1
|
Glover I, Bradley A, Green M, McAloon CG, Hyde R, O'Grady L. Use of a hidden Markov model for interpretation of serial cow milk paratuberculosis antibody enzyme-linked immunosorbent assay results adjusted for milk yield and quality. Prev Vet Med 2025; 235:106413. [PMID: 39754897 DOI: 10.1016/j.prevetmed.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Paratuberculosis (Johne's disease), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a common, economically-important and potentially zoonotic contagious disease of cattle, with worldwide distribution. Disease management relies on identification of animals which are at high-risk of being infected or infectious. The disease is chronic in nature, and infected animals may be infectious in the absence of overt clinical signs. Coupled with limited sensitivity of available diagnostic tests, this creates difficulties in identifying high-risk animals. In some disease-control programmes, dairy cows are classified with regards to risk according to the results of serial tests which quantify MAP antibodies in milk samples. Such classification systems are limited by the influence of non-disease factors on test results, dichotomisation of continuous results into "positive" or "negative" according to an imperfect threshold, and subjectivity in defining which patterns of serial test results indicate different risk-categories. An unsupervised learning (clustering) approach was applied to paratuberculosis test results and milk-recording data collated from 47 farms over an approximately ten-year period between 2010 and 2021. Paratuberculosis test results were first adjusted according to influential non-disease factors using linear models. Continuous-time hidden Markov models were fit to the adjusted test results. The final model revealed four distinct latent states (clusters). Examination of the distribution of adjusted test results associated with each latent state suggested that states were ordinal and aligned with disease progression. Model transition probabilities demonstrated that the probability of an animal progressing to the highest state was dependent on its current state. Of particular note was the existence of a latent state, characterised by paratuberculosis test results below the conventional test-positive threshold, which was associated with a relatively high probability of progression to the highest cluster. This research has led to objective classification of animals according to serial test results, and furthermore suggests the presence of groups of different disease risk amongst animals whose test results fall below the routinely used test-positive threshold. Identification of such groups could be used to better manage disease on farms, through implementation of management practices which limit disease transmission from high-risk animals.
Collapse
Affiliation(s)
- Ian Glover
- Quality Milk Management Services Ltd., Cedar Barn, Easton, Wells, Somerset BA5 1DU, United Kingdom; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
| | - Andrew Bradley
- Quality Milk Management Services Ltd., Cedar Barn, Easton, Wells, Somerset BA5 1DU, United Kingdom; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Martin Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Conor G McAloon
- University College Dublin, School of Veterinary Medicine, Veterinary Science Centre, Belfield, Dublin, Ireland
| | - Robert Hyde
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Luke O'Grady
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
2
|
Colombatti Olivieri MA, Cuerda MX, Moyano RD, Gravisaco MJ, Pinedo MFA, Delgado FO, Calamante G, Mundo S, de la Paz Santangelo M, Romano MI, Alonso MN, Del Medico Zajac MP. Superior protection against paratuberculosis by a heterologous prime-boost immunization in a murine model. Vaccine 2024; 42:126055. [PMID: 38880691 DOI: 10.1016/j.vaccine.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.
Collapse
MESH Headings
- Animals
- Mycobacterium avium subsp. paratuberculosis/immunology
- Immunization, Secondary/methods
- Mice
- Paratuberculosis/prevention & control
- Paratuberculosis/immunology
- Immunoglobulin G/blood
- Cytokines/metabolism
- Female
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Mice, Inbred BALB C
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Immunity, Cellular/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
Collapse
Affiliation(s)
| | - María Ximena Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Roberto Damián Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Fiorella Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de La Plata, Chascomús, Buenos Aires 7130, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiologia Veterinaria (IPV), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Silvia Mundo
- Cátedra de Inmunología de la Facultad de Ciencias Veterinarias - Universidad de Buenos Aires, Ciudad de Buenos Aires 1427, Argentina
| | - María de la Paz Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Isabel Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina.
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| |
Collapse
|
3
|
Barletta RG, Bannantine JP, Stabel JR, Muthukrishnan E, Anderson DK, Dutta E, Manthena V, Hanafy M, Zinniel DK. Mycobacterium avium subsp. paratuberculosis Candidate Vaccine Strains Are Pro-apoptotic in RAW 264.7 Murine Macrophages. Vaccines (Basel) 2023; 11:1085. [PMID: 37376474 DOI: 10.3390/vaccines11061085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a severe gastroenteritis of ruminants. This study developed a model cell culture system to rapidly screen MAP mutants with vaccine potential for apoptosis. Two wild-type strains, a transposon mutant, and two deletion mutant MAP strains (MOI of 10 with 1.2 × 106 CFU) were tested in murine RAW 264.7 macrophages to determine if they induce apoptosis and/or necrosis. Both deletion mutants were previously shown to be attenuated and immunogenic in primary bovine macrophages. All strains had similar growth rates, but cell morphology indicated that both deletion mutants were elongated with cell wall bulging. Cell death kinetics were followed by a real-time cellular assay to measure luminescence (apoptosis) and fluorescence (necrosis). A 6 h infection period was the appropriate time to assess apoptosis that was followed by secondary necrosis. Apoptosis was also quantified via DAPI-stained nuclear morphology and validated via flow cytometry. The combined analysis confirmed the hypothesis that candidate vaccine deletion mutants are pro-apoptotic in RAW 264.7 cells. In conclusion, the increased apoptosis seen in the deletion mutants correlates with the attenuated phenotype and immunogenicity observed in bovine macrophages, a property associated with good vaccine candidates.
Collapse
Affiliation(s)
- Raul G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - John P Bannantine
- United States Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R Stabel
- United States Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA
| | - Ezhumalai Muthukrishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Dirk K Anderson
- Nebraska Center for Biotechnology, Flow Cytometry Core Facility, University of Nebraska, Lincoln, NE 68588, USA
| | - Enakshy Dutta
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - Vamsi Manthena
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - Mostafa Hanafy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
4
|
Gupta SK, Wilson T, Maclean PH, Rehm BHA, Heiser A, Buddle BM, Wedlock DN. Mycobacterium avium subsp. paratuberculosis antigens induce cellular immune responses in cattle without causing reactivity to tuberculin in the tuberculosis skin test. Front Immunol 2023; 13:1087015. [PMID: 36741398 PMCID: PMC9889921 DOI: 10.3389/fimmu.2022.1087015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhea, weight-loss, and eventual death in ruminants. Commercially available vaccine provides only partial protection against MAP infection and can interfere with the use of current diagnostic tests for bovine tuberculosis in cattle. Here, we characterized immune responses in calves to vaccines containing four truncated MAP antigens as a fusion (Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786), either displayed on protein particles, or expressed as a soluble recombinant MAP (rMAP) fusion protein as well as to commercially available Silirum® vaccine. The rMAP fusion protein elicited the strongest antigen-specific antibody responses to both PPDA and recombinant antigen and strong and long-lasting T-cell immune responses to these antigens, as indicated by increased production of IFN-γ and IL-17A in antigen-stimulated whole blood cultures. The MAP fusion protein particle vaccine induced minimal antibody responses and weak IFN-γ responses but stimulated IL-17A responses to recombinant antigen. The immune response profile of Silirum® vaccine was characterized by weak antibodies and strong IFN-γ and IL-17A responses to PPDA. Transcription analysis on antigen-stimulated leukocytes from cattle vaccinated with rMAP fusion protein showed differential expression of several immune response genes and genes involved in costimulatory signaling, TLR4, TLR2, PTX3, PTGS2, PD-L1, IL1B, IL2, IL6, IL12B, IL17A, IL22, IFNG, CD40, and CD86. Moreover, the expression of several genes of immune pathways correlated with cellular immune responses in the rMAP fusion protein vaccinated group. These genes have key roles in pathways of mycobacterial immunity, including autophagy, manipulation of macrophage-mediated killing, Th17- and regulatory T cells- (Treg) mediated responses. Calves vaccinated with either the rMAP fusion protein or MAP fusion protein particle vaccine did not induce reactivity to PPDA and PPDB in a comparative cervical skin test, whereas Silirum® induced reactivity to these tuberculins in most of the vaccinated animals. Overall, our results suggest that a combination of recombinant MAP antigens in the form of a soluble fusion protein vaccine are capable of inducing strong antigen-specific humoral and a balanced Th1/Th17-cell immune response. These findings, together with the absence of reactivity to tuberculin, suggest this subunit vaccine could provide protective immunity against intracellular MAP infection in cattle without compromising the use of current bovine tuberculosis surveillance test.
Collapse
Affiliation(s)
- Sandeep K. Gupta
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand,*Correspondence: Sandeep K. Gupta,
| | - Tania Wilson
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia
| | - Axel Heiser
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bryce M. Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - D. Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
5
|
Khalid H, van Hooij A, Connelley TK, Geluk A, Hope JC. Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens 2022; 11:pathogens11070738. [PMID: 35889984 PMCID: PMC9320177 DOI: 10.3390/pathogens11070738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.
Collapse
Affiliation(s)
- Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Center for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Correspondence: (H.K.); (J.C.H.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Jayne C. Hope
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Correspondence: (H.K.); (J.C.H.)
| |
Collapse
|
6
|
Evaluation of a virulent strain of Mycobacterium avium subsp. Paratuberculosis used as a heat-killed vaccine. Vaccine 2021; 39:7401-7412. [PMID: 34774361 DOI: 10.1016/j.vaccine.2021.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022]
Abstract
Bovine paratuberculosis is one of the most important chronic infectious diseases in livestock. This disease is difficult to control because of its inefficient management (test and cull strategy and inadequate biosecurity). Thus, the development of an effective vaccine is essential. In this study, we evaluated a local virulent strain (6611) of Mycobacterium avium subsp. paratuberculosis as an inactivated vaccine in comparison with the Silirum vaccine in mouse model and cattle. Regarding the mice model, only the groups vaccinated with 6611 showed lower colony forming unit (CFU) counts with a lower lesion score in the liver in comparison to the control group at 6 and 12 weeks post-challenge (wpc). The immune response was predominantly humoral (IgG1), although both vaccinated groups presented a cellular response with IFNγ production as well, but the 6611 group had also significant production of IL-2, IL-6, IL-17a, TNF, and IL-10. In cattle, the 6611 vaccinated group was the only one that maintained significant antibody values at the end of the trial, with significant production of IgG2 and IFNγ. No PPDb reactor was detected in the vaccinated animals, according to the intradermal caudal fold tuberculin test. Our results indicate that the 6611 local strain protected mice from challenge with a virulent strain, by inducing a humoral and cellular immune response. In the bovine, the natural host, the evaluated vaccine also induced humoral and cellular immune responses, with higher levels of CD4 + CD25+ and CD8 + CD25+ T cells populations than the commercial vaccine. Despite the encouraging results obtained in this study, an experimental challenge trial in cattle is mandatory to evaluate the efficacy of our candidate vaccine in the main host.
Collapse
|
7
|
Gupta SK, Parlane NA, Luo D, Rehm BHA, Heiser A, Buddle BM, Wedlock DN. Self-assembled particulate vaccine elicits strong immune responses and reduces Mycobacterium avium subsp. paratuberculosis infection in mice. Sci Rep 2020; 10:22289. [PMID: 33339863 PMCID: PMC7749150 DOI: 10.1038/s41598-020-79407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic progressive granulomatous enteritis leading to diarrhoea, weight loss, and eventual death in ruminants. Commercially available vaccines provide only partial protection against MAP infection and can compromise the use of bovine tuberculosis diagnostic tests. Here, we report the development of a protein-particle-based vaccine containing MAP antigens Ag85A202-347-SOD1-72-Ag85B173-330-74F1-148+669-786 as a fusion ('MAP fusion protein particle'). The fusion antigen displayed on protein particles was identified using mass spectrometry. Surface exposure and accessibility of the fusion antigen was confirmed by flow cytometry and ELISA. The MAP fusion protein particle vaccine induced strong antigen-specific T-cell immune responses in mice, as indicated by increased cytokine (IFN-γ and IL-17A) and costimulatory signals (CD40 and CD86) in these animals. Following MAP-challenge, a significant reduction in bacterial burden was observed in multiple organs of the mice vaccinated with the MAP fusion protein particle vaccine compared with the PBS group. The reduction in severity of MAP infection conferred by the MAP fusion protein particle vaccine was similar to that of Silirum and recombinant protein vaccines. Overall, the results provide evidence that MAP antigens can be engineered as a protein particulate vaccine capable of inducing immunity against MAP infection. This utility offers an attractive platform for production of low-cost particulate vaccines against other intracellular pathogens.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - Natalie A Parlane
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Dongwen Luo
- Bioinformatics and Statistics, AgResearch, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, Australia
| | - Axel Heiser
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Bryce M Buddle
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - D Neil Wedlock
- Grasslands Research Centre, AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
8
|
Alcaraz-López OA, Flores-Villalva S, Cortéz-Hernández O, Vigueras-Meneses G, Carrisoza-Urbina J, Benítez-Guzmán A, Esquivel-Solís H, Werling D, Salguero Bodes FJ, Vordemeier M, Villarreal-Ramos B, Gutiérrez-Pabello JA. Association of immune responses of Zebu and Holstein-Friesian cattle and resistance to mycobacteria in a BCG challenge model. Transbound Emerg Dis 2020; 68:3360-3365. [PMID: 33249779 PMCID: PMC9292913 DOI: 10.1111/tbed.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can also infect humans. Zebu cattle are considered more resistant to some infectious diseases compared with Holstein‐Friesian (HF) cattle, including BTB. However, epidemiological studies may not take into account usage differences of the two types of cattle. HF cattle may suffer greater metabolic stress due to their more or less exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In experiments conducted so far, the number of animals has been too small to draw statistically robust conclusions on the resistance differences between these cattle breeds. Here, we used a BCG challenge model to compare the ability of naïve and vaccinated Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with similar ages were housed in the same accommodation for the duration of the experiment. After correcting for multiple comparisons, we found no difference between naïve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF cattle to have lower cfu numbers than non‐vaccinated HF cattle (ρ = 0.057); no such trend was observed between vaccinated and non‐vaccinated Zebu cattle (ρ = 0.560). Evaluation of antigen‐specific IFNγ secretion by PBMC indicated that Zebu and HF cattle differed in their response to mycobacteria. Thus, whilst there may be difference in immune responses, our data indicate that with the number of animals included in the study and under the conditions used in this work, we were unable to measure any differences between Zebu and HF cattle in the overall control of mycobacteria. Whilst determination of different susceptibilities between Zebu and HF cattle using the BCG challenge model will require larger numbers of animals than the number of animals used in this experiment, these data should inform future experiments.
Collapse
Affiliation(s)
- Omar Antonio Alcaraz-López
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Susana Flores-Villalva
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Querétaro, México
| | - Omar Cortéz-Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Guadalupe Vigueras-Meneses
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Jacobo Carrisoza-Urbina
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Alejandro Benítez-Guzmán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Hugo Esquivel-Solís
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara Jalisco, México
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | | | - Martin Vordemeier
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, Surrey, UK.,Centre of Excellence for Bovine TB, IBERS, Aberystwyth University, Penglais, Aberystwyth, UK
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency Addlestone, Surrey, UK.,Centre of Excellence for Bovine TB, IBERS, Aberystwyth University, Penglais, Aberystwyth, UK
| | - José A Gutiérrez-Pabello
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
9
|
Espinosa J, Fernández M, Royo M, Grau A, Ángel Collazos J, Benavides J, Del Carmen Ferreras M, Mínguez O, Pérez V. Influence of vaccination against paratuberculosis on the diagnosis of caprine tuberculosis during official eradication programmes in Castilla y León (Spain). Transbound Emerg Dis 2020; 68:692-703. [PMID: 32668068 DOI: 10.1111/tbed.13732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
The information generated from the official eradication programmes of caprine tuberculosis (TB) in Castilla y León, Spain, during 2018, has been used to assess the effect of vaccination against paratuberculosis (PTB) and the presence of this infection, on the single intradermal tuberculin (SIT) test results. Data from 121,665 goats belonging to 1936 different herds were analysed using generalized linear models. An epidemiological survey was conducted to know the herd immunization status against PTB and the date of last vaccination. All SIT test-positive animals were further investigated in order to confirm the diagnosis of TB, through bacterial culture, and PTB, by histopathological and qPCR analyses. SIT positivity was found in 39 (2.01%) herds and 507 (0.41%) goats. TB was confirmed by M. caprae or M. bovis isolation in 10 (0.51%) herds and 46 (0.038%) goats. PTB was diagnosed in 13 (33.33%) and 55 (10.84%) of the SIT test-positive herds and goats, respectively. Vaccination against PTB showed a significant influence on the results of the SIT test at herd level, with higher positivity detected among those herds vaccinated. However, this effect was not observed when the total number of animals was considered, where the highest positivity was found in unvaccinated goats. The time elapsed between vaccination and SIT test performance also influenced the results. The strongest effect was found when less than eight months elapsed between performing both activities, and to a lesser extent between 8 and 12 months. Conversely, no positive herds or animals were found when the time elapsed was higher than one year. No significant effect of the presence of PTB was observed. These findings demonstrate that the use of PTB vaccine does not result in false positives to a SIT test at individual level, provided that the time elapsed between the performance of both practices is higher than 12 months.
Collapse
Affiliation(s)
- José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Marcos Royo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Anna Grau
- Servicio de Sanidad Animal, Junta de Castilla y León, Valladolid, Spain
| | | | - Julio Benavides
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - María Del Carmen Ferreras
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Olga Mínguez
- Servicio de Sanidad Animal, Junta de Castilla y León, Valladolid, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| |
Collapse
|
10
|
Arrieta-Villegas C, Infantes-Lorenzo JA, Bezos J, Grasa M, Vidal E, Mercader I, Singh M, Domingo M, de Juan L, Pérez de Val B. Evaluation of P22 Antigenic Complex for the Immuno-Diagnosis of Tuberculosis in BCG Vaccinated and Unvaccinated Goats. Front Vet Sci 2020; 7:374. [PMID: 32714950 PMCID: PMC7351524 DOI: 10.3389/fvets.2020.00374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Current eradication strategies of tuberculosis (TB) in goats mainly rely on the single intradermal tuberculin test (SIT) and single intradermal cervical comparative tuberculin tests (SICCTs). TB vaccination has been proposed as a cost-effective option in high-prevalence herds or countries where economic compensation for the slaughter of positive animals is not affordable. However, TB vaccination compromises the efficiency of tuberculin-based diagnostic tests. In this study, the performance of a new diagnostic platform, based on the P22 antigenic complex, was assessed for skin test (ST), interferon-gamma release assay (IGRA), and serology under different TB scenarios. The sensitivity (Se) of diagnostic tests was assessed in TB-infected goats from the same farm (herd A, N = 77). The specificity (Sp) was assessed in two TB-negative farms (both vaccinated against paratuberculosis): one TB unvaccinated (herd B, N = 77) and another vaccinated with bacille Calmette-Guérin (BCG) (herd C, N = 68). The single (s) P22-IGRA showed the highest Se among IGRA tests (91%), and the comparative (c) P22-ST showed the highest Sp (100% in herd B and 98% in herd C). Combined interpretation of techniques enabled the best diagnostic performances. Combining the SICCT + sP22-IGRA improved Se (97%) compared to SICCT + tuberculin-based IGRA (95%), with a reduction of Sp (95 and 100%, respectively). Besides, combination of P22-ELISA with cP22-ST or SICCT elicited a similar performance in the non-vaccination context (Se: 94 and 95%; Sp: 95 and 95%, respectively), but Sp was significantly higher for the combination with cP22-ST compared to SICCT in the TB vaccination context (95 and 79%, respectively). The combination of serological tests based on P22 and MPB83 showed higher complementarity and improved 13 percentage points the Se of P22-ELISA alone. These findings suggest that either cell-mediated or antibody-based diagnostic techniques, using the P22 antigen complex, can contribute to improve the immunodiagnostics of TB in goats under different TB control strategies.
Collapse
Affiliation(s)
- Claudia Arrieta-Villegas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Antonio Infantes-Lorenzo
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid, Spain
| | - Miriam Grasa
- Agrupació de Defensa Sanitària de Cabrum i Oví Lleter de Catalunya, Barbens, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Mercader
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació de la Generalitat de Catalunya, Barcelona, Spain
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Sanchez MP, Guatteo R, Davergne A, Saout J, Grohs C, Deloche MC, Taussat S, Fritz S, Boussaha M, Blanquefort P, Delafosse A, Joly A, Schibler L, Fourichon C, Boichard D. Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle. Genet Sel Evol 2020; 52:14. [PMID: 32183688 PMCID: PMC7077142 DOI: 10.1186/s12711-020-00535-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background Bovine paratuberculosis is a contagious disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), with adverse effects on animal welfare and serious economic consequences. Published results on host genetic resistance to MAP are inconsistent, mainly because of difficulties in characterizing the infection status of cows. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to MAP in Holstein and Normande cows with an accurately defined status for MAP. Results From MAP-infected herds, cows without clinical signs of disease were subjected to at least four repeated serum ELISA and fecal PCR tests over time to determine both infected and non-infected statuses. Clinical cases were confirmed using PCR. Only cows that had concordant results for all tests were included in further analyses. Positive and control cows were matched within herd according to their birth date to ensure a same level of exposure to MAP. Cows with accurate phenotypes, i.e. unaffected (control) or affected (clinical or non-clinical cases), were genotyped with the Illumina BovineSNP50 BeadChip. Genotypes were imputed to whole-genome sequences using the 1000 Bull Genomes reference population (run6). A genome-wide association study (GWAS) of MAP status of 1644 Holstein and 649 Normande cows, using either two (controls versus cases) or three classes of phenotype (controls, non-clinical and clinical cases), revealed three regions, on Bos taurus (BTA) chromosomes 12, 13, and 23, presenting significant effects in Holstein cows, while only one of those was identified in Normande cows (BTA23). The most significant effect was found on BTA13, in a short 8.5-kb region. Conditional analyses revealed that only one causal variant may be responsible for the effects observed on each chromosome with the ABCC4 (BTA12), CBFA2T2 (BTA13), and IER3 (BTA23) genes as good functional candidates. Conclusions A sequence-based GWAS on cows for which resistance to MAP was accurately defined, was able to identify candidate variants located in genes that were functionally related to resistance to MAP; these explained up to 28% of the genetic variance of the trait. These results are very encouraging for efforts towards implementation of a breeding strategy aimed at improving resistance to paratuberculosis in Holstein cows.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | | | | | - Judikael Saout
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Cécile Grohs
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marie-Christine Deloche
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 149 Rue de Bercy, 75012, Paris, France
| | - Sébastien Taussat
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 149 Rue de Bercy, 75012, Paris, France
| | - Sébastien Fritz
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 149 Rue de Bercy, 75012, Paris, France
| | - Mekki Boussaha
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | | | | | | | | | - Didier Boichard
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
12
|
Gupta S, Singh SV, Singh M, Chaubey KK, Karthik K, Bhatia AK, Kumar N, Dhama K. Vaccine approaches for the 'therapeutic management' of Mycobacterium avium subspecies paratuberculosis infection in domestic livestock. Vet Q 2020; 39:143-152. [PMID: 31524561 PMCID: PMC6831026 DOI: 10.1080/01652176.2019.1667042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High endemicity of Johne’s disease (JD) in herds adversely affects heavy milk yielding breeds by reducing the per animal productivity and ‘productive life-span’. This review evaluates different vaccines used for its control and summarizes the benefits of ‘global vaccine’ in the four major domestic livestock species, namely goat, sheep, buffalo and cattle. Vaccines developed by using ‘native strains’ revealed both 'therapeutic' and preventive effects in domestic livestock. The 'therapeutic' role of vaccine in animals suffering from clinical JD turned out to be valuable in some cases by reversing the disease process and animals returning back to health and production. Good herd management, improved hygiene, ‘test and cull’ methodology, proper disposal of animal excreta and monitoring of MAP bio-load were also regarded as crucial in the 'therapeutic' management of JD. Vaccine approaches have been widely adopted in JD control programs and may be considered as a valuable adjunct in order to utilize huge populations of otherwise un-productive livestock. It has been shown that vaccination was the preeminent strategy to control JD, because it yielded approximately 3–4 times better benefit-to-cost ratios than other strategies. Internationally, 146 vaccine trials/studies have been conducted in different countries for the control of JD and have shown remarkable reduction in its national prevalence. It is concluded that for JD, there cannot be global vaccines or diagnostic kits as solutions have to come from locally prevalent strains of MAP. Despite some limitations, vaccines might still be an effective strategy to reduce or eradicate JD.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Shoor Vir Singh
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Manju Singh
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | | | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University , Chennai , Tamil Nadu , India
| | - A K Bhatia
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Naveen Kumar
- Veterinary Type Culture Collection, NRC on Equines, Indian Council of Agricultural Research , Hisar , Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Izatnagar, Bareilly , Uttar Pradesh , India
| |
Collapse
|
13
|
Whittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S, Arrigoni N, Juste R, Sáez JL, Dhand N, Santi A, Michel A, Barkema H, Kralik P, Kostoulas P, Citer L, Griffin F, Barwell R, Moreira MAS, Slana I, Koehler H, Singh SV, Yoo HS, Chávez-Gris G, Goodridge A, Ocepek M, Garrido J, Stevenson K, Collins M, Alonso B, Cirone K, Paolicchi F, Gavey L, Rahman MT, de Marchin E, Van Praet W, Bauman C, Fecteau G, McKenna S, Salgado M, Fernández-Silva J, Dziedzinska R, Echeverría G, Seppänen J, Thibault V, Fridriksdottir V, Derakhshandeh A, Haghkhah M, Ruocco L, Kawaji S, Momotani E, Heuer C, Norton S, Cadmus S, Agdestein A, Kampen A, Szteyn J, Frössling J, Schwan E, Caldow G, Strain S, Carter M, Wells S, Munyeme M, Wolf R, Gurung R, Verdugo C, Fourichon C, Yamamoto T, Thapaliya S, Di Labio E, Ekgatat M, Gil A, Alesandre AN, Piaggio J, Suanes A, de Waard JH. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res 2019; 15:198. [PMID: 31196162 PMCID: PMC6567393 DOI: 10.1186/s12917-019-1943-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis.
Collapse
Affiliation(s)
- Richard Whittington
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Germany
- Clinic for Obstetrics, Gynecology and Andrology with Veterinary Ambulance, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Søren Saxmose Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | - Norma Arrigoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Ramon Juste
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias Spain
| | - Jose Luis Sáez
- Ministry of Agriculture and Fisheries, Food and Environment, ES-28071 Madrid, Spain
| | - Navneet Dhand
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Anita Michel
- Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110 South Africa
| | - Herman Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Petr Kralik
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | | | - Lorna Citer
- Animal Health Ireland, Carrick on Shannon, Co. Leitrim, N41 WN27 Republic of Ireland
| | - Frank Griffin
- Disease Research Limited, Invermay Agricultural Centre, Mosgiel, 9092 New Zealand
| | - Rob Barwell
- Animal Health Australia, Turner, ACT 2612 Australia
| | | | - Iva Slana
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Heike Koehler
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 07743 Jena, Germany
| | - Shoor Vir Singh
- Deparment of Biotechnology, GLA University, Mathura, Uttar Pradesh 281 406 India
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Gilberto Chávez-Gris
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de México, 76750 Tequisquiapan, Queretaro, Mexico
| | - Amador Goodridge
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama City, 0843-01103 Panama
| | - Matjaz Ocepek
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Joseba Garrido
- Instituto Vasco de Investigacion y Desarrollo Agrario-NEIKER, 48160 Derio, Bizkaia Spain
| | | | - Mike Collins
- School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, 53706-1102 USA
| | | | - Karina Cirone
- Instituto Nacional de Tecnologia Agropecuaria, 7620 Balcarce, Argentina
| | | | - Lawrence Gavey
- Biosecurity Queensland, Department of Agriculture and Fisheries, Toowoomba, Queensland 4350 Australia
| | - Md Tanvir Rahman
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | | | | | - Cathy Bauman
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Gilles Fecteau
- Faculté de Médecine Vétérinaire, University of Montreal, Quebec, J2S 6Z9 Canada
| | - Shawn McKenna
- Atlantic Veterinary College, Charlottetown, Prince Edward Island C1A 4P3 Canada
| | - Miguel Salgado
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jorge Fernández-Silva
- Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Antioquia 050034076 Colombia
| | | | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis, Universidad Central del Ecuador, 17-03-100 Quito, Ecuador
| | - Jaana Seppänen
- Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | - Virginie Thibault
- ANSES Laboratoire de Ploufragan-Plouzané-Niort and GDS France, CS 28440, 79024 Niort Cedex, France
| | - Vala Fridriksdottir
- Institute for Experimental Pathology at Keldur, University of Iceland, IS-112 Reykjavík, Iceland
| | | | - Masoud Haghkhah
- School of Veterinary Medicine, Shiraz University, Shiraz, 71441-69155 Iran
| | - Luigi Ruocco
- Ministry of Health, General Directorate of Animal Health and Veterinary Medicines, 00144 Rome, Italy
| | - Satoko Kawaji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Eiichi Momotani
- Comparative Medical Research Institute, Tsukuba, Ibaraki 305-0856 Japan
| | - Cord Heuer
- School of Veterinary Sciences, Massey University, Palmerston North, 4441 New Zealand
| | | | - Simeon Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Joanna Szteyn
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | | | - Ebba Schwan
- Swedish Farm and Animal Health, 62254 Romakloster, Sweden
| | | | - Sam Strain
- Animal Health and Welfare Northern Ireland, Dungannon Enterprise Centre, Dungannon, BT71 6JT UK
| | - Mike Carter
- USDA-APHIS-Veterinary Services, Riverdale, MD 20737 USA
| | - Scott Wells
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Musso Munyeme
- School of Veterinary Medicine, The University of Zambia, 10101 Lusaka, Zambia
| | - Robert Wolf
- Fachabteilung Gesundheit und Pflegemanagement, 8010 Graz, Austria
| | - Ratna Gurung
- National Centre for Animal Health, Serbithang, Bhutan
| | - Cristobal Verdugo
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Christine Fourichon
- Oniris – INRA, Department Farm Animal Health and Public Health, 44307 Nantes cedex 3, France
| | - Takehisa Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Sharada Thapaliya
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan Nepal
| | - Elena Di Labio
- Federal Food Safety and Veterinary Office, 3003 Bern, Switzerland
| | - Monaya Ekgatat
- National Institute of Animal Health, Chatuchak, Bangkok, 10900 Thailand
| | - Andres Gil
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | | | - José Piaggio
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | - Alejandra Suanes
- Ministry of Livestock Agriculture and Fisheries of Uruguay, CP 11300 Montevideo, Uruguay
| | - Jacobus H. de Waard
- Servicio Autonomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
14
|
Infantes-Lorenzo JA, Moreno I, Roy A, Risalde MA, Balseiro A, de Juan L, Romero B, Bezos J, Puentes E, Åkerstedt J, Tessema GT, Gortázar C, Domínguez L, Domínguez M. Specificity of serological test for detection of tuberculosis in cattle, goats, sheep and pigs under different epidemiological situations. BMC Vet Res 2019; 15:70. [PMID: 30823881 PMCID: PMC6397464 DOI: 10.1186/s12917-019-1814-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Serum antibody detection has potential as a complementary diagnostic tool in animal tuberculosis (TB) control, particularly in multi-host systems. The objective of the present study was to assess the specificity (Sp) of an enzyme-linked immunosorbent assay (ELISA) based on the new multiprotein complex P22 for the detection of specific antibodies against the Mycobacterium tuberculosis complex (MTC) in the four most relevant domestic animals acting as MTC hosts: cattle, goat, sheep and pig. We used sera from an officially TB-free (OTF) country, Norway, and from a non-OTF one, Spain. The samples included sera from goats that had been vaccinated against M. avium subsp. paratuberculosis (MAP) and sheep from a herd in which Corynebacterium pseudotuberculosis had been isolated. RESULTS In cattle, the Sp ranged from 92.5 (IC95% 90.7-94) to 99.4% (IC95% 98.3-99.8) depending on the cut-off used and the origin of the samples (Spain or Norway). Sp in cattle (cut-off point 100) was significantly higher (P < 0.05) for Norwegian samples. By contrast, Sp in goats was consistently low at the 100 cut-off [30.9 (CI95%23.4-39.5)-78% (CI95% 68.9-85)]. A higher cut-off of 150 improved Sp in Norwegian goats [97% (CI95% 91.6-99)], but still yielded a poor Sp of 56.1% (CI95% 47.3-64.6) in Spanish goats. In Norway at the 100 cut-off the Sp was 58.3 (CI95% 42.2-72.9) and 90.6% (CI95% 81-95.6) in MAP vaccinated and non-vaccinated goats, respectively, indicating interference due to MAP vaccination. Sp in sheep was between 94.4 (CI95% 91.7-96.3) and 100% (CI95% 96.3-100) depending on the cut-off and country, and no diagnostic interference due to infection with C. pseudotuberculosis was recorded. Sp in pigs was 100%, regardless the cut-off point applied, and no significant differences were observed between pigs from Norway and from Spain. CONCLUSIONS Due to its excellent Sp in pigs and acceptable Sp in cattle and sheep, this ELISA may constitute a suitable option for TB screening at herd level, particularly in OTF-countries.
Collapse
Affiliation(s)
- J. A. Infantes-Lorenzo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - I. Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - A. Roy
- CZ Veterinaria S.A., Porriño, Pontevedra, Spain
| | - M. A. Risalde
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Agrifood Campus of International Excellence (ceia3), Universidad de Córdoba, Córdoba, Spain
| | - A. Balseiro
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Centro de Biotecnología Animal, Deva-Gijón, Asturias Spain
| | - L. de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - B. Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - J. Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - E. Puentes
- CZ Veterinaria S.A., Porriño, Pontevedra, Spain
| | - J. Åkerstedt
- Norwegian Veterinary Institute, Sentrum, Oslo Norway
| | - G. T. Tessema
- Norwegian Veterinary Institute, Sentrum, Oslo Norway
| | - C. Gortázar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - L. Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - M. Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
15
|
McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ, O'Grady L, Green MJ, Doherty ML. A review of paratuberculosis in dairy herds - Part 2: On-farm control. Vet J 2019; 246:54-58. [PMID: 30902189 DOI: 10.1016/j.tvjl.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/08/2023]
Abstract
Bovine paratuberculosis is a chronic infectious disease of cattle, caused by Mycobacterium avium subspecies paratuberculosis (MAP). This is the second in a two-part review of the epidemiology and control of paratuberculosis in dairy herds. Several negative production effects associated with MAP infection have been described, but perhaps the most significant concern in relation to the importance of paratuberculosis as a disease of dairy cattle is the potential link with Crohn's disease in humans. Milk is considered a potential transmission route to humans and it is recognised that pasteurisation does not necessarily eliminate the bacterium. Therefore, control must also include reduction of the levels of MAP in bulk milk supplied from dairy farms. There is little field evidence in support of specific control measures, although several studies seem to show a decreased prevalence associated with the implementation of a combined management and test-and-cull programme. Improvements in vaccination efficacy and reduced tuberculosis (TB) test interference may increase uptake of vaccination as a control option. Farmer adoption of best practice recommendations at farm level for the control of endemic diseases can be challenging. Improved understanding of farmer behaviour and decision making will help in developing improved communication strategies which may be more efficacious in affecting behavioural change on farm.
Collapse
Affiliation(s)
- Conor G McAloon
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland.
| | - Steven Roche
- Department of Population Medicine, University of Guelph, 50 Stone Rd., Guelph, ON, N1G 2W1, Canada
| | - Caroline Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive, Calgary, AB, T2N 1N4, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive, Calgary, AB, T2N 1N4, Canada
| | - Paul Whyte
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Simon J More
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Luke O'Grady
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| | - Martin J Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Michael L Doherty
- Section of Herd Health and Animal Husbandry, School of Veterinary Medicine, University College Dublin, Ireland
| |
Collapse
|
16
|
Souza IIFD, Rodrigues RDA, Gonçalves Jorge KS, Silva MR, Lilenbaum W, Vidal CES, Etges RN, Kostovic M, Araújo FR. ELISA using a recombinant chimera of ESAT-6/MPB70/MPB83 for Mycobacterium bovis diagnosis in naturally infected cattle. J Vet Med Sci 2018; 81:9-14. [PMID: 30305467 PMCID: PMC6361649 DOI: 10.1292/jvms.18-0364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Bovine tuberculosis (bTB) control programs generally rely on intradermal tuberculin tests for the antemortem diagnosis of Mycobacterium bovis infection in cattle, but these
tests detect only a portion of the infected animals. The aim of the present study was to evaluate the diagnostic coverage of a combination of the bTB antemortem techniques known as the
comparative intradermal tuberculin test (CITT) and an ELISA based on a recombinant chimera of ESAT-6/MPB70/MPB83 as the antigen in cattle. The results were compared to postmortem findings
based on M. bovis culturing and PCR. Paired comparisons of all data (n=92) demonstrated that ELISA and LST results compared to the culturing results did not present
significant differences (P=0.27 on McNemar’s test and P=0.12 on Fisher’s exact test, respectively). Using culturing as the gold standard, the sensitivity
and specificity of ELISA were 79.5% (95% CI: 64.5–89.2%) and 75.5% (95% CI: 62.4–85.1%), respectively, whereas LST demonstrated 100% sensitivity (95% CI: 91.03–100%) and 92.5% specificity
(95% CI: 82.1–97.0%). The ELISA results did not reveal significant differences in relation to the LST results (P>0.99 on Fisher’s exact test). Using the latter as the
gold standard, the sensitivity and specificity of ELISA were 79.1% (95% CI: 64.8–88.6%) and 79.6% (95% CI: 66.4–88.5%), respectively. The use of ELISA with the recombinant chimera of
ESAT-6/MPB70/MPB83 as the antigen complements the diagnostic coverage provided by CITT and increases the removal of infected animals from herds.
Collapse
Affiliation(s)
- Ingrid Ieda Fernando de Souza
- Postgraduate Program in Biotechnology and Biodiversity of the Central Western Region, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Rudielle de Arruda Rodrigues
- Postgraduate Program in Veterinary Sciences, School of Veterinary Medicine (FAMEZ), Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Kláudia Santos Gonçalves Jorge
- Postgraduate Program in Veterinary Sciences, School of Veterinary Medicine (FAMEZ), Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | | | - Walter Lilenbaum
- Laboratory of Veterinary Bacteriology, Fluminense Federal University, Niterói, RJ 24. 210-130, Brazil
| | - Carlos Eugênio Soto Vidal
- Regional Technical Unit for Agriculture, Livestock and Supply of Santa Maria (UTRA), Ministry of Agriculture, Livestock and Supply, Santa Maria, RS 97050-500, Brazil
| | - Rodrigo Nestor Etges
- Secretary of Agriculture, Livestock and Irrigation (SEAPI), State Government of Rio Grande do Sul, Porto Alegre, RS 90150-900, Brazil
| | | | | |
Collapse
|
17
|
Roy Á, Infantes-Lorenzo JA, Blázquez JC, Venteo Á, Mayoral FJ, Domínguez M, Moreno I, Romero B, de Juan L, Grau A, Domínguez L, Bezos J. Temporal analysis of the interference caused by paratuberculosis vaccination on the tuberculosis diagnostic tests in goats. Prev Vet Med 2018; 156:68-75. [DOI: 10.1016/j.prevetmed.2018.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/04/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
|
18
|
Das R, Dandapat P, Chakrabarty A, Nanda PK, Bandyopadhyay S, Bandyopadhyay S. A cross-sectional study on prevalence of bovine tuberculosis in Indian and crossbred cattle in Gangetic delta region of West Bengal, India. INTERNATIONAL JOURNAL OF ONE HEALTH 2018. [DOI: 10.14202/ijoh.2018.1-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Identification of Novel Antigens Recognized by Serum Antibodies in Bovine Tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00259-17. [PMID: 28978510 DOI: 10.1128/cvi.00259-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/30/2017] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (TB), caused by Mycobacterium bovis, remains an important zoonotic disease posing a serious threat to livestock and wildlife. The current TB tests relying on cell-mediated and humoral immune responses in cattle have performance limitations. To identify new serodiagnostic markers of bovine TB, we screened a panel of 101 recombinant proteins, including 10 polyepitope fusions, by a multiantigen print immunoassay (MAPIA) with well-characterized serum samples serially collected from cattle with experimental or naturally acquired M. bovis infection. A novel set of 12 seroreactive antigens was established. Evaluation of selected proteins in the dual-path platform (DPP) assay showed that the highest diagnostic accuracy (∼95%) was achieved with a cocktail of five best-performing antigens, thus demonstrating the potential for development of an improved and more practical serodiagnostic test for bovine TB.
Collapse
|
20
|
Identification of Novel Seroreactive Antigens in Johne's Disease Cattle by Using the Mycobacterium tuberculosis Protein Array. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00081-17. [PMID: 28515134 DOI: 10.1128/cvi.00081-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis-infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne's disease diagnostic assays.
Collapse
|
21
|
Waters WR, Vordermeier HM, Rhodes S, Khatri B, Palmer MV, Maggioli MF, Thacker TC, Nelson JT, Thomsen BV, Robbe-Austerman S, Bravo Garcia DM, Schoenbaum MA, Camacho MS, Ray JS, Esfandiari J, Lambotte P, Greenwald R, Grandison A, Sikar-Gang A, Lyashchenko KP. Potential for rapid antibody detection to identify tuberculous cattle with non-reactive tuberculin skin test results. BMC Vet Res 2017; 13:164. [PMID: 28592322 PMCID: PMC5463416 DOI: 10.1186/s12917-017-1085-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (TB) control programs generally rely on the tuberculin skin test (TST) for ante-mortem detection of Mycobacterium bovis-infected cattle. RESULTS Present findings demonstrate that a rapid antibody test based on Dual-Path Platform (DPP®) technology, when applied 1-3 weeks after TST, detected 9 of 11 and 34 of 52 TST non-reactive yet M. bovis-infected cattle from the US and GB, respectively. The specificity of the assay ranged from 98.9% (n = 92, US) to 96.0% (n = 50, GB) with samples from TB-free herds. Multi-antigen print immunoassay (MAPIA) revealed the presence of antibodies to multiple antigens of M. bovis in sera from TST non-reactors diagnosed with TB. CONCLUSIONS Thus, use of serologic assays in series with TST can identify a significant number of TST non-reactive tuberculous cattle for more efficient removal from TB-affected herds.
Collapse
Affiliation(s)
- W Ray Waters
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, USA
| | | | - Shelley Rhodes
- Tuberculosis Research Group, Animal and Plant Health Agency, Addlestone, UK
| | - Bhagwati Khatri
- Tuberculosis Research Group, Animal and Plant Health Agency, Addlestone, UK
| | - Mitchell V Palmer
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, USA
| | - Mayara F Maggioli
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, USA
| | - Tyler C Thacker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, USA
| | - Jeffrey T Nelson
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), USDA, Ames, IA, USA
| | - Bruce V Thomsen
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), USDA, Ames, IA, USA
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), USDA, Ames, IA, USA
| | - Doris M Bravo Garcia
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), USDA, Ames, IA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Groenendaal H, Zagmutt FJ, Patton EA, Wells SJ. Cost-benefit analysis of vaccination against Mycobacterium avium ssp. paratuberculosis in dairy cattle, given its cross-reactivity with tuberculosis tests. J Dairy Sci 2017; 98:6070-84. [PMID: 26117348 DOI: 10.3168/jds.2014-8914] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
Johne's disease (JD), or paratuberculosis, is a chronic enteric disease of ruminants, caused by infection with Mycobacterium avium ssp. paratuberculosis (MAP). Johne's disease causes considerable economic losses to the US dairy industry, estimated to be over $200 million annually. Available control strategies include management measures to improve calf hygiene, test-and-cull strategies, and vaccination. Although the first 2 strategies have shown to reduce the prevalence of MAP, they require dedicated and long-term efforts from dairy producers, with often relatively slow progress. As a result, uptake of both strategies has not been as wide as expected given the economic benefits especially of improved hygiene. Vaccination has also been found to reduce the prevalence and economic losses of JD, but most economic estimates have been based on simulation of hypothetical vaccines. In addition, if an animal is vaccinated, cross-reactivity between MAP antibodies and bovine tuberculosis (BTB) antigens may occur, decreasing the specificity of BTB tests. Therefore, MAP vaccination would cause additional indirect costs to the BTB surveillance and control program. The objective of the present study was to use data from a MAP vaccine trial together with an epidemiologic and economic model to estimate the direct on-farm benefits of MAP vaccination and to estimate the indirect costs of MAP vaccination due to the cross-reactivity with BTB tests. Direct economic benefits of MAP vaccination were estimated at $8.03 (90% predictive interval: -$25.97 to $41.36) per adult animal per year, all accruing to the dairy producers. This estimate is likely an underestimation of the true direct benefits of MAP vaccination. In addition, indirect economic costs due to cross-reactivity were $2.14 per adult animal per year, making MAP vaccination economically attractive. Only in regions or states with a high frequency of BTB testing (because of, for example, Mycobacterium bovis outbreaks in a wild deer population) and areas where typically small groups of animals are BTB tested would MAP vaccination not be economically attractive.
Collapse
Affiliation(s)
| | | | - Elisabeth A Patton
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison 53718
| | - Scott J Wells
- College of Veterinary Medicine, University of Minnesota, St. Paul 55108
| |
Collapse
|
23
|
Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG, Villarreal-Ramos B. Bovine Tuberculosis in Cattle: Vaccines, DIVA Tests, and Host Biomarker Discovery. Annu Rev Anim Biosci 2016; 4:87-109. [PMID: 26884103 DOI: 10.1146/annurev-animal-021815-111311] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine tuberculosis remains a major economic and animal welfare concern worldwide. Cattle vaccination is being considered as part of control strategies. This approach, used alongside conventional control policies, also requires the development of vaccine-compatible diagnostic assays to distinguish vaccinated from infected animals (DIVA). We discuss progress made on optimizing the only potentially available vaccine, bacille Calmette Guérin (BCG), and on strategies to improve BCG efficacy. We also describe recent advances in DIVA development based on the detection of host cellular immune responses by blood-testing or skin-testing approaches. Finally, to accelerate vaccine development, definition of host biomarkers that provide meaningful stage-gating criteria to select vaccine candidates for further testing is highly desirable. Some progress has also been made in this area of research, and we summarize studies that defined either markers predicting vaccine success or markers that correlate with disease stage or severity.
Collapse
Affiliation(s)
- H Martin Vordermeier
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | - Gareth J Jones
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | - Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - R Glyn Hewinson
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | | |
Collapse
|
24
|
Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG. Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet Immunol Immunopathol 2016; 181:10-14. [DOI: 10.1016/j.vetimm.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
25
|
A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol Infect 2016; 144:2899-2926. [DOI: 10.1017/s095026881600131x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SUMMARYBovine tuberculosis (bTB) is an important disease of cattle caused by infection withMycobacterium bovis, a pathogen that may be extremely difficult to eradicate in the presence of a true wildlife reservoir. Our objective was to identify and review relevant literature and provide a succinct summary of current knowledge of risk factors for transmission of infection of cattle. Search strings were developed to identify publications from electronic databases to February 2015. Abstracts of 4255 papers identified were reviewed by three reviewers to determine whether the entire article was likely to contain relevant information. Risk factors could be broadly grouped as follows: animal (including nutrition and genetics), herd (including bTB and testing history), environment, wildlife and social factors. Many risk factors are inter-related and study designs often do not enable differentiation between cause and consequence of infection. Despite differences in study design and location, some risk factors are consistently identified, e.g. herd size, bTB history, presence of infected wildlife, whereas the evidence for others is less consistent and coherent, e.g. nutrition, local cattle movements. We have identified knowledge gaps where further research may result in an improved understanding of bTB transmission dynamics. The application of targeted, multifactorial disease control regimens that address a range of risk factors simultaneously is likely to be a key to effective, evidence-informed control strategies.
Collapse
|
26
|
Vaccination of domestic animals against tuberculosis: Review of progress and contributions to the field of the TBSTEP project. Res Vet Sci 2014; 97 Suppl:S53-60. [DOI: 10.1016/j.rvsc.2014.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
|
27
|
Bannantine JP, Hines ME, Bermudez LE, Talaat AM, Sreevatsan S, Stabel JR, Chang YF, Coussens PM, Barletta RG, Davis WC, Collins DM, Gröhn YT, Kapur V. A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol 2014; 4:126. [PMID: 25250245 PMCID: PMC4158869 DOI: 10.3389/fcimb.2014.00126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Since the early 1980s, several investigations have focused on developing a vaccine against Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease in cattle and sheep. These studies used whole-cell inactivated vaccines that have proven useful in limiting disease progression, but have not prevented infection. In contrast, modified live vaccines that invoke a Th1 type immune response, may improve protection against infection. Spurred by recent advances in the ability to create defined knockouts in MAP, several independent laboratories have developed modified live vaccine candidates by transpositional mutation of virulence and metabolic genes in MAP. In order to accelerate the process of identification and comparative evaluation of the most promising modified live MAP vaccine candidates, members of a multi-institutional USDA-funded research consortium, the Johne's disease integrated program (JDIP), met to establish a standardized testing platform using agreed upon protocols. A total of 22 candidates vaccine strains developed in five independent laboratories in the United States and New Zealand voluntarily entered into a double blind stage gated trial pipeline. In Phase I, the survival characteristics of each candidate were determined in bovine macrophages. Attenuated strains moved to Phase II, where tissue colonization of C57/BL6 mice were evaluated in a challenge model. In Phase III, five promising candidates from Phase I and II were evaluated for their ability to reduce fecal shedding, tissue colonization and pathology in a baby goat challenge model. Formation of a multi-institutional consortium for vaccine strain evaluation has revealed insights for the implementation of vaccine trials for Johne's disease and other animal pathogens. We conclude by suggesting the best way forward based on this 3-phase trial experience and challenge the rationale for use of a macrophage-to-mouse-to native host pipeline for MAP vaccine development.
Collapse
Affiliation(s)
- John P Bannantine
- Infectious Bacterial Diseases USDA-ARS, National Animal Disease Center Ames, IA, USA
| | - Murray E Hines
- Tifton Veterinary Diagnostic and Investigational Lab, The University of Georgia Tifton, GA, USA
| | - Luiz E Bermudez
- Departments of Microbiology and Biomedical Sciences, Oregon State University Corvalis, OR, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA ; Department of Food Hygenie, Cairo University Cairo, Egypt
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, University of Minnesota Minneapolis, MN, USA
| | - Judith R Stabel
- Infectious Bacterial Diseases USDA-ARS, National Animal Disease Center Ames, IA, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Paul M Coussens
- Department of Animal Science, Michigan State University Lansing, MI, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - William C Davis
- Department of Veterinary Microbiology, Washington State University Pullman, WA, USA
| | | | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
28
|
Johnston CD, Bannantine JP, Govender R, Endersen L, Pletzer D, Weingart H, Coffey A, O'Mahony J, Sleator RD. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius. Front Cell Infect Microbiol 2014; 4:120. [PMID: 25237653 PMCID: PMC4154528 DOI: 10.3389/fcimb.2014.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/15/2014] [Indexed: 01/03/2023] Open
Abstract
It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.
Collapse
Affiliation(s)
| | - John P Bannantine
- United States Department of Agriculture - Agricultural Research Service, National Animal Disease Center Ames, IA, USA
| | - Rodney Govender
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Lorraine Endersen
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Daniel Pletzer
- School of Engineering and Science, Jacobs University Bremen Bremen, Germany
| | - Helge Weingart
- School of Engineering and Science, Jacobs University Bremen Bremen, Germany
| | - Aidan Coffey
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Jim O'Mahony
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| | - Roy D Sleator
- Biological Sciences Department, Cork Institute of Technology Cork, Ireland
| |
Collapse
|
29
|
|
30
|
Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res Vet Sci 2014; 97 Suppl:S44-52. [PMID: 24768355 DOI: 10.1016/j.rvsc.2014.04.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/25/2014] [Accepted: 04/05/2014] [Indexed: 11/21/2022]
Abstract
Bovine tuberculosis (TB), mainly caused by Mycobacterium bovis, is a zoonotic disease with implications for Public Health and having an economic impact due to decreased production and limitations to the trade. Bovine TB is subjected to official eradication campaigns mainly based on a test and slaughter policy using diagnostic assays based on the cell-mediated immune response as the intradermal tuberculin test and the gamma-interferon (IFN-γ) assay. Moreover, several diagnostic assays based on the detection of specific antibodies (Abs) have been developed in the last few years with the aim of complementing the current diagnostic techniques in the near future. This review provides an overview of the current ante-mortem diagnostic tools for diagnosis of bovine TB regarding historical background, methodologies and sensitivity (Se) and specificity (Sp) obtained in previous studies under different epidemiological situations.
Collapse
|
31
|
Mycobacterium avium subsp. paratuberculosis antibody response, fecal shedding, and antibody cross-reactivity to Mycobacterium bovis in M. avium subsp. paratuberculosis-infected cattle herds vaccinated against Johne's disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:698-703. [PMID: 24623626 DOI: 10.1128/cvi.00032-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination for Johne's disease with killed inactivated vaccine in cattle herds has shown variable success. The vaccine delays the onset of disease but does not afford complete protection. Johne's disease vaccination has also been reported to interfere with measurements of cell-mediated immune responses for the detection of bovine tuberculosis. Temporal antibody responses and fecal shedding of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne's disease, were measured in 2 dairy cattle herds using Johne's disease vaccine (Mycopar) over a period of 7 years. Vaccination against Johne's disease resulted in positive serum M. avium subsp. paratuberculosis antibody responses in both herds, and the responses persisted in vaccinated cattle up to 7 years of age. Some vaccinated animals (29.4% in herd A and 36.2% in herd B) showed no serological reactivity to M. avium subsp. paratuberculosis. M. avium subsp. paratuberculosis-specific antibody responses were also detected in milk from Johne's disease-vaccinated animals, but fewer animals (39.3% in herd A and 49.4% in herd B) had positive results with milk than with serum samples. With vaccination against M. avium subsp. paratuberculosis, fecal shedding in both dairy herds was reduced significantly (P < 0.001). In addition, when selected Johne's disease-vaccinated and -infected animals were investigated for serological cross-reactivity to Mycobacterium bovis, no cross-reactivity was observed.
Collapse
|
32
|
|