirus over Three Decades of Research: Bibliometrics, Scoping Review, and Perspectives. Viruses 2022; 14:1498. [PMID: 35891478 PMCID: PMC9317399 DOI: 10.3390/v14071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The pigeon circovirus (PiCV), first described in the literature in the early 1990s, is considered one of the most important infectious agents affecting pigeon health. Thirty years after its discovery, the current review has employed bibliometric strategies to map the entire accessible PiCV-related research corpus with the aim of understanding its present research landscape, particularly in consideration of its historical context. Subsequently, developments, current knowledge, and important updates were provided. Additionally, this review also provides a textual analysis examining the relationship between PiCV and the young pigeon disease syndrome (YPDS), as described and propagated in the literature. Our examination revealed that usages of the term 'YPDS' in the literature are characterizations that are diverse in range, and neither standard nor equivalent. Guided by our understanding of the PiCV research corpus, a conceptualization of PiCV diseases was also presented in this review. Proposed definitions and diagnostic criteria for PiCV subclinical infection (PiCV-SI) and PiCV systemic disease (PiCV-SD) were also provided. Lastly, knowledge gaps and open research questions relevant to future PiCV-related studies were identified and discussed.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
- Graduate School, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Jaymee R. Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Alea Maurice Simbulan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Allen Jerard D. Lunaria
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Susan A. Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Keng-Chih Hsu
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
| | - Chia-Chi Chen
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
- You Guan Yi Biotechnology Company, Kaohsiung 807, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
7
|
Occurrence and Phylogenetic Analysis of Avian Coronaviruses in Domestic Pigeons (Columba livia domestica) in Poland between 2016 and 2020. Pathogens 2022; 11:pathogens11060646. [PMID: 35745500 PMCID: PMC9230530 DOI: 10.3390/pathogens11060646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
While disease control in racing pigeons and the potential role of pigeons as vectors transmitting viruses to poultry are of importance, there is still a paucity of data concerning the occurrence of coronaviruses in pigeons. In this study, 215 domestic pigeons were tested for the presence of coronaviral genetic material using the nested PCR method, which revealed 57 positive samples (26.51%). The difference in coronavirus prevalence between young and adult pigeons (34.34% and 19.83%, respectively) has been found statistically significant. In contrast, no statistically significant difference has been demonstrated between the prevalence in symptomatic and asymptomatic birds, leaving the influence of coronavirus presence on pigeon health uncertain. Phylogenetic analysis of the RdRp gene fragment allowed us to assign all the obtained strains to the Gammacoronavirus genus and Igacovirus subgenus. The phylogenetic tree plotted using the ML method revealed that those sequences formed a group most similar to pigeon coronavirus strains from China, Finland, and Poland, and to a single strain from a common starling from Poland, which suggests wide geographical distribution of the virus and its possible transmission between various species.
Collapse
|
8
|
Wang H, Gao H, Jiang Z, Shi L, Zhao P, Zhang Y, Wang C. Molecular detection and phylogenetic analysis of pigeon circovirus from racing pigeons in Northern China. BMC Genomics 2022; 23:290. [PMID: 35410130 PMCID: PMC8995411 DOI: 10.1186/s12864-022-08425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Pigeon circovirus (PiCV) infections in pigeons (Columba livia) have been reported worldwide. Currently, pigeon racing is becoming increasingly popular and considered to be a national sport in China, and even, the greatest competitions of racing pigeons are taking place in China. However, there are still no epidemiologic data regarding PiCV infections among racing pigeons in China. The purpose of our study was to provide information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Results To trace the prevalence, genetic variation and evolution of PiCV in sick and healthy racing pigeons, 622 samples were collected from 11 provinces or municipalities in China from 2016 to 2019. The results showed that the positive rate of PiCV was 19.3% (120/622) at the sample level and 59.0% (23/39) at the club level, thus suggesting that the virus was prevalent in Chinese racing pigeons. A sequence analysis revealed that the cap genes of the PiCV strains identified in our study displayed a high genetic diversity and shared nucleotide homologies of 71.9%–100% and amino acid homologies of 71.7%–100%. 28 and 36 unique amino acid substitutions were observed in the Cap and Rep proteins derived from our PiCV strains, respectively. A cladogram representation of PiCV strains phylogeny based on 90 cap gene sequences showed that the strains in this study could be further divided into seven clades (A, B, C, E, G, H, and I) and some of them were closely related to worldwide strains from different types of pigeons. A large number of recombination events (31 events) were also detected in the PiCV genomes from Chinese racing pigeons. Conclusions These findings indicate that PiCV strains circulating in China exhibit a high genetic diversity and also contribute to information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08425-8.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Hui Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwen Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Leibo Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Sahindokuyucu I, Turkmen MB, Sumer T, Elhag AE, Alcigir ME, Yazici Z, Barry G, Gulbahar MY, Kul O. First detection and molecular characterisation of a pigeon aviadenovirus A and pigeon circovirus co-infection associated with Young Pigeon Disease Syndrome (YPDS) in Turkish pigeons (Columba livia domestica). Vet Med Sci 2021; 8:139-149. [PMID: 34729940 PMCID: PMC8788887 DOI: 10.1002/vms3.662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pigeon aviadenovirus A and Pigeon circovirus are both DNA viruses, infect and cause severe clinical diseases in pigeons. These viruses are associated with an immunosuppression syndrome similar to ‘Young Pigeon Disease Syndrome’ (YPDS). This study reports the identification of a natural co‐infection, with severe clinical signs (crop vomiting, watery diarrhoea, anorexia and sudden death) of Pigeon aviadenovirus A and Pigeon circovirus in a breeding pigeon flock in Central Anatolia, Turkey. Both viruses were isolated from pigeons pooled internal organs using primary chicken embryo kidney cell cultures (CEKC) and specific pathogen‐free (SPF) embryonated chicken eggs. Also, both viruses were identified by PCR amplification followed by Sanger sequencing whereas histopathological examination showed degenerated hepatocytes with basophilic intranuclear viral inclusions. As known, both viruses typically have similar transmission characteristics and common clinical manifestations; however, co‐infection may exacerbate the disease with devastating outcomes. This is the first report of its kind in Turkey for those viruses and is essential for the protection against these kinds of infections in pigeons.
Collapse
Affiliation(s)
- Ismail Sahindokuyucu
- Poultry Diseases Diagnostic Laboratory, Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Merve Biskin Turkmen
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Kirikkale University, Kirikkale, Turkey
| | - Tugce Sumer
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Kirikkale University, Kirikkale, Turkey
| | - Ahmed Eisa Elhag
- Faculty of Veterinary Medicine, Department of Veterinary Virology, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Veterinary Sciences, Department of Preventive Medicine and Clinical Studies, University of Gadarif, Al Qadarif, Sudan
| | - Mehmet Eray Alcigir
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Kirikkale University, Kirikkale, Turkey
| | - Zafer Yazici
- Faculty of Veterinary Medicine, Department of Veterinary Virology, Ondokuz Mayis University, Samsun, Turkey
| | - Gerald Barry
- Veterinary Science Center, School of Veterinary Medicine, University College of Dublin, Belfield, Dublin, Ireland
| | - Mustafa Yavuz Gulbahar
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Ondokuz Mayis University, Samsun, Turkey
| | - Oguz Kul
- Faculty of Veterinary Medicine, Department of Veterinary Pathology, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
10
|
Health Status and Stress in Different Categories of Racing Pigeons. Animals (Basel) 2021; 11:ani11092686. [PMID: 34573652 PMCID: PMC8470826 DOI: 10.3390/ani11092686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Corticosterone is the most important “stress” hormone in birds. Stress response is influenced by different factors, such as phylogeny, feed supply, age, body condition, health status, climate, predators. Pigeon races over long distances, 500 km or more, can lead to the “exploitation” of animals if not strictly regulated and observed, jeopardizing their welfare status. Animals should be in good health and body condition, and health monitoring must be implemented. In stressful situations such as races, the possibility of infection increases. Clinically asymptomatic infections can flare up later in the breeding season and can cause high offspring mortality. For example, infections with circoviruses are particularly important because of their ability to weaken the immune system. The purpose of this work is to identify the critical stress points during the active training season of racing pigeons for the improvement of their condition and the preservation of their welfare during races. The aim of our study was to determine the serum corticosterone levels in different categories of racing pigeons exposed to severe stress factors. At the time of racing, some parameters of stress, including environmental factors, or the presence of infectious diseases or parasites, were recorded. It was found that participation in the race significantly increased serum corticosterone levels and remained high even one month after the race. Therefore, training and races should be properly managed and planned. Abstract The influence of different stress parameters in racing pigeon flocks, such as the presence of diseases and environmental conditions at the time of the races, were described. A total of 96 racing pigeons from 4 pigeon flocks were examined, and health monitoring was carried out. No helminth eggs and coccidia were found. Trichomonas sp. was confirmed in subclinical form. Paramyxoviruses and avian influenza viruses were not confirmed, but circovirus infections were confirmed in all flocks. Chlamydia psittaci was confirmed in one flock. Blood samples were collected, and HI antibody titers against paramyxoviruses before and 25 days after vaccination were determined. To improve the conditions during racing and the welfare of the pigeons, critical points were studied with regard to stress factors during the active training season. Serum corticosterone levels were measured in the blood serum of four different categories of pigeons from each flock. Corticosterone levels were almost twice as high in pigeons from the category that were active throughout the racing season, including medium- and long-distance racing, compared to the other three categories that were not racing actively. Within five hours of the finish of a race, the average serum corticosterone level was 59.4 nmol/L in the most physically active category. The average serum corticosterone level in this category remained at 37.5 nmol/L one month after the last race.
Collapse
|
11
|
A Pilot Study Investigating the Dynamics of Pigeon Circovirus Recombination in Domesticated Pigeons Housed in a Single Loft. Viruses 2021; 13:v13060964. [PMID: 34067378 PMCID: PMC8224587 DOI: 10.3390/v13060964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Pigeon circovirus (PiCV) infects pigeon populations worldwide and has been associated with immunosuppression in younger pigeons. Recombination is a common mechanism of evolution that has previously been shown in various members of the Circoviridae family, including PiCV. In this study, three groups of pigeons acquired from separate lofts were screened for PiCV, and their genome sequence was determined. Following this, they were housed in a single loft for 22 days, during which blood and cloacal swab samples were taken. From these blood and cloacal swabs, PiCV genomes were determined with the aim to study the spread and recombination dynamics of PiCV in the birds. Genome sequences of PiCV were determined from seven pigeons (seven tested PiCV positive) before they were housed together in a loft (n = 58 sequences) and thereafter from the ten pigeons from blood and cloacal swabs (n = 120). These 178 PiCV genome sequences represent seven genotypes (98% pairwise identity genotype demarcation), and they share >88% genome-wide pairwise identity. Recombination analysis revealed 13 recombination events, and a recombination hotspot spanning the 3′ prime region, the replication-associated protein (rep) gene and the intergenic region. A cold spot in the capsid protein-coding region of the genome was also identified. The majority of the recombinant regions were identified in the rep coding region. This study provides insights into the evolutionary dynamics of PiCV in pigeons kept under closed rearing systems.
Collapse
|
12
|
HEALTH SCREENING OF THE EUROPEAN ENDANGERED SPECIES PROGRAM CAPTIVE POPULATION OF THE PINK PIGEON ( NESOENAS MAYERI). J Zoo Wildl Med 2021; 51:970-980. [PMID: 33480577 DOI: 10.1638/2020-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
The population of the Mauritian pink pigeon (Nesoenas mayeri) fell to fewer than 20 individuals in the 1970s. Following intensive conservation efforts, the free-living population is now estimated to be 470 individuals. However, because of the population bottleneck the species remains at risk of extinction because of genetic loss and inbreeding depression. A European captive population was established in 1977 and a European Endangered Species Program (EEP) was formalized in 1992. As birds in the EEP captive population possess unique alleles not observed in the surviving free-living birds, the EEP management plan recommends transferring EEP birds to Mauritius to improve genetic diversity. Health screening of the current EEP population to identify circulating pathogens was performed. Forty-two birds from three collections in the United Kingdom and one in Jersey were screened for a wide range of pathogens, present clinically or subclinically, including important viruses, bacteria, protozoa, and helminths. Eleven birds tested positive for at least one pathogen: Trichomonas spp. (5), Yersinia kristensenii (2), Yersinia aleksiciae (1), coccidial oocysts (3), and strongyle ova (3). None of the positive birds showed overt signs of clinical disease, although two birds with Trichomonas spp. had suboptimal body condition. Genotyping of one Trichomonas gallinae sample revealed a type-C strain (low pathogenicity). The results from this screening will contribute towards a disease risk assessment, to create a pre-export protocol for translocation of captive EEP birds to Mauritius.
Collapse
|
13
|
Agnihotri K, Smith C, Oakey J, Storie G. Pigeon adenovirus and pigeon torque teno virus associated with acute multifocal hepatic necrosis in pigeons in Queensland, Australia. Arch Virol 2021; 166:1469-1475. [PMID: 33721100 DOI: 10.1007/s00705-021-05033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/23/2021] [Indexed: 01/04/2023]
Abstract
In 2018, an outbreak resulting in deaths of 28 breeding pigeons was reported north of Brisbane, Australia. The affected birds had runny nasal discharge and poor body condition. Two birds were submitted to Biosecurity Sciences Laboratory, Brisbane, for investigation. A range of diagnostic tests excluded a number of known pathogens, and no virus was isolated in cell culture. Histopathological examination revealed severe acute multifocal necrosis in the liver with eosinophilic intranuclear inclusions in hepatocytes and Kupffer cells. High-throughput sequencing (HTS) revealed full-length sequences for pigeon adenovirus 1 (PiAd-A) and pigeon torque teno virus (PTTV). This report indicates concomitant PiAd-1and PTTV infections in Australian pigeons.
Collapse
Affiliation(s)
- Kalpana Agnihotri
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia.
| | - Craig Smith
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia
| | - Jane Oakey
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia
| | - Greg Storie
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39, Coopers Plains, QLD, 4108, Australia
| |
Collapse
|
14
|
Schmidt V, Kümpel M, Cramer K, Sieg M, Harzer M, Rückner A, Heenemann K. Pigeon rotavirus A genotype G18P[17]-associated disease outbreaks after fancy pigeon shows in Germany - a case series. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:22-27. [PMID: 33588462 DOI: 10.1055/a-1339-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pigeon rotavirus A (RVA) isolates of genotype G18P[17] are causing disease outbreaks and fatalities in pigeon lofts in Australia, Germany, Belgium, Denmark and USA since 2016. Most disease outbreaks have been reported from juvenile pigeons (Columba livia forma domestica). However, reports on RVA-associated disease outbreaks in fancy pigeons in connection with fancy pigeon shows in Germany are rare. MATERIAL AND METHODS Overall 18 pigeons (16 fancy pigeons and one racing pigeon from 9 pigeon fanciers, as well as one feral pigeon from a rescue center) were sent in for routine diagnostic necropsy including histopathologic, parasitologic and microbiologic examinations. Molecular biologic examinations for detection of RVA, circovirus, Usutu virus, West Nile virus and Chlamydia psittaci were also carried out on all pigeons. An accompanying questionnaire filled in by the senders was used to generate basic information on the affected pigeon lofts. RESULTS Disease outbreaks in juvenile and adult pigeons were reported 7-14 days after fancy pigeon shows. One fancier who had previously vaccinated his pigeons with an autogenous pigeon RVA vaccine, noted no morbidity and mortality among his pigeons and thus sent in a healthy pigeon for diagnostic purposes. Reported clinical signs in the other pigeons were regurgitation, green slimy diarrhea, anorexia, apathy and death after 24 hours. Hepatic necrosis and detection of pigeon RVA isolates of genotype G18P[17] confirmed disease outbreaks caused by pigeon RVA in all pigeons, except for the vaccinated pigeon. Besides pigeon circovirus, which was detected in 15 of 18 pigeons, all other pathogens were singular findings. CONCLUSION AND CLINICAL RELEVANCE In disease outbreaks following fancy pigeon shows in juvenile and adult pigeons diagnostics should include pigeon RVA of genotype G18P[17].
Collapse
Affiliation(s)
- Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University
| | - Michael Kümpel
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| | - Maxi Harzer
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| | - Antje Rückner
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University
| |
Collapse
|
15
|
Zhuang Q, Liu S, Zhang X, Jiang W, Wang K, Wang S, Peng C, Hou G, Li J, Yu X, Yuan L, Wang J, Li Y, Liu H, Chen J. Surveillance and taxonomic analysis of the coronavirus dominant in pigeons in China. Transbound Emerg Dis 2020; 67:1981-1990. [PMID: 32163661 PMCID: PMC7228218 DOI: 10.1111/tbed.13541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
Coronaviruses (CoVs) are found in humans and a wide variety of wild and domestic animals, and of substantial impact on human and animal health. In poultry, the genetic diversity, evolution, distribution and taxonomy of CoVs dominant in birds other than chickens remain enigmatic. In our previous study, we proposed that the CoVs dominant (i.e. mainly circulating) in ducks (DdCoVs) should represent a novel species, which was different from the one represented by the CoVs dominant in chickens (CdCoVs). In this study, we conducted a large-scale surveillance of CoVs in chickens, ducks, geese, pigeons and other birds (quails, sparrows and partridges) using a conserved RT-PCR assay. The surveillance demonstrated that CdCoVs, DdCoVs and the CoVs dominant in pigeons (PdCoVs) belong to different lineages, and they are all prevalent in live poultry markets and the backyard flocks in some regions of China. We further sequenced seven Coronaviridae-wide conserved domains in their replicase polyprotein pp1ab of seven PdCoVs and found that the genetic distances in these domains between PdCoVs and DdCoVs or CdCoVs are large enough to separate PdCoVs into a novel species, which were different from the ones represented by DdCoVs or CdCoVs within the genus Gammacoronavirus, per the species demarcation criterion of International Committee on Taxonomy of Viruses. This report shed novel insight into the genetic diversity, distribution, evolution and taxonomy of avian CoVs.
Collapse
Affiliation(s)
- Qingye Zhuang
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Shuo Liu
- China Animal Health and Epidemiology CenterQingdaoChina
| | | | - Wenming Jiang
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Kaicheng Wang
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Suchun Wang
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Cheng Peng
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Guangyu Hou
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Jinping Li
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Xiaohui Yu
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Liping Yuan
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Jingjing Wang
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Yang Li
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Hualei Liu
- China Animal Health and Epidemiology CenterQingdaoChina
| | - Jiming Chen
- China Animal Health and Epidemiology CenterQingdaoChina
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
16
|
Stenzel T, Dziewulska D, Tykałowski B, Koncicki A. The Clinical Infection with Pigeon Circovirus (PiCV) Leads to Lymphocyte B Apoptosis But Has No Effect on Lymphocyte T Subpopulation. Pathogens 2020; 9:pathogens9080632. [PMID: 32756467 PMCID: PMC7460237 DOI: 10.3390/pathogens9080632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/01/2023] Open
Abstract
The pathology of pigeon circovirus (PiCV) is still unknown, but it is regarded as an immunosuppressant. This study aimed to find a correlation between PiCV natural infection and immunosuppression. The study was conducted with 56 pigeons divided into the following groups: PiCV-positive but showing (group S) or not (group I) non-specific clinical symptoms and asymptomatic pigeons negative for PiCV (group H). The percentage and apoptosis of T CD3+ and B IgM+ splenocytes; the expression of CD4, CD8, and IFN-γ genes in splenic mononuclear cells; the number of PiCV viral loads in the bursa of Fabricius; and the level of anti-PiCV antibodies were analyzed. The results showed that the percentage of B IgM+ cells was almost two-fold lower in group S than in group H, and that ca. 20% of the lymphocytes were apoptotic. No increased apoptosis was detected in TCD3+ subpopulation. The PiCV viral loads were approximately one thousand and ten thousand times higher in group S than in groups I and H, respectively. Our results indicate a possible correlation between the number of PiCV viral loads and severity of PiCV infection and confirm that PiCV infection leads to the suppression of humoral immunity by inducing B lymphocyte apoptosis.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.D.); (A.K.)
- Correspondence: ; Tel.: +48-89-523-38-11
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.D.); (A.K.)
| | - Bartłomiej Tykałowski
- Department of Microbiology and Clinical Pathology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.D.); (A.K.)
| |
Collapse
|
17
|
Santos HM, Tsai CY, Catulin GEM, Trangia KCG, Tayo LL, Liu HJ, Chuang KP. Common bacterial, viral, and parasitic diseases in pigeons (Columba livia): A review of diagnostic and treatment strategies. Vet Microbiol 2020; 247:108779. [PMID: 32768225 DOI: 10.1016/j.vetmic.2020.108779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Pigeons (Columba livia) have been associated with humans for a long time now. They are raised for sport (pigeon race), exhibition (display of fancy breeds), food, and research. Most of the pigeons kept are Racing Homers, trained to compete in the pigeon race. Other breeds, such as Rollers, Nose Divers, Doneks are bred for their aerial abilities. Incorporation of a good preventive medicine program is one of the most critical factors in averting infectious diseases in pigeon flocks. This review summarizes the common bacterial, viral, and parasitic infections in pigeons. The different clinical signs, symptoms, diagnostic strategies, prevention, and treatments were described in this review. Current researches, molecular diagnostic assays, and treatment strategies such as vaccines and drug candidates were included. The information found in this review can provide insights for veterinarians and researchers studying pigeons to develop effective and efficient immunoprophylactic and diagnostic tools for pigeon diagnosis and therapeutics.
Collapse
Affiliation(s)
- Harvey M Santos
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Ching-Yi Tsai
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Gail Everette M Catulin
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Kim Chloe G Trangia
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila, 1002, Philippines
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kuo Pin Chuang
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
18
|
Rubbenstroth D, Ulrich R, Wylezich C, Rautenschlein S, Beer M, Mohr L. First experimental proof of Rotavirus A (RVA) genotype G18P[17] inducing the clinical presentation of 'young pigeon disease syndrome' (YPDS) in domestic pigeons (Columba livia). Transbound Emerg Dis 2020; 67:1507-1516. [PMID: 31967734 DOI: 10.1111/tbed.13485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
Young pigeon disease syndrome (YPDS) is characterized as a seasonally occurring, acute and primarily enteric medical condition of mainly juvenile domestic pigeons (Columba livia) with highly variable mortality reaching more than 50%. Although the syndrome has been known in Europe for almost three decades, its aetiology remains largely obscure. Recently, a previously unknown pigeon-associated clade of Rotavirus A (RVA) genotype G18P[17] was detected in Europe and Australia in association with fatal diseases resembling YPDS. Here we show for the first time, that peroral inoculation of healthy juvenile homing pigeons with two genetically different cell culture isolates of RVA G18P[17] (106.3 foci-forming units per bird) induces an acute and self-limiting YPDS-like disease in all infected birds. Clinical signs included regurgitation, diarrhoea, congested crops, anorexia and weight loss, as described for naturally RVA-infected pigeons. In agreement with the original outbreaks, RVA isolate DR-7 induced more pronounced clinical signs as compared to isolate DR-5, indicating strain-dependent virulence factors to contribute to variable disease outcomes observed in the field. All inoculated birds developed rotavirus-reactive antibodies starting at seven days after inoculation. High levels of viral RNA and infectious virus were detectable in cloacal swabs and faecal samples already three days after inoculation. While shedding of infectious virus subsided within few days, moderate viral RNA levels were still detectable in cloacal swabs, faeces, and tissue samples at the end of the experiment three weeks after inoculation. Histopathological analysis at this time point revealed inflammatory lesions in spleens and livers of pigeons from both infected groups. In summary, we fulfilled Henle-Koch's postulates and confirmed RVA G18P[17] as a primary cause of YPDS-like diseases in domestic pigeons. By establishing an infection model, we provide a crucial tool for future research, such as identification of transmission routes and establishing vaccination regimes.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary-Pathology, Leipzig University, Leipzig, Germany.,Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lydia Mohr
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
19
|
Influence of pigeon interferon alpha (PiIFN-α) on pigeon circovirus (PiCV) replication and cytokine expression in Columba livia. Vet Microbiol 2020; 242:108591. [PMID: 32122595 DOI: 10.1016/j.vetmic.2020.108591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Pigeon circovirus (PiCV) is the most diagnosed virus in pigeons (Columba livia) and have been studied and reported globally. PiCV infections can lead to immunosuppression and pigeons infected with PiCV can result to lymphocyte apoptosis and atrophy of immune organs. Young pigeon disease syndrome (YPDS) is a complex disease and believed that PiCV could be one of the agents leading to this syndrome. An effective treatment regimen is needed to control the spread of PiCV in pigeons. In this study pigeon interferon alpha (PiIFN-α) was cloned and expressed and its antiviral effects were tested against fowl adenovirus type 4 (FAdV-4) in vitro and PiCV in vivo. No detectable levels of FAdV-4 viral genome in LMH cells stimulated with 300 μg/mL PiIFN-α were found. Additionally, PiIFN-α was stable at different temperature and pH for 4 h, and no reduction in antiviral activity was observed in untreated and treated cells. In pigeons naturally and experimentally infected by PiCV, no detectable levels of PiCV virus titers were found after treatment with PiIFN-α. Cytokine and ISG expression levels in liver and spleen samples were detected and IFN-γ and Mx1 genes were dominantly up-regulated following PiIFN-α treatment (p < 0.05). This study demonstrated that PiCV can be inhibited by administration of PiIFN-α and PiFN-α can be used as a therapeutic approach to prevent the spread of PiCV in pigeons.
Collapse
|
20
|
Stenzel T, Dziewulska D, Śmiałek M, Tykałowski B, Kowalczyk J, Koncicki A. Comparison of the immune response to vaccination with pigeon circovirus recombinant capsid protein (PiCV rCP) in pigeons uninfected and subclinically infected with PiCV. PLoS One 2019; 14:e0219175. [PMID: 31251772 PMCID: PMC6599111 DOI: 10.1371/journal.pone.0219175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Infections with immunosuppressive pigeon circovirus (PiCV) pose the most severe health problem to the global pigeon breeding. The vaccination with immunogenic PiCV recombinant capsid protein (PiCV rCP) is a potential tool for disease control. Because of the high prevalence of PiCV asymptomatic infections, the subclinically infected pigeons will be vaccinated in practice. The aim of this study was to answer a question if vaccination of asymptomatic, infected with PiCV pigeons induces a similar immune response to PiCV rCP as in uninfected birds. One hundred and twenty 6-week-old carrier pigeons were divided into 4 groups (2 groups of naturally infected and uninfected with PiCV individuals). Birds from groups V and V1 were vaccinated twice with PiCV rCP mixed with an adjuvant, whereas pigeons from groups C and C1 were immunized with an adjuvant only. The expression of genes encoding IFN-γ, CD4, and CD8 T lymphocyte receptors; the number of anti-PiCV rCP IgY-secreting B cells (SBC) and anti-PiCV rCP IgY were evaluated 2, 21, 39 and 46 days post vaccination (dpv). Study results showed that the expression of CD8 and IFN-γ genes was higher in both groups of infected pigeons than in the uninfected birds, irrespective of vaccination. In the uninfected birds, the expression of these genes was insignificantly higher in the vaccinated pigeons. The anti-PiCV rCP IgY-SBC were detected on 2 and 23 dpv and seroconversion was noted on 23 and 39 dpv in V and V1 groups, respectively. In the light of the results obtained, it could be concluded that pigeon circovirus recombinant capsid protein elicits the immune response in both naturally infected and uninfected pigeons, but its rate varies depending on PiCV infectious status. The infection with PiCV masks the potential cellular immune response to the vaccination with PiCV rCP and leads to the suppression of humoral immunity.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Kowalczyk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
21
|
Zhuang QY, Qiu Y, Pan ZH, Wang SC, Wang B, Wu WK, Yu JM, Yi Y, Sun FL, Wang KC. Genome sequence characterization of canine parvoviruses prevalent in the Sichuan province of China. Transbound Emerg Dis 2019; 66:897-907. [PMID: 30536738 DOI: 10.1111/tbed.13100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022]
Abstract
Canine parvovirus 2 (CPV-2) infection is responsible for large numbers of animal deaths worldwide and is one of the most dangerous infectious diseases in young puppies. Twenty-four rectal swabs were collected from dogs with clinical signs of vomiting and haemorrhagic diarrhoea and were initially verified to be infected with CPV-2 using colloidal gold test strips. From the 24 CPV-positive samples, complete genome of 5050-5054 nucleotides was sequenced with a next-generation sequencing platform. Characteristics of the Open Reading Frames from different CPV-2 strains detected in this study were analyzed. Several VP2 point mutations were discovered, and demonstrated the co-circulation of new CPV-2a, new CPV-2b and CPV-2c in Sichuan province of China. The analysis results of the Chinese CPV-2 retrieved from the NCBI nucleotide, showed that new CPV-2a has become the predominant variant in some provinces of China. Phylogenetic analysis of global VP2 and NS1 nucleotide sequences revealed certain correlations among geographical regions, types and circulating time, which lays the foundation for further research concerning the epidemiology, genetic variation, vaccination and molecular evolutionary relationships of the CPV-2 identified at different times and from different regions.
Collapse
Affiliation(s)
- Qing-Ye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Yuan Qiu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zi-Hao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Su-Chun Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Bo Wang
- Chengdu Hongcheng Animal Hospital, Sichuan, China
| | - Wan-Kun Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jian-Min Yu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Ying Yi
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Fu-Liang Sun
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Kai-Cheng Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
22
|
Rubbenstroth D, Peus E, Schramm E, Kottmann D, Bartels H, McCowan C, Schulze C, Akimkin V, Fischer N, Wylezich C, Hlinak A, Spadinger A, Großmann E, Petersen H, Grundhoff A, Rautenschlein S, Teske L. Identification of a novel clade of group A rotaviruses in fatally diseased domestic pigeons in Europe. Transbound Emerg Dis 2018; 66:552-561. [DOI: 10.1111/tbed.13065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Virology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
- Institute of Diagnostic Virology Friedrich‐Loeffler‐Institut Greifswald – Insel Riems Germany
| | - Elisabeth Peus
- Clinic for Pigeons of the German Pigeon‐Breeders Association Essen Germany
| | - Eva Schramm
- Institute of Virology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| | - Daniel Kottmann
- Institute of Virology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| | - Hilke Bartels
- Clinic for Poultry University of Veterinary Medicine Hannover Hannover Germany
| | - Christina McCowan
- Agriculture Victoria, Veterinary Diagnostics Bundoora Victoria Australia
| | | | - Valerij Akimkin
- Chemical and Veterinary Investigations Office Stuttgart Fellbach Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Research on Infection (DZIF) Partner Site Hamburg‐Borstel‐Lübeck‐Riems Hamburg Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology Friedrich‐Loeffler‐Institut Greifswald – Insel Riems Germany
| | - Andreas Hlinak
- Berlin‐Brandenburg State Laboratory Frankfurt (Oder) Germany
| | - Anja Spadinger
- Aulendorf state veterinary diagnostic centre Aulendorf Germany
| | - Ernst Großmann
- Aulendorf state veterinary diagnostic centre Aulendorf Germany
| | - Henning Petersen
- Clinic for Poultry University of Veterinary Medicine Hannover Hannover Germany
- Chemical and Veterinary Investigations Office Ostwestfalen‐Lippe DetmoldGermany
| | - Adam Grundhoff
- German Center for Research on Infection (DZIF) Partner Site Hamburg‐Borstel‐Lübeck‐Riems Hamburg Germany
- Heinrich‐Pette Institute Leibniz Institute for Experimental Virology Hamburg Germany
| | - Silke Rautenschlein
- Clinic for Poultry University of Veterinary Medicine Hannover Hannover Germany
| | - Lydia Teske
- Clinic for Poultry University of Veterinary Medicine Hannover Hannover Germany
| |
Collapse
|
23
|
Immunogenicity of Pigeon Circovirus Recombinant Capsid Protein in Pigeons. Viruses 2018; 10:v10110596. [PMID: 30384424 PMCID: PMC6265742 DOI: 10.3390/v10110596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Pigeon circovirus (PiCV) is the most frequently diagnosed virus in pigeons and is thought to be one of the causative factors of a complex disease called the young pigeon disease syndrome (YPDS). The development of a vaccine against this virus could be a strategy for YPDS control. Since laboratory culture of PiCV is impossible, its recombinant capsid protein (rCP) can be considered as a potential antigen candidate in sub-unit vaccines. The aim of this basic research was to evaluate the immune response of pigeons to PiCV rCP. Sixty six-week-old carrier pigeons were divided into two groups (experimental immunized with PiCV rCP mixed with an adjuvant, and control immunized with an adjuvant only), and immunized twice in a 21-day interval. On the day of immunization and on two, 23, 39, and 46 days post first immunization (dpv), samples of blood, spleen, and bursa of Fabricius were collected from six birds from each group to examine anti-PiCV rCP IgY, anti-PiCV rCP IgY-secreting B cells (SBC), IFN-γ gene expression, and percentage of T CD3+, CD4+, CD8+, and B IgM+ lymphocytes. The results indicated a correct immune response to PiCV rCP both in humoral and cell-mediated immunity, which was manifested by seroconversion since 23 dpv, by a significantly higher anti-PiCV rCP IgY-SBC number on two and 23 dpv, and significantly higher IFN-γ gene expression since two dpv. There were no significant differences or trends noted between particular T and B lymphocyte subpopulations. To conclude, PiCV rCP may be deemed immunogenic and could be considered as an antigen candidate in sub-unit vaccines against PiCV infections in pigeons.
Collapse
|
24
|
Loiko MR, Junqueira DM, Varela APM, Tochetto C, Scheffer CM, Lima DA, Morel AP, Cerva C, Paim WP, Mayer FQ, Roehe PM. Columbid circoviruses detected in free ranging pigeons from Southern Brazil: insights on PiCV evolution. Arch Virol 2018; 163:3083-3090. [PMID: 30105520 DOI: 10.1007/s00705-018-3990-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
Pigeon circovirus (PiCV) is taxonomically classified as a member of the Circovirus genus, family Circoviridae. The virus contains a single stranded DNA genome of approximately 2 kb, with minor length variations among different isolates. The occurrence of PiCV infections in pigeons (Columba livia) has been documented worldwide over the past 20 years; however, in Brazil there were still no reports on PiCV detection. This study identifies seven PiCV genomes recovered from domestic pigeons of South Brazil through high-throughput sequencing and shows a high frequency of PiCV infection, through quantitative real-time PCR. Phylogenetic classification was performed by maximum likelihood analysis of the full genomes, ORF V1 (Rep) and ORF C1 (Cap). The results show that either full genome or Cap based analysis allowed PiCV classification into five major clades (groups A to E), where Brazilian sequences were classified as A, C or D. Recombination analyses were carried out with Simplot and RDP4 and the results show that both Rep and Cap ORFs contain several recombination hotspots, pointing to an important role for such events in PiCV evolution.
Collapse
Affiliation(s)
- M R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - D M Junqueira
- Centro Universitário Ritter dos Reis-UniRitter, Laureate International Universities, Porto Alegre, Rio Grande do Sul, Brazil
| | - A P M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - C Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - C M Scheffer
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - D A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - A P Morel
- Falcoaria e Consultoria Ambiental-HAYABUSA, São Francisco de Paula, RS, Brazil
| | - C Cerva
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - W P Paim
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria Estadual de Agricultura, Pecuária e Irrigação, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, CEP 92990-000, Brazil.
| | - P M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, sala 208, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
25
|
Dziewulska D, Stenzel T, Smialek M, Tykalowski B, Koncicki A. An evaluation of the impact of aloe vera and licorice extracts on the course of experimental pigeon paramyxovirus type 1 infection in pigeons. Poult Sci 2018; 97:470-476. [PMID: 29182728 PMCID: PMC5850270 DOI: 10.3382/ps/pex341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
The progressive decrease in the efficiency of synthetic drugs has prompted research into phytogenic feed additives with potentially immunomodulatory and anti-infective properties. Complex diseases with a mixed etiology, including viral, pose a growing problem in domestic pigeons. The aim of this study was to determine the effectiveness of various doses of aloe vera and licorice extracts on the course of experimental PPMV-1 infection in pigeons. The experiment was performed on pigeons divided into 5 groups, including one control group and 4 experimental groups, which were orally administered aloe vera or licorice extracts at 300 or 500 mg/kg BW for 7 d after experimental inoculation with PPMV-1. On d 4, 7, and 14 after inoculation, cloacal swabs and samples of organs were collected from 4 birds in each group. The samples were analyzed to determine the copy number of PPMV-1 RNA by TaqMan qPCR. The results indicate that licorice and aloe vera extracts inhibited PPMV-1 replication by decreasing viral RNA copy numbers in the examined organs. The most inhibitory effect was observed in pigeons receiving aloe vera extract at 300 mg/kg BW, for which PPMV-1 RNA copy numbers were approximately 7-fold lower (brain), 9-fold lower (kidneys), and 14-fold lower (liver) than in the control group. The results of this study point to the potentially antiviral effects of aloe vera and licorice extracts in pigeons infected with PPMV-1. To the best of our knowledge, this is the first study to investigate the antiviral properties of aloe vera and licorice extracts in domestic pigeons.
Collapse
Affiliation(s)
- D Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - T Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - M Smialek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - B Tykalowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - A Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
26
|
Abstract
Galliformes and columbifomes are closely associated with humans and some species have been domesticated for well over 5000 years. Both orders remain diverse, ranging from the common domestic poultry species (e.g., chicken, turkey, and squabs) to the more exotic species found in the wild and in zoological collections. While many species have been benefited from human activities and have increased their ranges, others have declined in numbers and some have become threatened (e.g., Trinidad piping-guan and wood quail) or even extinct (e.g., dodo and passenger pigeon). Nondomestic galliformes and columbiformes are susceptible to many of the same diseases that occur in domestic species, yet predisposition may be different. Furthermore, disease prevalence depends on exposure and potential risk factors. Infectious diseases that tend to be more common under intensive commercial production may not pose as great a risk to exotic and free-living species.
Collapse
|
27
|
Stenzel T, Koncicki A. The epidemiology, molecular characterization and clinical pathology of circovirus infections in pigeons - current knowledge. Vet Q 2017; 37:166-174. [PMID: 28463055 DOI: 10.1080/01652176.2017.1325972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The first cases of circovirus infections in pigeons were documented less than 25 years ago. Since then, circovirus infections have been reported on nearly all continents. The specificity of pigeon breeding defies biosecurity principles, which could be the reason for the high prevalence of PiCV infections. PiCV infections in pigeons lead to atrophy of immune system organs and lymphocyte apoptosis. Infected birds could be more susceptible to infections of the respiratory and digestive tract. PiCV has been associated with the young pigeon disease syndrome (YPDS). PiCVs are characterized by high levels of genetic diversity due to frequent point mutations, recombination processes in the PiCV genome and positive selection. Genetic recombinations and positive selection play the key role in the evolution of PiCV. A protocol for culturing PiCV under laboratory conditions has not yet been developed, and traditional vaccines against the infection are not available. Recombinant capsid proteins for detecting anti-PiCV antibodies have been obtained, and these antigens can be used in the production of diagnostic tests and subunit vaccines against PiCV infections. However, YPDS has complex etiology, and it remains unknown whether immunization against PiCV alone will contribute to effective control of YPDS.
Collapse
Affiliation(s)
- Tomasz Stenzel
- a Department of Poultry Diseases, Faculty of Veterinary Medicine , University of Warmia and Mazury , Olsztyn , Poland
| | - Andrzej Koncicki
- a Department of Poultry Diseases, Faculty of Veterinary Medicine , University of Warmia and Mazury , Olsztyn , Poland
| |
Collapse
|
28
|
Huang YL, Castaneda OA, Thongchan D, Khatri-Chhetri R, Tsai SS, Wu HY. Pigeon circovirus infection in disqualified racing pigeons from Taiwan. Avian Pathol 2017; 46:359-366. [PMID: 28132523 DOI: 10.1080/03079457.2017.1284305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pigeons (Columba livia) infected with pigeon circovirus (PiCV) have been reported worldwide. The present study diagnosed PiCV infection in tissue samples of disqualified racing pigeons in Taiwan, using molecular and microscopy diagnostics. Among the 164 dead pigeons examined, 96.95% (159/164) tested positive for PiCV. Severe histopathological lesions, with characteristic inclusions, were observed in various organs of the PiCV-infected pigeons. Multiglobular basophilic intranuclear and intracytoplasmic inclusion bodies were found in the bursa of Fabricius and non-lymphoid tissues. The present study identified, for the first time, the presence of inclusion bodies in the thyroid gland, oesophagus, gizzard, and in the third eyelid of circovirus-infected pigeons. The presence of inclusion bodies in the third eyelid and mucosa of the gizzard was confirmed by transmission electron microscopy. A high detection rate of PiCV and some severe lesions evident in disqualified racing pigeons, as well as PiCV sequences in this study were highly similar with those detected in European countries suggesting an epidemiological association possibly due to imported pigeons.
Collapse
Affiliation(s)
- Yen-Li Huang
- a Department of Veterinary Medicine and Animal Hospital, College of Veterinary Medicine , National Pingtung University of Science and Technology , Pingtung , Taiwan (ROC)
| | - Omir Adrian Castaneda
- b Department of Food Science, College of Agriculture , National Pingtung University of Science and Technology , Pingtung , Taiwan (ROC)
| | - Duangsuda Thongchan
- a Department of Veterinary Medicine and Animal Hospital, College of Veterinary Medicine , National Pingtung University of Science and Technology , Pingtung , Taiwan (ROC)
| | - Rupak Khatri-Chhetri
- a Department of Veterinary Medicine and Animal Hospital, College of Veterinary Medicine , National Pingtung University of Science and Technology , Pingtung , Taiwan (ROC)
| | - Shinn-Shyong Tsai
- a Department of Veterinary Medicine and Animal Hospital, College of Veterinary Medicine , National Pingtung University of Science and Technology , Pingtung , Taiwan (ROC)
| | - Hung-Yi Wu
- a Department of Veterinary Medicine and Animal Hospital, College of Veterinary Medicine , National Pingtung University of Science and Technology , Pingtung , Taiwan (ROC)
| |
Collapse
|
29
|
Wang KC, Zhuang QY, Qiu Y, Wang T, Chen JM. Genome sequence characterization of pigeon circoviruses in China. Virus Res 2017; 233:1-7. [PMID: 28268176 DOI: 10.1016/j.virusres.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
Pigeon circovirus (PiCV) was detected by PCR in pigeons from China. Altogether, 48 out of 244 pigeons tested positive for PiCV (positive rate, 19.67%), suggesting that the virus was prevalent in China. From the 48 PiCV-positive samples, about 2040bp complete genome fragments were obtained by full length genome amplification and sequenced with a next-generation sequencing platform. Characteristics of the ORFs from different PiCV strains tested in this study were analyzed. Several insertion, deletion or substitutions were discovered during the analysis of the nucleotide sequence compared with sequences reported previously. In phylogenetic tree analysis, 48 sequences isolated in this study could be further divided into five clades (A, B, C, D, and F), clade E includes reference sequences only. Two major groups were found in the six clades, distinguished by ATA and ATG initiation codons. Most of the viruses isolated in the study were in the ATG group, with fewer in the ATA branch.
Collapse
Affiliation(s)
- Kai-Cheng Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China.
| | - Qing-Ye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Yuan Qiu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Tong Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Ji-Ming Chen
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| |
Collapse
|
30
|
PREVALENCE OF COLUMBID HERPESVIRUS INFECTION IN FERAL PIGEONS FROM NEW SOUTH WALES AND VICTORIA, AUSTRALIA, WITH SPILLOVER INTO A WILD POWERFUL OWL (NINOX STRUENA). J Wildl Dis 2017; 53:543-551. [PMID: 28192040 DOI: 10.7589/2016-07-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Columbid herpesvirus-1 (CoHV-1) is widespread in feral pigeons in North America and Europe. We used a PCR assay to detect CoHV-1 DNA in oral and cloacal tissues and oral swabs from naturally infected pigeons. Fifty-three feral pigeons from five flocks in Australia (n=3 from south-central Victoria and n=2 from Sydney) were examined for CoHV-1 DNA. We detected CoHV-1 DNA in oral mucosa and cloacal mucosa, with higher concentrations in the oral mucosa. The sensitivity of testing oral swabs was the same as testing the tissue, indicating that testing of oral swabs from live birds is an effective means of screening flocks for CoHV-1 infection. Infection was found in all five of the flocks examined and the prevalence of infection ranged from 70% to100%. Most positive birds could be detected with a single-amplification PCR, but a nested amplification was required to detect others. Oral swabs from Australian native doves and pigeons (n=18) and the introduced Collared Dove (Streptopelia chinensis; n=2) were also tested by the nested PCR and all were negative for CoHV-1 DNA. We describe a fatal infection of CoHV-1 in a wild Powerful Owl (Ninox strenua) that was observed feeding on feral pigeons. This is the first known case of CoHV-1 causing death in a wild bird of prey in Australia. Our data suggest that CoHV-1 is widespread in feral pigeon flocks in Australia but we did not find it in native doves and pigeons. Spillover into native avian predator species may be occurring.
Collapse
|
31
|
Teske L, Rubbenstroth D, Meixner M, Liere K, Bartels H, Rautenschlein S. Identification of a novel aviadenovirus, designated pigeon adenovirus 2 in domestic pigeons (Columba livia). Virus Res 2016; 227:15-22. [PMID: 27697452 DOI: 10.1016/j.virusres.2016.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
The young pigeon disease syndrome (YPDS) affects mainly young pigeons of less than one year of age and leads to crop stasis, vomitus, diarrhea, anorexia and occasionally death. This disease is internationally a major health problem because of its seasonal appearance during competitions such as homing pigeon races or exhibitions of ornamental birds. While the etiology of YPDS is still unclear, adenoviruses are frequently discussed as potential causative agents. Electron microscopy of feces from a YPDS outbreak revealed massive shedding of adenovirus-like particles. Whole genome sequencing of this sample identified a novel adenovirus tentatively named pigeon adenovirus 2 (PiAdV-2). Phylogenetic and comparative genome analysis suggest PiAdV-2 to belong to a new species within the genus Aviadenovirus, for which we propose the name Pigeon aviadenovirus B. The PiAdV-2 genome shares 54.9% nucleotide sequence identity with pigeon adenovirus 1 (PiAdV-1). In a screening of further YPDS-affected flocks two variants of PiAdV-2 (variant A and B) were detected which shared 97.6% nucleotide identity of partial polymerase sequences, but only 79.7% nucleotide identity of partial hexon sequences. The distribution of both PiAdV-2 variants was further investigated in fecal samples collected between 2008 and 2015 from healthy or YPDS-affected racing pigeons of different lofts. Independent of their health status, approximately 20% of young and 13% of adult pigeon flocks harbored PiAdV-2 variants. Birds were free of PiAdV-1 or other aviadenoviruses as determined by PCRs targeting the aviadenovirus polymerase or the PiAdV-1 fiber gene, respectively. In conclusion, there is no indication of a correlation between YPDS outbreaks and the presence of PiAdV-2 or other aviadenoviruses, arguing against an causative role in this disease complex.
Collapse
Affiliation(s)
- L Teske
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, D-30559 Hannover, Germany
| | - D Rubbenstroth
- Institute for Virology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder Str. 11, D-79104 Freiburg, Germany
| | - M Meixner
- SMB Services in Molecular Biology GmbH, Rudolf-Breitscheid-Str. 70, D-15562 Rüdersdorf, Germany
| | - K Liere
- SMB Services in Molecular Biology GmbH, Rudolf-Breitscheid-Str. 70, D-15562 Rüdersdorf, Germany
| | - H Bartels
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, D-30559 Hannover, Germany
| | - S Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, D-30559 Hannover, Germany.
| |
Collapse
|
32
|
Stenzel T, Woźniakowski G, Pestka D, Choszcz D, Tykałowski B, Śmiałek M, Koncicki A. Application of pigeon circovirus recombinant capsid protein for detecting anti-PiCV antibodies in the sera of asymptomatic domestic pigeons and the potential use of a combination of serological and molecular tests for controlling circovirus infections in pigeon breeding flocks. Poult Sci 2016; 96:303-308. [PMID: 27578880 DOI: 10.3382/ps/pew266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the serologic status of domestic pigeons not infected and asymptomatically infected with the pigeon circovirus (PiCV) with the use of an enzyme-linked assay based on PiCV recombinant capsid protein as a plate antigen. Recombinant PiCV capsid protein was produced by transforming E. coli BL21 (DE3) Rosetta colonies with expression plasmids.Blood samples and cloacal swabs were collected from 171 asymptomatic pigeons. The birds were divided into two groups (infected and not infected with PiCV) based on the results of Sybr Green real time PCR screening for the presence of PiCV genetic material. Approximately 70% of the pigeons tested positive for anti-PiCV antibodies regardless of their infection status. Antibody levels, the coefficient of variation and standard deviation were significantly higher in the group of infected pigeons.The results indicate that ELISA is a highly useful test that complements molecular methods in evaluations of PiCV infection status in domestic pigeons. The spread of pigeon circovirus infections can be controlled by keeping breeding flocks free of PiCV, which can only be achieved by subjecting birds to real time PCR and serological tests.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | | | - Daria Pestka
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Dariusz Choszcz
- Department of Heavy Duty Machines and Research Methodology, Faculty of Technical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
33
|
|
34
|
Stenzel T, Pestka D, Choszcz D. The prevalence and genetic characterization of Chlamydia psittaci from domestic and feral pigeons in Poland and the correlation between infection rate and incidence of pigeon circovirus. Poult Sci 2014; 93:3009-16. [PMID: 25306457 DOI: 10.3382/ps.2014-04219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiosis is a zoonotic disease caused by Chlamydia psittaci that occurs in a wide range of bird species. High infection rates with C. psittaci are found in pigeons, which can act as vectors transmitting this bacterium to poultry and humans. Chlamydia shedding by pigeons is intermittent and can be activated by stressors or immunosuppression. The most common immunosuppressive factor for pigeons is a pigeon circovirus (PiCV) infection. The main aim of the study was to evaluate the prevalence of C. psittaci in Polish populations of domestic and feral pigeons (Columba livia) in the context of its correlation with PiCV infections. The second objective was to determine the genetic characteristics of Polish C. psittaci isolates. The study was conducted on 377 pigeon samples (276 domestic and 101 feral pigeons) collected from pigeons from different regions of Poland. The average prevalence of C. psittaci in the Polish pigeon population was determined at 6.8%, and it was higher in domestic than in feral pigeons. This is the first ever study to suggest a potential correlation between C. psittaci and PiCV infections, which could be attributed to the fact that there are 2 to 3 times more pigeons infected with C. psittaci and coinfected with PiCV than pigeons infected with C. psittaci alone. This trend was observed mainly in the population of sick pigeons. As many as 88.2% of isolates were recognized as belonging to genotype B, and the remaining isolates were identified as belonging to genotype E. The isolates analyzed in this study demonstrated low levels of genetic variation (96-100% homology among the isolates and in relation to reference strains). Chlamydia psittaci could be expected to spread across pigeon populations due to the high probability of mutual infections between birds and the increasing number of PiCV infections.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Daria Pestka
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Dariusz Choszcz
- Faculty of Technical Sciences, Department of Heavy Duty Machines and Research Methodology, University of Warmia and Mazury, Oczapowskiego 11, 10-719 Olsztyn, Poland
| |
Collapse
|
35
|
Woźniakowski G, Wencel P, Samorek-Salamonowicz E. Detection of CoHV-1 by loop-mediated amplification (LAMP). Application of LAMP for CoHV-1 incidence monitoring in domestic pigeons. Lett Appl Microbiol 2014; 59:610-4. [DOI: 10.1111/lam.12317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 08/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- G. Woźniakowski
- Department of Poultry Viral Diseases; National Veterinary Research Institute (NVRI); Puławy Poland
| | - P. Wencel
- Avi Expert Private Veterinary Practice; Lublin Poland
| | - E. Samorek-Salamonowicz
- Department of Poultry Viral Diseases; National Veterinary Research Institute (NVRI); Puławy Poland
| |
Collapse
|
36
|
Stenzel T, Pestka D. Occurrence and genetic diversity of pigeon circovirus strains in Poland. Acta Vet Hung 2014; 62:274-83. [PMID: 24659711 DOI: 10.1556/avet.2014.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pigeon circovirus (PiCV) is an immunosuppressive agent widespread throughout the world, which causes a disease in pigeons called Young Pigeon Disease Syndrome. The aim of the study was to evaluate the prevalence of PiCV in Poland and investigate the genetic diversity relative to other known PiCV isolates. Samples from 152 pigeon flocks (88 flocks of racing pigeons and 64 flocks of fancy pigeons) from various regions of Poland were tested by polymerase chain reaction and an approximately 326-base fragment of the capsid protein gene (Cap gene) of the virus was amplified. The average viral prevalence was found to be 70.3% (76.13% in racing pigeons and 62.5% in fancy pigeons). Among the obtained positive samples, 21 were selected for sequencing and a phylogenetic analysis was performed. It was found that the majority of Polish PiCV isolates, to varying degrees, are related to isolates occurring in Europe. It was also observed that the Cap gene is variable and mutations often occur in it, which impacts the amino acid sequences in the capsid protein (nucleotide similarity averaged 86.57%, amino acid similarity averaged 89.02%).
Collapse
Affiliation(s)
- Tomasz Stenzel
- 1 University of Warmia and Mazury Department of Poultry Diseases, Faculty of Veterinary Medicine Oczapowskiego 13 10-719 Olsztyn Poland
| | - Daria Pestka
- 1 University of Warmia and Mazury Department of Poultry Diseases, Faculty of Veterinary Medicine Oczapowskiego 13 10-719 Olsztyn Poland
| |
Collapse
|
37
|
Stenzel T, Piasecki T, Chrząstek K, Julian L, Muhire BM, Golden M, Martin DP, Varsani A. Pigeon circoviruses display patterns of recombination, genomic secondary structure and selection similar to those of beak and feather disease viruses. J Gen Virol 2014; 95:1338-1351. [PMID: 24639400 DOI: 10.1099/vir.0.063917-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pigeon circovirus (PiCV) has a ~2 kb genome circular ssDNA genome. All but one of the known PiCV isolates have been found infecting pigeons in various parts of the world. In this study, we screened 324 swab and tissue samples from Polish pigeons and recovered 30 complete genomes, 16 of which came from birds displaying no obvious pathology. Together with 17 other publicly available PiCV complete genomes sampled throughout the Northern Hemisphere and Australia, we find that PiCV displays a similar degree of genetic diversity to that of the related psittacine-infecting circovirus species, beak and feather disease virus (BFDV). We show that, as is the case with its pathology and epidemiology, PiCV also displays patterns of recombination, genomic secondary structure and natural selection that are generally very similar to those of BFDV. It is likely that breeding facilities play a significant role in the emergence of new recombinant PiCV variants and given that ~50 % of the domestic pigeon population is infected subclinically, all pigeon breeding stocks should be screened routinely for this virus.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Tomasz Piasecki
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-360 Wrocław, Poland
| | - Klaudia Chrząstek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-360 Wrocław, Poland
| | - Laurel Julian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Brejnev M Muhire
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, South Africa
| | - Michael Golden
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, South Africa
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, South Africa
| | - Arvind Varsani
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.,Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
38
|
Himmel L, O'Connor M, Premanandan C. Necrotizing hepatitis in a domestic pigeon (Columba livia). Vet Pathol 2014; 51:1171-3. [PMID: 24457158 DOI: 10.1177/0300985813519653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An adult male domestic pigeon (Columba livia) was presented for necropsy following natural death after a period of chronic weight loss and severe intestinal ascariasis. Histopathologic examination of the liver found moderate to marked, multifocal necrotizing hepatitis with large, basophilic intranuclear inclusion bodies. Transmission electron microscopy of affected hepatocytes demonstrated numerous intra- and perinuclear icosahedral virions arranged in a lattice structure, consistent with adenoviral infection.
Collapse
Affiliation(s)
- L Himmel
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - M O'Connor
- Columbus Zoo and Aquarium, Powell, OH, USA
| | - C Premanandan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Phan TG, Vo NP, Boros Á, Pankovics P, Reuter G, Li OTW, Wang C, Deng X, Poon LLM, Delwart E. The viruses of wild pigeon droppings. PLoS One 2013; 8:e72787. [PMID: 24023772 PMCID: PMC3762862 DOI: 10.1371/journal.pone.0072787] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 01/14/2023] Open
Abstract
Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nguyen Phung Vo
- Blood Systems Research Institute, San Francisco, California, United States of America
- Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Olive T. W. Li
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Chunling Wang
- Stanford Genome Technology Center, Stanford, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Leo L. M. Poon
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|