1
|
Dorakumbura BN, Beckett NM, Cook EC, Nolan AND, Brown D, Douglas B. Emerging Human Medications in Racing Animals: Analytical and Regulatory Challenges. Drug Test Anal 2024. [PMID: 39300607 DOI: 10.1002/dta.3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Positive identification and reporting of therapeutic substances intended for human consumption in race-day equine and canine samples is a controversial topic. While inadvertent environmental exposure is a potential cause for the presence of these substances in race-day samples, intentional use cannot be ruled out given their therapeutic benefits. Pregabalin is widely prescribed in Australia to treat epilepsy, anxiety, and neuropathic pain in humans; however, it is also increasingly used as a recreational drug. Metformin is commonly used to treat type 2 diabetes in humans. Both pregabalin and metformin have no routine use on racing animals and should not be present in race-day samples taken from healthy animals. They are prohibited substances under the Rules of Racing with no established screening limits. Although therapeutic levels for these substances have been established in humans, such information is not available for animals. Pregabalin and metformin are analytically challenging molecules, more so when they are extracted from biological matrices routinely screened for hundreds of other compounds simultaneously. A simple extraction, followed by a targeted Ultra High-Pressure Liquid Chromatography Orbitrap™ Mass Spectrometry method utilising a reverse-phase C18 column, is presented. This method is effective in screening for pregabalin and metformin, in addition to more than 150 other compounds of interest in equine and canine urines. The prevalence of pregabalin and metformin in race-day equine and canine urine samples in Western Australia was monitored using this method over 12 months. More than 4000 urine samples were screened, and four samples were confirmed positive for these substances.
Collapse
Affiliation(s)
| | | | - Elise C Cook
- Racing Chemistry Laboratory, ChemCentre, Bentley, WA, Australia
| | | | - David Brown
- Forensic Science Laboratory, ChemCentre, Bentley, WA, Australia
| | - Bianca Douglas
- Forensic Science Laboratory, ChemCentre, Bentley, WA, Australia
| |
Collapse
|
2
|
Gartland B, Strunk W, Schulte B, DeGraves F, Koostra J. Time budgets differ in horses during continuous and space-restricted rotational grazing. Vet Anim Sci 2024; 25:100371. [PMID: 38975273 PMCID: PMC11225649 DOI: 10.1016/j.vas.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Horses can become obese and develop related health issues such as laminitis from excessive grazing on high-quality pasture grass; limiting pasture intake can allow weight loss to occur. The objective of this study was to determine the effect of space-restricted rotational grazing on body weight (BW) and time budgets in horses. Eight mature geldings and mares with maintenance-only requirements were randomly assigned to either a space-restricted rotational grazing group (SRG; BW 512 ± 6 kg; n = 4) or a continuous grazing group (CG; BW 517 ± 49 kg; n = 4) for 42 d SRG horses grazed an area with dimensions to provide 80-90 % of mean digestible energy requirement for the 4 horses over a 7-d grazing period; whereas, the CG horses continuously grazed similar non-toxic endophyte-infected tall fescue pasture providing greater than maintenance requirements for the 42 d Horses in the SRG group were moved to a new area every 7 d for 6 weeks. On d 7 at 1600 h of each week, horses were brought inside, and feed was withheld overnight. At 0700 h the next day, BWs were recorded prior to turnout. Observers recorded behaviors simultaneously on SRG and CG horses every six minutes throughout the day three days per week according to an ethogram. This included 30 s scans of all horses. Proportion of grazing and standing had an inverse relationship. Proportion of grazing was affected by the treatment by time interaction, which grazing was displayed more in SRG than CG during weeks 2 and 3, and then reversed weeks 4, 5 and 6.
Collapse
Affiliation(s)
- Beverly Gartland
- Western Kentucky University, Department of Agriculture and Food Science, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - William Strunk
- Western Kentucky University, Department of Agriculture and Food Science, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Bruce Schulte
- Western Kentucky University, Department of Biology, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Fred DeGraves
- Western Kentucky University, Department of Agriculture and Food Science, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| | - Jim Koostra
- Western Kentucky University, Department of Agriculture and Food Science, 1906 College Heights Blvd., Bowling Green, KY 42101, USA
| |
Collapse
|
3
|
Bordin C, Raspa F, Harris P, Ellis AD, Roggero A, Palestrini C, Bergero D, Valle E. Effect of pony morphology and hay feeding methods on back and neck postures. J Anim Physiol Anim Nutr (Berl) 2024; 108 Suppl 1:3-14. [PMID: 37452526 DOI: 10.1111/jpn.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The application of hay feeding devices, such as the use of hay nets or slow feeders, can help with the management of weight in ponies; however, there is still a lack of knowledge regarding their effect on equine posture. Therefore, the aim of the study was to assess the effect of different feeding devices on the posture of ponies using morphometric analysis. Two different breed types, Shetland type (SH, n = 5) versus Welsh Cob type (WC, n = 4), were fed the same forage in four different ways: on the ground (G), using a fully filled haynet (HF), using a partially filled haynet (HL) and using a slow-feeder hay box (HB). Video recordings were obtained and then geometric morphometric analysis was applied. Breed morphology was confirmed by body morphometric measurements. Data were analysed statistically using one-way ANOVA, canonical variate analysis (CVA), principal component analysis (PCA), partial least-squares (PLS) analysis and multivariate analysis of variance (MANOVA). Moreover, a mixed model was performed to study differences in mandibular angle. SH and WC ponies were shown to have significantly different body morphometric measurements. The geometric morphometric analysis results showed that ponies arch their back and modify their neck shape differently according to the feeding method and their morphological group. For the neck, the SH and WC ponies adapted similarly to the use of small-holed hay nets, but their posture varied when feeding from the ground or hay box. The back postures consistently differed according to the breed type and feeding method. The mandibular angle for both breed types was reduced with all the feeding devices compared to feeding from the ground. Further studies are needed to evaluate the long-term effects of slow-feeding devices on posture and mandibular angle, taking into consideration animals with different morphologies.
Collapse
Affiliation(s)
- Clara Bordin
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Federica Raspa
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Patricia Harris
- Equine Studies Group, Waltham Petcare Science Institute, Waltham-on-the-Wolds, UK
| | | | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Domenico Bergero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Emanuela Valle
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
4
|
Bordin C, Raspa F, Greppi M, Harris P, Ellis AD, Roggero A, Palestrini C, Cavallini D, Bergero D, Valle E. Pony feeding management: the role of morphology and hay feeding methods on intake rate, ingestive behaviors and mouth shaping. Front Vet Sci 2024; 11:1332207. [PMID: 38681853 PMCID: PMC11046934 DOI: 10.3389/fvets.2024.1332207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 05/01/2024] Open
Abstract
In the last decade, haynets and slow feeders have been promoted as sustainable tools to improve the feeding management of horses and reduce forage waste, but little is known about their effects on ponies. Therefore, the aim of this study was to analyze the effects of different hay feeding methods on the ingestive behaviors, intake rate and mouth shaping of ponies belonging to two breed types, which are characterized by different head morphologies. Shetland type (SH, n = 5) and Welsh/Cob type (WC, n = 4) ponies were fed hay using four feeding methods: on the ground (G), a fully filled haynet (HF), a partially filled haynet (HL), and a slow-feeder hay box (HB). Head morphology was measured for each pony. Video recordings were then made to apply geometric morphometrics and to perform behavioral analysis. The intake rate was measured for each pony and each feeding method. Data obtained with geometric morphometrics were analyzed using principal component analysis (PCA) and canonical variate analysis (CVA). Behavioral data and intake rate measurements were analyzed using a mixed model, a post-hoc Tukey's test, a Pearson's correlation test, and a stepwise regression model. The geometric morphometrics results demonstrated that feeding method influenced mouth shaping (36% for G, 78% for HB, 77% for HF, 83% for HL, considering the total variance of shape) and affected the intake rate. Differences in mouth shaping and ingestive behaviors in SH and WC ponies also confirmed the role of morphology in feeding management. The HL proved to be the most effective tool to increase feeding consumption time when needed (5 h/kg for SH ponies and 3 h/kg for WC ponies, considering the intake time), although the HB may be the optimal choice to reduce the intake rate while maintaining a more natural posture. Future studies are suggested to fully understand how body size and morphology influence feeding in equine species.
Collapse
Affiliation(s)
- Clara Bordin
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Federica Raspa
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Martina Greppi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Patricia Harris
- Equine Studies Group, Waltham Petcare Science Institute, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
- Mars Petcare UK, Slough, United Kingdom
| | | | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Damiano Cavallini
- Department of Veterinary Sciences, University of Bologna, Ozzano dell’Emilia, Italy
| | - Domenico Bergero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Emanuela Valle
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
5
|
Colmer SF, Adams AA, Adam E, Miller R, Stefanovski D, Kulp JC, van Eps A. The effect of pre-dosing with metformin on the insulin response to oral sugar in insulin-dysregulated horses. Equine Vet J 2024; 56:318-325. [PMID: 37545128 DOI: 10.1111/evj.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND A single dose of metformin administered 1 h prior to oral glucose challenge was previously shown to reduce insulinaemic responses in horses with experimentally-induced insulin dysregulation (ID). Targeted administration could be useful for controlling post-prandial hyperinsulinaemia in horses with naturally-occurring ID. OBJECTIVES The objective was to compare the insulinaemic and glycaemic responses to oral sugar testing (OST) performed at different intervals after a single dose of metformin in horses with naturally-occurring ID. We hypothesised that pre-treatment with one dose of metformin would significantly decrease the insulinaemic response to OST. STUDY DESIGN Randomised cross-over in vivo experiment. METHODS Eight university-owned adult horses with naturally-occurring ID underwent OST 1, 2 and 6 h following a single oral dose of metformin (30 mg/kg) or 1 h after placebo (240 mL water) with a 7-day washout between treatments over a period of 3 weeks. Plasma insulin, C-peptide and glucose concentrations were measured at 0, 60 and 90 min after 0.45 mL/kg light corn syrup and the effect of treatment (and the interval since dosing) examined using a mixed effects linear regression model. RESULTS Metformin treatment had no significant effect on plasma glucose, insulin or C-peptide concentrations at any time point compared with placebo (p > 0.05). For OST 1 h post metformin, median (IQR) plasma insulin was 91.3 (62.4-114.9) μIU/mL at 60 min versus 76.2 (59.1-134.5) for placebo (p = 0.8) and 62.7 (31.4-109.7) at 90 min versus 51.8 (29.2-126.3) for placebo (p = 0.9). MAIN LIMITATIONS Small sample size may limit identification of more subtle decreases in insulin concentration with metformin pre-dosing. The results of this study are relevant only for one pre-treatment dose (30 mg/kg) which limits extrapolation to predictions about the effects of longer-term metformin administration on insulin and glucose dynamics in the horse. CONCLUSIONS AND CLINICAL IMPORTANCE The results do not support the use of targeted metformin treatment to reduce post-prandial hyperinsulinaemia in horses with naturally-occurring ID.
Collapse
Affiliation(s)
- Sarah F Colmer
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Amanda A Adams
- Department of Veterinary Science, Gluck Equine Research Center, The University of Kentucky College of Agriculture, Food and Environment, Lexington, Kentucky, USA
| | - Emma Adam
- Department of Veterinary Science, Gluck Equine Research Center, The University of Kentucky College of Agriculture, Food and Environment, Lexington, Kentucky, USA
| | - Rachel Miller
- Department of Clinical Sciences, Lincoln Memorial University College of Veterinary Medicine, Harrogate, Tennessee, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Jeaneen C Kulp
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Andrew van Eps
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| |
Collapse
|
6
|
Pratt-Phillips S. Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses-A Review. Animals (Basel) 2024; 14:727. [PMID: 38473112 DOI: 10.3390/ani14050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is an important health concern in horses, along with humans and companion animals. Adipose tissue is an inflammatory organ that alters the insulin-signaling cascade, ultimately causing insulin dysregulation and impaired glucose metabolism. These disruptions can increase the risk of metabolic disease and laminitis in horses and may also impact energy metabolism during exercise. A single bout of exercise, along with chronic exercise conditioning, increases insulin sensitivity and glucose disposal via both contraction- and insulin-mediated glucose uptake pathways. Regular exercise also increases calorie expenditure, which can facilitate weight (as body fat) loss. This paper explores the metabolic pathways affected by adiposity, as well as discusses the impact of exercise on insulin metabolism in horses.
Collapse
|
7
|
Weckman MJ, Karikoski NP, Raekallio MR, Box JR, Kvist L. Genome-wide association study suggests genetic candidate loci of insulin dysregulation in Finnhorses. Vet J 2024; 303:106063. [PMID: 38232813 DOI: 10.1016/j.tvjl.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Equine metabolic syndrome (EMS) is a common welfare problem in horses worldwide. It is characterized by insulin dysregulation (ID), predisposition to laminitis and often obesity. EMS is multifactorial by nature, with both the environment and genetics contributing to the phenotype. Environmental factors, such as feeding and exercise, can be controlled, thus forming the basis for treatment and prevention. Genetic factors, by contrast, are less well-known and not easily controllable. The aim of this study was to identify potential genetic loci influencing ID/EMS in Finnhorses. A single-breed (Finnhorse) case-control genome-wide association study (GWAS) of ID was conducted with controls that included age-appropriate non-ID horses. ID status was determined with an oral sugar test (OST) for fasted horses. Seventy-one Finnhorses participated (n = 34 ID, n = 37 control). DNA samples (hair roots) were genotyped for 65 157 single-nucleotide polymorphisms (SNPs) with the Illumina Equine SNP70 BeadChip, and these data were analysed for association and FST outliers with genomic tools. P-values that exceeded the suggestive threshold (P = 1.00 ×10-5) were found in SNP BIEC2_383954 (P = 3.45 ×10-6) in chromosome 17 and SNP BIEC2_312374 (P = 1.89 ×10-5) in chromosome 15. Hierarchical and Bayesian FST outlier tests also detected these SNPs. Potential candidate genes associated with the ID close to SNP BIEC2_383954, with functions in carbohydrate metabolism, were Arginine and Glutamate Rich 1 (ARGLU1) and Ephrin-B2 (EFNB2).
Collapse
Affiliation(s)
- M J Weckman
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland.
| | - N P Karikoski
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - M R Raekallio
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - J R Box
- Department of Equine and Small Animal Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland
| | - L Kvist
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 8000, FI-3000 Oulu, Finland
| |
Collapse
|
8
|
Bourebaba L, Kępska M, Qasem B, Zyzak M, Łyczko J, Klemens M, Mularczyk M, Marycz K. Sex hormone-binding globulin improves lipid metabolism and reduces inflammation in subcutaneous adipose tissue of metabolic syndrome-affected horses. Front Mol Biosci 2023; 10:1214961. [PMID: 38146533 PMCID: PMC10749534 DOI: 10.3389/fmolb.2023.1214961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/14/2023] [Indexed: 12/27/2023] Open
Abstract
Equine metabolic syndrome (EMS) is a steadily growing endocrine disorder representing a real challenge in veterinary practice. As a multifactorial condition, EMS is characterized by three main metabolic abnormalities including insulin resistance, increased adiposity or obesity and hoof laminitis. Adipose tissue dysfunction is recognized as a core pathophysiological determinant of EMS, as it strongly participates to lipotoxicity and systemic metaflammation, both of which have been closely linked to the development of generalized insulin resistance. Besides, sex hormone binding globulin (SHBG) is an important sex steroids transporters that has been recently proposed as an important metabolic mediator. Therefore, the aim of this study was to verify whether SHBG treatment may ameliorate subcutaneous adipose tissue metabolic failure under EMS condition in terms of lipidome homeostasis, lipid metabolism programs, insulin signalling and local inflammation. Subcutaneous adipose tissue (SAT) biopsies were collected post-mortem from healthy (n = 3) and EMS (n = 3) slaughtered horses. SHBG protein has been applied to SAT samples from EMS horses for 24 h at a final concentration of 50 nM, while control groups (healthy and untreated EMS) were cultured in the presence of SHBG-vehicle only. Tissues from all groups were afterwards secured for downstream analysis of gene expression using RT-qPCR, protein levels by Western blot and ELISA assay and lipidomics through GC-MS technique. Obtained results showcased that SHBG intervention efficiently normalized the altered fatty acids (FAs) profiles by lowering the accumulation of saturated and trans FAs, as well as the pro-inflammatory arachidonic and linoleic acids. Moreover, SHBG showed promising value for the regulation of adipocyte lipolysis and engorgement by lowering the levels of perilipin-1. SHBG exerted moderated effect toward SCD1 and FASN enzymes expression, but increased the LPL abundance. Interestingly, SHBG exhibited a negative regulatory effect on pro-adipogenic stimulators and induced higher expression of KLF3, IRF3 and β-catenin, known as strong adipogenesis repressors. Finally, SHBG protein showed remarkable ability in restoring the insulin signal transduction, IR/IRS/Pi3K/AKT phosphorylation events and GLUT4 transporter abundance, and further attenuate pro-inflammatory response by lowering IL-6 tissue levels and targeting the PDIA3/ERK axis. Overall, the obtained data clearly demonstrate the benefice of SHBG treatment in the regulation of adipose tissue metabolism in the course of EMS and provide new insights for the development of molecular therapies with potential translational application to human metabolic disorders.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Badr Qasem
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Zyzak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Klemens
- Department of Food Chemistry and Biocatalysis, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Frers F, Delarocque J, Feige K, Huber K, Warnken T. Insulin signaling in insulin-dysregulated Icelandic horses. Domest Anim Endocrinol 2023; 86:106822. [PMID: 39491260 DOI: 10.1016/j.domaniend.2023.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
The underlying molecular mechanisms leading to insulin dysregulation are poorly understood in horses. Therefore, this study aimed to determine if insulin dysregulation is associated with an altered basal expression and extent of phosphorylation of key proteins of the insulin signaling cascade in liver (LT), muscle (MT), and subcutaneous adipose tissue (AT) under basal and stimulated conditions. Twelve Icelandic horses were subjected (1) to an oral glucose (Gluc PO) challenge and (2) to an intravenous (Ins IV) insulin challenge in a crossover study. Biopsies of LT, MT, and AT were taken in vivo under basal conditions and after Gluc PO and Ins IV stimulation. Corresponding insulin levels were measured by an equine optimized ELISA (Mercodia AB, Uppsala). Insulin levels ≥ 110 µIU/mL at 120 min indicated that six horses were insulin dysregulated (HI), while six were not (NI). Gluc PO stimulation resulted in a more pronounced hyperinsulinemia and hyperglycemia in HI horses compared to NI horses. Western blot analysis of key proteins of the insulin signaling cascade revealed an enhanced phosphorylation of the insulin receptor (InsR) under Gluc PO (P = 0.001) and Ins IV stimulation (P = 0.017) within LT, but not in MT and AT. Phosphorylation of protein kinase B was enhanced under Gluc PO stimulation in all tissues and under Ins IV stimulation in MT and AT, while phosphorylation of adenosine monophosphate protein kinase α was reduced after glucose administration (P = 0.005) in all horses. Interestingly, HI horses had significantly higher amounts of phosphorylated mechanistic target of rapamycin (mTOR) in MT (P = 0.049), irrespective of any stimulation. In LT, the amount of phosphorylated mTOR decreased under Gluc PO conditions in HI horses, while an increase was observed in NI horses (P = 0.015). A major limitation was the inclusion of only Icelandic horses of advanced age since insulin dysregulation could be related to both the equine metabolic syndrome and/or pituitary pars intermedia dysfunction. In summary, insulin signaling appeared to be maintained in both HI and NI Icelandic horses, although post-receptor alterations were observed. Thus, ID might be an equine-specific metabolic condition, in which alterations of the mTOR signaling pathway may play a crucial role, as emphasized by higher mTOR phosphorylation in HI horses.
Collapse
Affiliation(s)
- F Frers
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany.
| | - J Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany
| | - K Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany
| | - K Huber
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, Fruwirthstr. 35, Stuttgart 70599, Germany
| | - T Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, Hannover 30559, Germany; Boehringer Ingelheim Vetmedica GmbH, Binger Straße 173, Ingelheim am Rhein 55216, Germany
| |
Collapse
|
10
|
Bourebaba L, Serwotka-Suszczak A, Bourebaba N, Zyzak M, Marycz K. The PTP1B Inhibitor Trodusquemine (MSI-1436) Improves Glucose Uptake in Equine Metabolic Syndrome Affected Liver through Anti-Inflammatory and Antifibrotic Activity. Int J Inflam 2023; 2023:3803056. [PMID: 37808009 PMCID: PMC10560121 DOI: 10.1155/2023/3803056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hyperactivation of protein tyrosine phosphatase (PTP1B) has been associated with several metabolic malfunctions ranging from insulin resistance, metaflammation, lipotoxicity, and hyperglycaemia. Liver metabolism failure has been proposed as a core element in underlying endocrine disorders through persistent inflammation and highly fibrotic phenotype. Methods In this study, the outcomes of PTP1B inhibition using trodusquemine (MSI-1436) on key equine metabolic syndrome (EMS)-related alterations including inflammation, fibrosis, and glucose uptake have been analyzed in liver explants collected from EMS-affected horses using various analytical techniques, namely, flow cytometry, RT-qPCR, and Western blot. Results PTP1B inhibition using trodusquemine resulted in decreased proinflammatory cytokines (IL-1β, TNF-α, and IL-6) release from liver and PBMC affected by EMS and regulated expression of major proinflammatory microRNAs such as miR-802 and miR-211. Moreover, MSI-1436 enhanced the anti-inflammatory profile of livers by elevating the expression of IL-10 and IL-4 and activating CD4+CD25+Foxp3+ regulatory T cells in treated PBMC. Similarly, the inhibitor attenuated fibrogenic pathways in the liver by downregulating TGF-β/NOX1/4 axis and associated MMP-2/9 overactivation. Interestingly, PTP1B inhibition ameliorated the expression of TIMP-1 and Smad7, both important antifibrotic mediators. Furthermore, application of MSI-1436 was found to augment the abundance of glycosylated Glut-2, which subsequently expanded the glucose absorption in the EMS liver, probably due to an enhanced Glut-2 stability and half-life onto the plasma cell membranes. Conclusion Taken together, the presented data suggest that the PTP1B inhibition strategy and the use of its specific inhibitor MSI-1436 represents a promising option for the improvement of liver tissue integrity and homeostasis in the course of EMS and adds more insights for ongoing clinical trials for human MetS management.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Magdalena Zyzak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
11
|
Gregg SR, Barshick MR, Johnson SE. Intravenous Injection of Sodium Hyaluronate Diminishes Basal Inflammatory Gene Expression in Equine Skeletal Muscle. Animals (Basel) 2023; 13:3030. [PMID: 37835636 PMCID: PMC10571686 DOI: 10.3390/ani13193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Following strenuous exercise, skeletal muscle experiences an acute inflammatory state that initiates the repair process. Systemic hyaluronic acid (HA) is injected to horses routinely as a joint anti-inflammatory. To gain insight into the effects of HA on skeletal muscle, adult Thoroughbred geldings (n = 6) were injected with a commercial HA product weekly for 3 weeks prior to performing a submaximal exercise test. Gluteal muscle (GM) biopsies were obtained before and 1 h after exercise for gene expression analysis and HA localization. The results from RNA sequencing demonstrate differences in gene expression between non-injected controls (CON; n = 6) and HA horses. Prior to exercise, HA horses contained fewer (p < 0.05) transcripts associated with leukocyte activity and cytokine production than CON. The performance of exercise resulted in the upregulation (p < 0.05) of several cytokine genes and their signaling intermediates, indicating that HA does not suppress the normal inflammatory response to exercise. The transcript abundance for marker genes of neutrophils (NCF2) and macrophages (CD163) was greater (p < 0.05) post-exercise and was unaffected by HA injection. The anti-inflammatory effects of HA on muscle are indirect as no differences (p > 0.05) in the relative amount of the macromolecule was observed between the CON and HA fiber extracellular matrix (ECM). However, exercise tended (p = 0.10) to cause an increase in ECM size suggestive of muscle damage and remodeling. The finding was supported by the increased (p < 0.05) expression of CTGF, TGFβ1, MMP9, TIMP4 and Col4A1. Collectively, the results validate HA as an anti-inflammatory aid that does not disrupt the normal post-exercise muscle repair process.
Collapse
Affiliation(s)
| | | | - Sally E. Johnson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (S.R.G.); (M.R.B.)
| |
Collapse
|
12
|
Bourebaba N, Sikora M, Qasem B, Bourebaba L, Marycz K. Sex hormone-binding globulin (SHBG) mitigates ER stress and improves viability and insulin sensitivity in adipose-derived mesenchymal stem cells (ASC) of equine metabolic syndrome (EMS)-affected horses. Cell Commun Signal 2023; 21:230. [PMID: 37697311 PMCID: PMC10496240 DOI: 10.1186/s12964-023-01254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Equine metabolic syndrome (EMS), which encompasses insulin resistance, low-grade inflammation and predisposition to laminitis is a critical endocrine disorder among the most prevalent conditions affecting horses from different breeds. According to the most recent research, low human sex hormone-binding globulin (SHBG) serum levels correlate with an increased risk of obesity, insulin resistance and diabetes, and may contribute to overall metabolic dysregulations. This study aimed to test whether exogenous SHBG could protect EMS affected adipose-derived stromal stem cells (EqASCEMS) from apoptosis, oxidative stress, ER stress and thus improve insulin sensitivity. METHODS EqASCEMS wells were treated with two different concentrations (50 and 100 nM) of exogenous SHBG, whose biocompatibility was tested after 24, 48 and 72 h of incubation. Several parameters including cell viability, apoptosis, cell cycle, reactive oxygen species levels, ER stress, Pi3K/MAPK activation and insulin transducers expression were analysed. RESULTS Obtained data demonstrated that exogenous SHBG treatment significantly promoted ASCs cells proliferation, cell cycle and survival with reduced expression of p53 and p21 pro-apoptotic mediators. Furthermore, SHBG alleviated the oxidative stress caused by EMS and reduced the overaccumulation of intracellular ROS, by reducing ROS + cell percentage and regulating gene expression of endogenous antioxidant enzymes (Sod 1, Cat, GPx), SHBG treatment exhibited antioxidant activity by modulating total nitric oxide (NO) levels in EMS cells as well. SHBG treatment dampened the activation of ER stress sensors and effectors in EqASCEMS cells via the upregulation of MiR-7a-5p, the decrease in the expression levels of ATF-6, CHOP and eiF2A and the restoration of PDIA3 chaperone protein levels. As a consequence, SHBG application substantially improved insulin sensitivity through the modulation of Pi3K/Akt/Glut4 insulin signalling cascades. CONCLUSION Our results suggest that the SHBG is endowed with crucial beneficial effects on ASCs metabolic activities and could serve as a valuable therapeutic target for the development of efficient EMS treatment protocols. Video Abstract.
Collapse
Affiliation(s)
- Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Badr Qasem
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA, 95516, USA.
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Vidal Moreno de Vega C, Lemmens D, de Meeûs d’Argenteuil C, Boshuizen B, de Maré L, Leybaert L, Goethals K, de Oliveira JE, Hosotani G, Deforce D, Van Nieuwerburgh F, Devisscher L, Delesalle C. Dynamics of training and acute exercise-induced shifts in muscular glucose transporter (GLUT) 4, 8, and 12 expression in locomotion versus posture muscles in healthy horses. Front Physiol 2023; 14:1256217. [PMID: 37654675 PMCID: PMC10466803 DOI: 10.3389/fphys.2023.1256217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Important changes in glucose transporter (GLUT) expression should be expected if the glucose influx plays a pivotal role in fuelling or connecting metabolic pathways that are upregulated in response to exercise. The aim was to assess GLUT4, 8, and 12 dynamics in response to training and acute exercise. Methods: Sixteen untrained Standardbred mares (3-4 year) performed an incremental SET at the start and end of 8 weeks harness training. M. pectoralis (PM) and M. vastus lateralis (VL) muscle biopsies were taken before and after each SET, allowing for comparing rest and acute samples in untrained (UT) and trained (T) condition using Western Blot for GLUT quantification and Image Pro v.10 for Blot analysis. Data were normalized against GAPDH. Basal GLUT-levels of PM versus VL were analysed with the Wilcoxon matched-pairs signed rank test. The effect of acute exercise or training was assessed using the Friedman test with a post hoc Dunn's. Results: Basal GLUT4 and GLUT12 protein expression were significantly higher in the VL compared to the PM (PGLUT4 = 0.031 and PGLUT12 = 0.002). Training had no effect on basal GLUT4 expression, neither in the VL (p > 0.9999), nor the PM (p > 0.9999). However, acute exercise in trained condition significantly decreased GLUT4 expression in the VL (p = 0.0148). Neither training nor acute exercise significantly changed total GLUT8 protein expression. Training significantly decreased total GLUT12 protein expression in rest biopsies, only visible in the VL (p = 0.0359). This decrease was even more prominent in the VL after acute exercise in trained condition (PVL = 0.0025). Conclusion: The important changes seen in GLUT12 expression downregulation, both in response to training and acute exercise in the horse, the downregulation of GLUT4 expression after acute exercise in trained condition and the lack of differential shifts in GLUT8 expression in any of the studied conditions, questions the importance of glucose as substrate to fuel training and exercise in healthy horses. These findings encourage to further explore alternative fuels for their involvement in equine muscular energetics.
Collapse
Affiliation(s)
- Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Diete Lemmens
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance de Meeûs d’Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Lorie de Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Klara Goethals
- Biometrics Research Center, Ghent University, Ghent, Belgium
| | | | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Hallman I, Karikoski N, Kareskoski M. The effects of obesity and insulin dysregulation on mare reproduction, pregnancy, and foal health: a review. Front Vet Sci 2023; 10:1180622. [PMID: 37152686 PMCID: PMC10158983 DOI: 10.3389/fvets.2023.1180622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Obesity is a growing welfare concern in modern equine populations and predisposes horses to disturbances in energy metabolism such as insulin dysregulation. However, equine metabolic syndrome has only been recognized in recent decades. Functioning energy metabolism is pivotal to normal body homeostasis and affects essentially all organ systems, including reproduction. Previous literature suggests that obesity has an effect not only on the reproductive processes in mares but also on offspring health, predisposing the offspring to later-onset orthopedic and metabolic problems. This review focuses on the effects of obesity, insulin dysregulation and hyperinsulinemia on the reproductive functions of mares and the implications on foal health before and after birth. The points of interest are the cyclicity and ovarian function, uterine environment, gestation, the postpartum period, and the newborn foal. The aim is to review the current state of knowledge, and identify outstanding questions that could stimulate future research. This topic is important not only from the equine industry and production perspective but is also relevant for the welfare of future populations and individuals.
Collapse
Affiliation(s)
- Isa Hallman
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Kareskoski
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Impacts of Adiposity on Exercise Performance in Horses. Animals (Basel) 2023; 13:ani13040666. [PMID: 36830453 PMCID: PMC9951652 DOI: 10.3390/ani13040666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
There is ample research describing the increased risk of health concerns associated with equine obesity, including insulin dysregulation and laminitis. For athletes, the negative effect of weight carriage is well documented in racing thoroughbreds (i.e., handicapping with weight) and rider weight has been shown to impact the workload of ridden horses and to some degree their gait and movement. In many groups of competitive and athletic horses and ponies, obesity is still relatively common. Therefore, these animals not only are at risk of metabolic disease, but also must perform at a higher workload due to the weight of their adipose tissue. Excess body weight has been documented to affect gait quality, cause heat stress and is expected to hasten the incidence of arthritis development. Meanwhile, many equine event judges appear to favor the look of adiposity in competitive animals. This potentially rewards horses and ponies that are at higher risk of disease and reinforces the owner's decisions to keep their animals fat. This is a welfare concern for these animals and is of grave concern for the equine industry.
Collapse
|
16
|
Manfredi JM, Jacob S, Norton E. A one-health lens offers new perspectives on the importance of endocrine disorders in the equine athlete. J Am Vet Med Assoc 2023; 261:153-164. [PMID: 36595370 DOI: 10.2460/javma.22.11.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocrine disorders are associated with joint pain and tendon injury in humans, but the effects in the horse are only starting to be understood. Similar patterns of clinical signs and injury appear to affect horses and humans for both orthopedic and endocrine disorders, supporting the use of a one-health approach to tackle these issues. In this Currents in One Health, we will discuss common equine endocrinopathies, current testing recommendations, dietary management, genetic predispositions, and endocrine disorders' effects on performance. Our aim is to use a one-health lens to describe current comparative research so that veterinarians can employ cutting-edge preventative, diagnostic, and therapeutic recommendations. Identified key gaps in knowledge include whether equine metabolic osteoarthritis exists, if steroid joint injections are safe in horses with endocrine disorders, and if the return to performance percentage improves with concurrent treatment of endocrine and musculoskeletal disorders. Key takeaways include that the relationship between endocrine disorders and musculoskeletal disease in the horse goes beyond laminitis to include lameness, muscle atrophy, suspensory ligament degeneration, osteochondritis dissecans, and potentially metabolic osteoarthritis. Approaches learned from human and equine comparative studies can offer insight into injury recognition and management, thus mitigating the impact of endocrine disorders on performance in both species. Readers interested in an in-depth description of current and future research involving pathophysiology, novel interventions, and multiomic approaches to identify individuals with athletic limitations induced by endocrine disorders are invited to read the companion Currents in One Health by Manfredi et al, AJVR, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- 1Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah Jacob
- 1Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine Norton
- 2Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| |
Collapse
|
17
|
Bowlby CM, Purmessur D, Durgam SS. Equine peripheral blood CD14 + monocyte-derived macrophage in-vitro characteristics after GM-CSF pretreatment and LPS+IFN-γ or IL-4+IL-10 differentiation. Vet Immunol Immunopathol 2023; 255:110534. [PMID: 36502640 PMCID: PMC9807231 DOI: 10.1016/j.vetimm.2022.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are a heterogeneous population of immune cells that exhibit dynamic plasticity, polarize into inflammatory or regulatory/pro-resolving macrophages, and influence the healing tissue microenvironment. This study evaluated the in-vitro morphological, proliferative, cell surface marker expression and cytokine/soluble factor secretion characteristics of control, GM-CSF pretreated and inflammatory (LPS+IFN-γ) and regulatory (IL-4 + IL-10) differentiated equine CD14+ monocyte-derived macrophages. Phase contrast microscopy demonstrated that LPS+IFN-γ-primed macrophages exhibited a rounded, granular morphology, whereas IL-4 +IL-10-primed macrophages were elongated with a spindle-shaped morphology. GM-CSF enhanced the proliferation rate of monocytes/macrophages during adherent in-vitro culture. Flow cytometry analysis showed that GM-CSF alone and GM-CSF pretreatment with LPS+IFN-γ or IL-4 +IL-10 priming increased CD86 immunopositivity by 2-fold (p = 0.6); and CD206 immunopositivity remained unchanged. GM-CSF pretreatment and subsequent priming with LPS and IFN-γ yielded inflammatory macrophages that secrete significantly increased quantities of IL-1β compared to control (p = 0.012) and IL-4 +IL-10-primed (p = 0.0047) macrophages. GM-CSF pretreatment followed by both LPS + IFN-γ and IL-4 + IL-10 priming significantly increased IL-1Ra secretion by 6-fold (p < 0.05). There were no differences in TGFβ-1 secretion among control, LPS+IFN-γ or IL-4 + IL-10 primed macrophages (p = 0.85). All groups contained an average of 643 ± 51.5 pg/mL of TGFβ1. Among the culture conditions evaluated, IL-4 +IL-10 priming for 24 h after 6 days of adherent culture yielded macrophages that were the least inflammatory compared to GM-CSF pretreated and LPS+IFN-γ or IL-4 +IL-10-primed macrophages. These results provide a basis for subsequent in-vitro and in-vivo studies that investigate macrophage-tissue cell interactions and related biological mechanisms relevant to the field of immunomodulatory approaches for enhancing tissue healing.
Collapse
Affiliation(s)
- Charles M Bowlby
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Sushmitha S Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
18
|
Bourebaba L, Serwotka-Suszczak A, Pielok A, Sikora M, Mularczyk M, Marycz K. The PTP1B inhibitor MSI-1436 ameliorates liver insulin sensitivity by modulating autophagy, ER stress and systemic inflammation in Equine metabolic syndrome affected horses. Front Endocrinol (Lausanne) 2023; 14:1149610. [PMID: 37020593 PMCID: PMC10067883 DOI: 10.3389/fendo.2023.1149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. METHODS Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. RESULTS Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1β, TNF-α and TGF-β and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. CONCLUSION Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ariadna Pielok
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Krzysztof Marycz,
| |
Collapse
|
19
|
Manfredi JM, Jacob SI, Boger BL, Norton EM. A one-health approach to identifying and mitigating the impact of endocrine disorders on human and equine athletes. Am J Vet Res 2022; 84:ajvr.22.11.0194. [PMID: 36563063 DOI: 10.2460/ajvr.22.11.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocrinopathies affect multiple species in ever-increasing percentages of their populations, creating an opportunity to apply one-health approaches to determining creative preventative measures and therapies in athletes. Obesity and alterations in insulin and glucose dynamics are medical concerns that play a role in whole-body health and homeostasis in both horses and humans. The role and impact of endocrine disorders on the musculoskeletal, cardiovascular, and reproductive systems are of particular interest to the athlete. Elucidation of both physiologic and pathophysiologic mechanisms involved in disease processes, starting in utero, is important for development of prevention and treatment strategies for the health and well-being of all species. This review focuses on the unrecognized effects of endocrine disorders associated with the origins of metabolic disease; inflammation at the intersection of endocrine disease and related diseases in the musculoskeletal, cardiovascular, and reproductive systems; novel interventions; and diagnostics that are informed via multiomic and one-health approaches. Readers interested in further details on specific equine performance conditions associated with endocrine disease are invited to read the companion Currents in One Health by Manfredi et al, JAVMA, February 2023.
Collapse
Affiliation(s)
- Jane M Manfredi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Sarah I Jacob
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Brooke L Boger
- Comparative Medicine and Integrative Biology, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Elaine M Norton
- Department of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
20
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
21
|
Equine insulin dysregulation causes tissue specific alterations of proinflammatory cytokines and acute phase proteins in a NF-kB independent manner. Vet Immunol Immunopathol 2022; 253:110500. [DOI: 10.1016/j.vetimm.2022.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
|
22
|
Evaluation of peripheral blood polymorphonuclear cell functions after an oral carbohydrate overload in obese and insulin dysregulated horses. Vet Immunol Immunopathol 2022; 250:110455. [PMID: 35716440 DOI: 10.1016/j.vetimm.2022.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Obesity and insulin dysregulation (ID) are increasingly prevalent conditions in equid populations worldwide. Immune impairment is well described in humans with metabolic dysfunction and is reported but still incompletely understood in horses. This study evaluated the effect of acute induced transient hyperglycemia on apoptosis, phagocytosis and oxidative burst activity of peripheral blood polymorphonuclear cells (PMN) of lean and obese adult horses with or without insulin dysregulation. Seventeen adult horses were allocated into three groups based on their body condition score (BCS) and metabolic status: lean-insulin sensitive (lean-IS), obese-insulin sensitive (obese-IS) and obese-insulin dysregulated (obese-ID). ID was determined by insulin tolerance testing (ITT). Blood glucose elevation was induced through an infeed-oral glucose test (in-feed OGT), and all assessments of PMN functions (apoptosis, phagocytosis and oxidative burst) were done in vitro after isolation from peripheral blood before and 120 min after carbohydrate overload. Results were analyzed using a repeated measures linear mixed model with significance defined at P < 0.05. No differences in apoptosis were observed between experimental groups at any time point. Phagocytic capacity was significantly lower at baseline in the obese-ID group but increased in response to glucose administration when compared to the other two groups. Basal reactive oxygen species production in the obese-IS group differed significantly from the lean-IS and obese-ID groups and decreased significantly in response to glucose administration. Results from this study showed that both metabolic status itself, and oral glucose administration, seem to be factors that alter PMN functionality in horses, specifically phagocytosis and oxidative burst.
Collapse
|
23
|
Malbon AJ, Sordo L, Wilson LA, Gunn-Moore D, Paraschou G, Macintyre N, Schwarz T, McGorum B, Hahn C. Alzheimer-like pathology in the parietal cortex and hippocampus of aged donkeys. Neurobiol Aging 2022; 113:7-14. [DOI: 10.1016/j.neurobiolaging.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
|
24
|
Sillence M, Meier A, de Laat M, Klee R, Reiche D. Demographic, morphologic, hormonal and metabolic factors associated with the rate of improvement from equine hyperinsulinaemia-associated laminitis. BMC Vet Res 2022; 18:49. [PMID: 35042535 PMCID: PMC8764787 DOI: 10.1186/s12917-022-03149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although several studies have investigated factors associated with the onset and occurrence of hyperinsulinaemia-associated laminitis (HAL), few have examined the factors associated with the rate of improvement during recovery from an acute bout of the disease. This observational study sought to discover if a range of demographic, morphologic, hormonal and metabolic variables are associated with the improvement rate from HAL in 37 naturally-occurring cases identified by 16 clinics across Germany. Each case was evaluated for laminitis severity on the day of inclusion in the trial (d 0), then after 4, 9, 14, 25 and 42 d. The horses were managed according to best clinical practice including restricting exercise and prescribing a diet of hay-only, for a minimum of 9 d. Blood samples were also collected during each evaluation, except on d 9, and analysed for glucose, insulin, ACTH and leptin. Results Based on individual clinical laminitis scores plotted against time, most horses improved markedly within 2 weeks, with a ‘fast group’ (n = 27) having a median (interquartile range) score on a 12-point scale of 0 (0–2) by d 14. However, there was a clear disparity within the total cohort, as ~ 1 in 4 horses demonstrated much slower improvement, with a median score of 5 (4–7) by d 14, or a marked relapse thereafter (‘slow group’, n = 10). Horses in the slow improvement group were younger (12.5 (8.8–16.3) vs 17 (14–24) yr; P = 0.008), but were not more likely to be heavier, male, very fat, to have presented with a previous history of laminitis or elevated ACTH concentrations, or to be receiving pergolide treatment. Of the hormonal and metabolic parameters measured, glucose and insulin concentrations were within the normal range following transition to the hay-only diet, but were higher in the group that failed to improve quickly, with a small but significant difference being evident on d 4, 14 and 25 for glucose (11 to 16%; P < 0.05), and a larger difference for insulin on d 14 and 25 (51 to 55%; P < 0.05). There was no difference between the groups in ACTH or leptin concentrations throughout the study. The main limitations of this study were the small number of slow-improvement horses and an inability to control or measure certain variables, such as feed quality. Conclusions Young age and a modest increase in blood glucose and insulin concentrations are associated with delayed laminitis improvement.
Collapse
|
25
|
Comparisons of commercially available NIRS-based analyte predictions of haylage quality for equid nutrition. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Obesity-Related Metabolic Dysfunction in Dairy Cows and Horses: Comparison to Human Metabolic Syndrome. Life (Basel) 2021; 11:life11121406. [PMID: 34947937 PMCID: PMC8705694 DOI: 10.3390/life11121406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity has become a serious health problem with frequent occurrence both in human and animal populations. It is estimated that it may affect over 85% of the human population and 70–80% of horses and cows by 2030. Fat cow syndrome (FCS) is a combination of metabolic, digestive, infectious, and reproductive disorders that affects obese periparturient dairy cows, and occurs most frequently in loose-housing systems, where periparturient and dry cows are fed and managed in one group disregarding the lactation stages. Equine metabolic syndrome (EMS) was named after human metabolic syndrome (MetS) and has insulin dysregulation as a central and consistent feature. It is often associated with obesity, although EMS may occur in a lean phenotype as well. Other inconsistent features of EMS are cardiovascular changes and adipose dysregulation. Laminitis is the main clinical consequence of EMS. MetS holds a 30-years old lead in research and represents a clustering of risk factors that comprise abdominal obesity, dyslipidemia, hypertension, and hyperglycemia (impaired fasting glucose or type 2 diabetes mellitus—T2DM), which are associated with doubled atherosclerotic cardiovascular disease risk, and a 5-fold increased risk for T2DM. The main aim of this review is to provide critical information for better understanding of the underlying mechanisms of obesity-related metabolic dysfunction in animals, especially in cows and horses, in comparison with MetS. Human medicine studies can offer suitable candidate mechanisms to fill the existing gap in the literature, which might be indispensable for owners to tackle FCS, EMS, and their consequences.
Collapse
|
27
|
Cameron A, Harris P, Longland A, Horseman S, Hockenhull J. UK Horse Carers' Experiences of Restricting Grazing When Aiming to Prevent Health Issues in Their Horses. J Equine Vet Sci 2021; 104:103685. [PMID: 34417001 DOI: 10.1016/j.jevs.2021.103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Laminitis and obesity are leading welfare issues for UK leisure horses. Limiting grass intake is a common preventative measure but may result in other aspects of welfare being compromised. This study aimed to determine how commonly different restricted grazing methods are used in the UK, barriers limiting their accessibility, and the potential benefits and welfare issues associated with each. A cross-sectional online survey was distributed with questions relating to horse carers' opinions of different restricted grazing practices, which methods they used, and how they implemented these. Closed questions were analyzed using descriptive statistics and non-parametric tests. Free text questions underwent content analysis. 503 respondents completed the questionnaire, 468 (93.0%) had practiced restricted grazing. Strip grazing was the most commonly tried method (67.7% of restricted grazers), followed by grazing muzzles (61.3%), starvation paddocks (57.4%), stabling (49.9%), crew yards (27.5%) and track systems (15.3%). Perception of welfare impact differed significantly between methods for both those who had (P < .001) and had not (P < .001) restricted grazing. Both groups considered strip grazing best for welfare and stabling worst. Barriers (including ease of implementation [52.0%], yard restrictions [24.0%], cost/affordability [23.7%]) prevented some from using their preferred methods. Respondents had similar priorities when choosing a restricted grazing method but did not agree which methods met these criteria. Strip grazing was favored by the greatest proportion of respondents whilst grazing muzzles and stabling polarized opinion. This study has provided initial insights into the challenges faced by horse carers when aiming to restrict grazing to combat equine health issues.
Collapse
Affiliation(s)
- Amelia Cameron
- Animal Welfare and Behavior Group, Bristol Veterinary School, University of Bristol, Bristol, UK.
| | - Pat Harris
- Equine studies Group, Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wold, Leicestershire, UK
| | - Annette Longland
- Equine Livestock and Nutrition Services, Tregaron, Ceredigion, Wales, UK
| | - Susan Horseman
- Animal Welfare and Behavior Group, Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Jo Hockenhull
- Animal Welfare and Behavior Group, Bristol Veterinary School, University of Bristol, Bristol, UK
| |
Collapse
|
28
|
Samimi AS, Poostfroush S, Samimi K, Tajik J. Comparative anti‐inflammatory effects of insulin and dexamethasone on cardiovascular biomarkers and antioxidants in miniature donkeys subjected to induced carbohydrate overload. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. S. Samimi
- Department of Clinical Sciences Faculty of Veterinary Medicine Shahid Bahonar University of Kerman Kerman Iran
| | | | | | - J. Tajik
- Department of Clinical Sciences Faculty of Veterinary Medicine Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
29
|
Richards N, Nielsen BD, Finno CJ. Nutritional and Non-nutritional Aspects of Forage. Vet Clin North Am Equine Pract 2021; 37:43-61. [PMID: 33820609 DOI: 10.1016/j.cveq.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many forage types are available, typically divided into cool or warm season grasses and legumes, which can be fed as fresh pasture or after preservation. Testing for nutrient content confirms what should be supplemented to make up shortfalls. Although testing is recommended, it is not always practical. Typical values for the forage type are available; however, they cannot be relied on for actual content. Non-nutritional aspects must also be taken into account. The provision of complementary feeds to ensure adequate vitamin and mineral intake is recommended. Additional supplementary high-quality protein may be required to meet essential amino acid requirements.
Collapse
Affiliation(s)
- Nerida Richards
- Equilize Horse Nutrition Pty Ltd, PO Box 11034, Tamworth, New South Wales 2340, Australia.
| | - Brian D Nielsen
- Department of Animal Science, Michigan State University, 1287D Anthony Hall, 474 S. Shaw Lane, East Lansing, MI 48824-1225, USA
| | - Carrie J Finno
- Population Health and Reproduction, University of California Davis School of Veterinary Medicine, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
30
|
Leng J, McNally S, Walton G, Swann J, Proudman C, Argo C, Emery S, La Ragione R, Eustace R. Hay vs haylage: Forage type influences the equine urinary metabonome and faecal microbiota. Equine Vet J 2021; 54:614-625. [PMID: 33900659 DOI: 10.1111/evj.13456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Gut microbial communities are increasingly being linked to diseases in animals and humans. Obesity and its associated diseases are a concern for horse owners and veterinarians, and there is a growing interest in the link among diet, the intestinal microbiota and metabolic disease. OBJECTIVES Assess the influence of long-term hay or haylage feeding on the microbiota and metabolomes of 20 Welsh mountain ponies. STUDY DESIGN Longitudinal study. METHODS Urine, faeces and blood were collected from 20 ponies on a monthly basis over a 13-month period. Urine and faeces were analysed using proton magnetic resonance (1 H NMR) spectroscopy and faecal bacterial DNA underwent 16S rRNA gene sequencing. RESULTS Faecal bacterial community profiles were observed to be different for the two groups, with discriminant analysis identifying 102 bacterial groups (or operational taxonomic units, OTUs) that differed in relative abundance in accordance with forage type. Urinary metabolic profiles of the hay- and haylage-fed ponies were significantly different during 12 of the 13 mo of the study. Notably, the urinary excretion of hippurate was greater in the hay-fed ponies for the duration of the study, while ethyl-glucoside excretion was higher in the haylage-fed ponies. MAIN LIMITATIONS The study was undertaken over a 13-month period and both groups of ponies had access to pasture during the summer months. CONCLUSIONS The data generated from this study suggest that the choice of forage may have implications for the intestinal microbiota and metabolism of ponies and, therefore, potentially their health status. Understanding the potential implication of feeding a particular type of forage will enable horse owners to make more informed choices with regard to feed, especially if their horse or pony is prone to weight gain.
Collapse
Affiliation(s)
- Joy Leng
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Susan McNally
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Gemma Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Chris Proudman
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - Sue Emery
- The Laminitis Clinic, Chippenham, Wiltshire, UK
| | - Roberto La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | |
Collapse
|
31
|
Ribeiro RM, Ribeiro DS, Cota LO, Leme FO, M Carvalho A, Faleiros RR. Changes in metabolic and physiological biomarkers in Mangalarga Marchador horses with induced obesity. Vet J 2021; 270:105627. [PMID: 33641803 DOI: 10.1016/j.tvjl.2021.105627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/01/2020] [Accepted: 02/02/2021] [Indexed: 02/03/2023]
Abstract
This study aimed to characterize and correlate physiological and metabolic changes in horses fed a hypercaloric diet (HD). Nine mature horses with a mean initial body condition score of 2.9 ± 1 (scale, 1-9) were fed a high-calorie diet for 5 months. Fasting blood samples were collected before the study and biweekly for the duration of the project to determine the concentrations of cholesterol (CHOL), very low (VLDL), low (LDL) and high-density (HDL) lipoproteins, triglycerides, non-esterified fatty acids, and fructosamine. A low-dose oral glucose tolerance test (LGTT) was conducted before, 75 and 150 days after HD introduction. Mean arterial blood pressure was measured monthly. Following HD introduction, CHOL, LDL, HDL, and fructosamine blood concentrations increased (P < 0.001). These four variables were also positively and significantly correlated with the blood insulin response to LGTT. These findings confirm the occurrence of hypercholesterolemia concomitantly with insulin dysregulation development in horses exposed to HD.
Collapse
Affiliation(s)
- Rodrigo M Ribeiro
- Centro Universitário de Mineiros - UNIFIMES, Rua 23, esquina com Av. Caiapós - Setor Aeroporto, Mineiros, GO, Brazil
| | - Debora S Ribeiro
- Centro Universitário de Mineiros - UNIFIMES, Rua 23, esquina com Av. Caiapós - Setor Aeroporto, Mineiros, GO, Brazil
| | - Leticia O Cota
- EQUINOVA Research Group, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Fabiola O Leme
- EQUINOVA Research Group, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Armando M Carvalho
- EQUINOVA Research Group, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Rafael R Faleiros
- EQUINOVA Research Group, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, MG 31270-901, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, SHIS, Edifício Santos Dumont, Lago Sul, Brasília, DF 71605-001, Brazil.
| |
Collapse
|
32
|
Witkowska-Piłaszewicz O, Cywińska A, Michlik-Połczyńska K, Czopowicz M, Strzelec K, Biazik A, Parzeniecka-Jaworska M, Crisman M, Witkowski L. Variations in haematological and biochemical parameters in healthy ponies. BMC Vet Res 2021; 17:38. [PMID: 33468115 PMCID: PMC7814612 DOI: 10.1186/s12917-020-02741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Background Breed specific reference ranges for selected blood parameters are recommended for proper interpretation of blood tests, but there are only few reports dealing with ponies. The purpose of this study was to investigate if blood parameters differ among ponies’ classes and to check if general normal values for equine species are applicable to ponies. Results All, except total protein concentration, biochemical parameter significantly (p < 0.05) differed among ponies’ classes. The most pronounced difference was noted in blood lactate concentrations, higher (p < 0.001) in the smallest ponies (class A). In all groups of ponies muscle enzymes (aspartate aminotransferase and creatine kinase) and urea were high when compared to normal values for equine species, but triglycerides and creatinine were low. Blood lactate concentration was high in comparison with normal values for horses only in class A ponies’. Conclusions In healthy ponies, blood lactate concentration significantly differs between height classes. Normal values for equine species should not be directly applied to interpret the lactate, triglycerides, aspartate aminotransferase and creatine kinase values in ponies.
Collapse
Affiliation(s)
- Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska str. 159c, 02-787, Warsaw, Poland
| | - Anna Cywińska
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska str. 159c, 02-787, Warsaw, Poland. .,Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Katarzyna Michlik-Połczyńska
- Department of Internal Diseases and Veterinary Diagnostics, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznań, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Katarzyna Strzelec
- Department of Horse Breeding and Use, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Biazik
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Parzeniecka-Jaworska
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska str. 159c, 02-787, Warsaw, Poland
| | - Mark Crisman
- Department of Large Animal Clinical Science, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, USA
| | - Lucjan Witkowski
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
33
|
Delarocque J, Frers F, Feige K, Huber K, Jung K, Warnken T. Metabolic changes induced by oral glucose tests in horses and their diagnostic use. J Vet Intern Med 2020; 35:597-605. [PMID: 33277752 PMCID: PMC7848347 DOI: 10.1111/jvim.15992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Little is known about the implications of hyperinsulinemia on energy metabolism, and such knowledge might help understand the pathophysiology of insulin dysregulation. Objectives Describe differences in the metabolic response to an oral glucose test, depending on the magnitude of the insulin response. Animals Twelve Icelandic horses in various metabolic states. Methods Horses were subjected to 3 oral glucose tests (OGT; 0.5 g/kg body weight glucose). Basal, 120 and 180 minutes samples were analyzed using a combined liquid chromatography tandem mass spectrometry and flow injection analysis tandem mass spectrometry metabolomic assay. Insulin concentrations were measured using an ELISA. Analysis was performed using linear models and partial least‐squares regression. Results The kynurenine : tryptophan ratio increased over time during the OGT (adjusted P‐value = .001). A high insulin response was associated with lower arginine (adjusted P‐value = .02) and carnitine (adjusted P‐value = .03) concentrations. A predictive model using only baseline samples performed well with as few as 7 distinct metabolites (sensitivity, 86%; 95% confidence interval [CI], 81%‐90%; specificity, 88%; 95% CI, 84%‐92%). Conclusions and Clinical Importance Our results suggest induction of low‐grade inflammation during the OGT. Plasma arginine and carnitine concentrations were lower in horses with high insulin response and could constitute potential therapeutic targets. Development of screening tools to identify insulin‐dysregulated horses using only baseline blood sample appears promising.
Collapse
Affiliation(s)
- Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Florian Frers
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Korinna Huber
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Tobias Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| |
Collapse
|
34
|
Survey of Risk Factors and Genetic Characterization of Ewe Neck in a World Population of Pura Raza Español Horses. Animals (Basel) 2020; 10:ani10101789. [PMID: 33019702 PMCID: PMC7600715 DOI: 10.3390/ani10101789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Ewe Neck is a common morphological defect of the Pura Raza Español (PRE) population, which seriously affects the horse’s development. In this PRE population (35,267 PRE), a total of 9693 animals (27.12% of total) was Ewe Neck-affected. It has been demonstrated that genetic and risk factors (sex, age, geographical area, coat color, and stud size) are involved, being more prevalent in the males, 4–7 years old, chestnut coat, from small studs (less than 5 mares), and raised in North America. The morphological traits height at chest, length of back, head-neck junction, and bottom neck-body junction and the body indices, head index, and thoracic index were those most closely related with the appearance of this morphological defect. The additional genetic base of Ewe Neck in PRE, which presents low-moderate heritability (h2: 0.23–0.34), shows that the prevalence of this defect could be effectively reduced by genetic selection. Abstract Ewe Neck is a relatively common morphological defect in Pura Raza Español (PRE) horses and other Baroque type horse breeds, which adversely affects the breeding industry; (1) objectives: to establish the within-breed prevalence, possible associated factors, and heritability of Ewe Neck in PRE horses; (2) methods: the database included evaluations of 35,267 PRE horses. The Ewe Neck defect, 16 morphological traits, and 4 body indices were recorded. A Bayesian genetic animal model included the following systematic effects: sex, age, coat color, geographical area of the stud, and birth stud size were used; (3) results: in this PRE population, a total of 27.12% was affected. All the risk factors studied were significantly associated with the Ewe Neck score. The heritability coefficient for Ewe Neck score ranged from 0.23 to 0.34. Morphological traits (height at chest, length of back, head-neck junction, and bottom neck-body junction) and the indices (head and thoracic index) were those most closely related with the appearance of Ewe Neck; (4) conclusions: Ewe Neck is a relatively frequent defect in PRE horses, associated with risk factors and other morphological traits, with a moderate level of heritability. Breeding to select against this condition may therefore be beneficial in this breed.
Collapse
|
35
|
Salinas C, Espinosa G, Morales N, Henríquez C, Morán G, Gajardo G, Uberti B. Assessment of peripheral blood neutrophil respiratory burst, phagocytosis and apoptosis in obese non-insulin dysregulated horses. Res Vet Sci 2020; 132:127-132. [PMID: 32563928 DOI: 10.1016/j.rvsc.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
Obesity is a highly prevalent condition in horses. Dysfunctional neutrophil activity has been reported in metabolically healthy obese humans, but minimal data exist regarding horses. The present study evaluated the effect of obesity on apoptosis, phagocytosis and oxidative burst activity of peripheral blood neutrophils from lean and obese non-insulin dysregulated horses. Seven lean (BCS, body condition score 4-6/9) and five obese (BCS 8-9) horses were enrolled in the study. All animals underwent two metabolic tests (OGT, oral glucose test; IRT, insulin response test) before their selection to ensure their metabolic status (non-insulin dysregulated). A single blood sample was obtained from each horse, and a discontinuous density gradient was carried out to isolate neutrophils. Phagocytosis, apoptosis and reactive oxygen species (ROS) production assays were performed for each animal. All statistical analyses were performed with unpaired two-tailed t-tests. Results indicate that neutrophils from obese non-insulin dysregulated horses have a significantly increased ROS production (P < .0001), with no changes observed on phagocytosis (P > .05) or apoptosis (P > .05) when compared to the control group. In conclusion, our results demonstrate that obesity per se, in absence of other endocrine disorders, alters neutrophil reactive oxygen species production. More research is needed to understand the role of obesity on the equine immune system of horses, and its role in the development of endocrine disorders.
Collapse
Affiliation(s)
- Constanza Salinas
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Gabriel Espinosa
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Natalia Morales
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Gonzalo Gajardo
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Benjamin Uberti
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
36
|
Camacho-Rozo CA, Santos GDO, Wenzen DDP, Cousseau SB, Wronski JG, Argenta FF, Winter GHZ, Pavarini SP, Mattos RC. Sudden Death by Ovarian Hemorrhage and Hemoperitoneum in a Pregnant Miniature Mare. J Equine Vet Sci 2020; 90:102996. [PMID: 32534773 DOI: 10.1016/j.jevs.2020.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
This report describes a case of sudden death of a pregnant miniature mare due to an acute ovarian hemorrhage leading to fatal hemoperitoneum. The miniature horse was a 12-year-old female, 60 days pregnant, with a body condition score of 7 (1-9), with a history of obesity and laminitis. Necropsy revealed hemoperitoneum due to an ovarian capsule rupture and hemorrhage after a physiological supplementary ovulation and luteinization. Ovarian rupture after ovulation is uncommon in mares.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando F Argenta
- Patologia Veterinária- Faculdade de Veterinária, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
37
|
Horses as a Crucial Part of One Health. Vet Sci 2020; 7:vetsci7010028. [PMID: 32121327 PMCID: PMC7157506 DOI: 10.3390/vetsci7010028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
One Health (OH) is a crucial concept, where the interference between humans, animals and the environment matters. This review article focusses on the role of horses in maintaining the health of humans and the environment. Horses' impact on environmental health includes their influence on soil and the biodiversity of animal and plant species. Nevertheless, the effect of horses is not usually linear and several factors like plant-animal coevolutionary history, climate and animal density play significant roles. The long history of the relationship between horses and humans is shaped by the service of horses in wars or even in mines. Moreover, horses were essential in developing the first antidote to cure diphtheria. Nowadays, horses do have an influential role in animal assisted therapy, in supporting livelihoods in low income countries and as a leisure partner. Horses are of relevance in the spillover of zoonotic and emerging diseases from wildlife to human (e.g., Hendra Virus), and in non-communicable diseases (e.g., post-traumatic osteoarthritis in horses and back pain in horse riders). Furthermore, many risk factors-such as climate change and antimicrobial resistance-threaten the health of both horses and humans. Finally, the horse is a valuable factor in sustaining the health of humans and the environment, and must be incorporated in any roadmap to achieve OH.
Collapse
|
38
|
Hill JA, Tyma JF, Hayes GM, Radcliffe R, Fubini SL. Higher body mass index may increase the risk for the development of incisional complications in horses following emergency ventral midline celiotomy. Equine Vet J 2020; 52:799-804. [PMID: 31994775 DOI: 10.1111/evj.13242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/27/2019] [Accepted: 01/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Obesity is common in the equine population and it has been associated with increased surgical morbidity and mortality in humans. The effect of increased body mass index (BMI) on the incidence of surgical site infections has not been investigated in horses. OBJECTIVES To determine whether horses with increased body fat, as estimated by BMI, are more likely to develop post-operative complications, particularly incisional complications, following emergency ventral midline celiotomy. STUDY DESIGN Retrospective, multi-institutional clinical study. METHODS Medical records of horses >2 years old presenting with colic that underwent ventral midline celiotomy between January 2010 and September 2018 with follow-up of a minimum of 30 post-operative days were reviewed. Extracted data included signalment, operative details and outcome. BMI was calculated by dividing the patient's weight (kg) by the withers height squared (m2 ). RESULTS In all, 287 horses fit inclusion criteria. Incisional complication prevalence was 23.7%. Horses with incisional complications had a higher BMI (median 203.6 kg/m2 , IQR = 191.5-217.4) compared with those without (median 199.1 kg/m2 , IQR = 184.7-210.2) (P = .03). Multi-variable analysis of the effects of age, sex, breed and presence of metabolic disease on the association between BMI and risk of incisional complications, identified a tendency towards increased risk with a higher BMI, but statistical significance decreased to P = .07. Breed had an association with BMI (P < .01), but not with incisional complication risk. MAIN LIMITATIONS BMI as an estimate of body fat has limitations. Retrospective studies with reliance on owners reporting data and complete medical records is imperfect. When the data were subjected to multi-variable analysis, the trend towards an increased incidence of incisional complications in horses with higher BMI persisted but it was not statistically significant. CONCLUSION Higher BMI may increase the risk for the development of incisional complications in horses following emergency ventral midline celiotomy.
Collapse
Affiliation(s)
| | - Jesse F Tyma
- University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Galina M Hayes
- Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Rolfe Radcliffe
- Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Susan L Fubini
- Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| |
Collapse
|
39
|
Klein DJ, McKeever KH, Mirek ET, Anthony TG. Metabolomic Response of Equine Skeletal Muscle to Acute Fatiguing Exercise and Training. Front Physiol 2020; 11:110. [PMID: 32132934 PMCID: PMC7040365 DOI: 10.3389/fphys.2020.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
The athletic horse, despite being over 50% muscle mass, remains understudied with regard to the effects of exercise and training on skeletal muscle metabolism. To begin to address this knowledge gap, we employed an untargeted metabolomics approach to characterize the exercise-induced and fitness-related changes in the skeletal muscle of eight unconditioned Standardbred horses (four male, four female) before and after a 12-week training period. Before training, unconditioned horses showed a high degree of individual variation in the skeletal muscle metabolome, resulting in very few differences basally and at 3 and 24 h after acute fatiguing exercise. Training did not alter body composition but did improve maximal aerobic and running capacities (p < 0.05), and significantly altered the skeletal muscle metabolome (p < 0.05, q < 0.1). While sex independently influenced body composition and distance run following training (p < 0.05), sex did not affect the skeletal muscle metabolome. Exercise-induced metabolomic alterations (p < 0.05, q < 0.1) largely centered on the branched-chain amino acids (BCAA), xenobiotics, and a variety of lipid and nucleotide-related metabolites, particularly in the conditioned state. Further, training increased (p < 0.05, q < 0.1) the relative abundance of almost every identified lipid species, and this was accompanied by increased plasma BCAAs (p < 0.0005), phenylalanine (p = 0.01), and tyrosine (p < 0.02). Acute exercise in the conditioned state decreased (p < 0.05, q < 0.1) the relative abundance of almost all lipid-related species in skeletal muscle by 24 h post-exercise, whereas plasma amino acids remained unaltered. These changes occurred alongside increased muscle gene expression (p < 0.05) related to lipid uptake (Cd36) and lipid (Cpt1b) and BCAA (Bckdk) utilization. This work suggests that metabolites related to amino acid, lipid, nucleotide and xenobiotic metabolism play pivotal roles in the response of equine skeletal muscle to vigorous exercise and training. Use of these and future data sets could be used to track the impact of training and fitness on equine health and may lead to novel predictors and/or diagnostic biomarkers.
Collapse
Affiliation(s)
- Dylan J Klein
- Department of Health and Exercise Science, Rowan University, Glassboro, NJ, United States
| | - Kenneth H McKeever
- Rutgers Equine Science Center, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
40
|
Kellon EM, Gustafson KM. Possible dysmetabolic hyperferritinemia in hyperinsulinemic horses. Open Vet J 2020; 9:287-293. [PMID: 32042647 PMCID: PMC6971364 DOI: 10.4314/ovj.v9i4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
Background Hyperinsulinemia associated with equine metabolic syndrome and pituitary pars intermedia dysfunction is a risk factor for laminitis. Research in other species has shown elevated body iron levels as both a predictor and consequence of insulin resistance. In humans, this is known as dysmetabolic hyperferritinemia. Aim To explore the relationship between equine hyperinsulinemia and body iron levels. Methods We reviewed case histories and laboratory results from an open access database maintained by the Equine Cushing's and Insulin Resistance Group Inc. (ECIR). We identified 33 horses with confirmed hyperinsulinemia and laboratory results for serum iron, total iron binding capacity, and ferritin. Pearson correlation was used to test the relationship between insulin and iron indices. Additionally, we performed a secondary analysis of a previously reported controlled trial that was originally designed to test the correlation between iron status and the insulin response in horses. Here, we used a t-test to compare the mean values of insulin and ferritin between horses we categorized as normal or hyperinsulinemic based on their response to an oral challenge. Results Serum ferritin exceeded published reference range in 100% of the horses identified from the ECIR database. There were no statistically significant associations between insulin indices (RISQI, log insulin) and iron indices (log serum iron, log TSI%, log ferritin). There were trends for a negative association between RISQI and log iron [r(31) = -0.33, p = 0.058] and a positive association between age and ferritin [r(30) = 0.34, p = 0.054]. From the secondary data analysis of published data, we found significantly elevated ferritin (p = 0.05) in horses considered hyperinsulinemic by dynamic insulin testing compared to horses with a normal response. Conclusion These results suggest the potential for iron overload in hyperinsulinemic horses, a feature documented in other species and should stimulate further study into the relationship between insulin and iron dysregulation in the horse.
Collapse
Affiliation(s)
- Eleanor M. Kellon
- Equine Cushing’s and Insulin Resistance Group, Inc, 2307 Rural Road, Tempe, AZ 85282, USA
| | - Kathleen M. Gustafson
- Equine Cushing’s and Insulin Resistance Group, Inc, 2307 Rural Road, Tempe, AZ 85282, USA
| |
Collapse
|
41
|
Ribeiro RM, Ribeiro DS, Paz CFR, Gobesso AA, Faleiros RR. Insulin dysregulation in horses with induced obesity. PESQUISA VETERINARIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT: Insulin deregulation (ID) is a central player in the pathophysiology of equine metabolic syndrome (EMS), which is associated with generalized and/or regional obesity. The objective of this experiment was to characterize the alterations in the hormonal profile in horses exposed to a hypercaloric diet. A total of nine Mangalarga Marchador adult horses with initial body condition score (BCS) of 2.9±1/9 (mean±SD) were submitted to a high calorie grain-rich diet for 5 months. The data was collected before the start of the experiment and every 15 days until the end of the experiment and glucose and insulin concentrations were measured in the plasma. Proxies G:I, RISQI, HOMA-IR and MIRG were calculated. The low-dose oral glucose tolerance test (OGTT) was performed and the total area under the glucose (GTA) and insulin (ITA) curves at three different timepoints (before inducing obesity, after 90 days and after 150 days) was used. Analysis of variance of the results was performed considering the time effects and the means were compared with repeated measures by the Tukey’s test (P≤0.05). The ID was observed during the first 90 days of the experiment and was characterized as a decompensated ID, showing an increase of basal glucose and insulin plasma levels, changes in all proxies and a significant increase in GTA (P<0.001) and ITA (P<0.05). However, a clear compensation of the ID was evident after 150 days of experiment, which was supported by data from the insulin secretory response of β cells of the pancreas that showed an increase in insulin plasma levels, after fasting or exposure to gastric glucose, with a concomitant decrease in fasting glucose and fructosamine levels, and a decrease of GTA and marked increase of ITA (P<0.0001) in the dynamic test. These findings confirm the occurrence of hyperinsulinemia associated with insulin deregulation in Mangalarga Marchador horses exposed to hypercaloric diets.
Collapse
|
42
|
Mendoza FJ, Toribio RE, Perez-Ecija A. Metabolic and Endocrine Disorders in Donkeys. Vet Clin North Am Equine Pract 2019; 35:399-417. [PMID: 31587976 DOI: 10.1016/j.cveq.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The donkey evolved under harsh and arid environmental conditions, developing unique energy-efficiency traits, with an efficiency to rapidly mobilize fat in situations of increased energy demands or when food is scarce. This evolution has led to an inherent predisposition of donkeys to obesity, dyslipidemias, insulin dysregulation/metabolic syndrome, pituitary pars intermedia dysfunction, and endocrinopathic laminitis. Marked differences have been described in hormone dynamics and testing protocols for the diagnosis of these endocrine and metabolic diseases in donkeys compared with horses, underlining the necessity of a species-specific approach in order to avoid misdiagnosis, unnecessary or inadequate treatments, and additional costs.
Collapse
Affiliation(s)
- Francisco J Mendoza
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Rabanales, Road Madrid-Cadiz km 396, Cordoba 14014, Spain.
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| | - Alejandro Perez-Ecija
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Rabanales, Road Madrid-Cadiz km 396, Cordoba 14014, Spain
| |
Collapse
|
43
|
Hodge E, Kowalski A, Torcivia C, Lindborg S, Stefanovski D, Hart K, Frank N, van Eps A. Effect of thyrotropin-releasing hormone stimulation testing on the oral sugar test in horses when performed as a combined protocol. J Vet Intern Med 2019; 33:2272-2279. [PMID: 31432575 PMCID: PMC6766522 DOI: 10.1111/jvim.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background The use of parallel dynamic tests to identify insulin dysregulation (ID) and pituitary pars intermedia dysfunction (PPID) in horses could have better diagnostic utility than measuring baseline hormone concentrations, if the tests do not alter diagnostic interpretation of one another. Hypothesis Performing a thyrotropin‐releasing hormone (TRH) stimulation test before an oral sugar test (OST) would not affect results of OST. Animals Twenty‐six healthy university‐owned horses. Methods A prospective randomized placebo‐controlled, crossover design was used to evaluate 3 OST protocols: OST alone, TRH followed by OST (TRH + OST), and placebo followed by OST (placebo + OST). Agreement for plasma insulin concentrations and diagnostic interpretation were assessed with Bland‐Altman and logistic regression analyses, respectively. Results Bland‐Altman analysis of TRH + OST versus OST alone showed good agreement between testing protocols, with bias ± SD for insulin concentrations at baseline 0.4 ± 4.7 μIU/mL (95% limits of agreement [LOA], −8.8 to 9.7), 60 minute −0.5 ± 22.6 μIU/mL (95% LOA, −44.7 to 43.8), and 90 minute 1.9 ± 20.6 μIU/mL (95% LOA, −38.5 to 42.4) after OST, similar to placebo + OST versus OST alone. Diagnostic interpretation (positive/negative) was not different between protocols (TRH + OST versus OST alone [P = .78], placebo + OST versus OST alone [P = .77], or TRH + OST versus placebo + OST [P = .57]). Conclusions and Clinical Importance Concurrent testing for PPID and ID with a TRH stimulation test before an OST is an acceptable diagnostic tool for investigation of endocrinopathies in horses and allows accurate testing to be performed efficiently in 1 visit.
Collapse
Affiliation(s)
- Elizabeth Hodge
- School of Veterinary Medicine, University of Pennsylvania, Clinical Studies-New Bolton Center, Kennett Square, Chester, Pennsylvania
| | - Alycia Kowalski
- School of Veterinary Medicine, University of Pennsylvania, Clinical Studies-New Bolton Center, Kennett Square, Chester, Pennsylvania
| | - Catherine Torcivia
- School of Veterinary Medicine, University of Pennsylvania, Clinical Studies-New Bolton Center, Kennett Square, Chester, Pennsylvania
| | - Sue Lindborg
- School of Veterinary Medicine, University of Pennsylvania, Clinical Studies-New Bolton Center, Kennett Square, Chester, Pennsylvania
| | - Darko Stefanovski
- School of Veterinary Medicine, University of Pennsylvania, Clinical Studies-New Bolton Center, Kennett Square, Chester, Pennsylvania
| | - Kelsey Hart
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Nicholas Frank
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Andrew van Eps
- School of Veterinary Medicine, University of Pennsylvania, Clinical Studies-New Bolton Center, Kennett Square, Chester, Pennsylvania
| |
Collapse
|
44
|
Al-Agele R, Paul E, Taylor S, Watson C, Sturrock C, Drakopoulos M, Atwood RC, Rutland CS, Menzies-Gow N, Knowles E, Elliott J, Harris P, Rauch C. Physics of animal health: on the mechano-biology of hoof growth and form. J R Soc Interface 2019; 16:20190214. [PMID: 31238833 PMCID: PMC6597769 DOI: 10.1098/rsif.2019.0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Global inequalities in economic access and agriculture productivity imply that a large number of developing countries rely on working equids for transport/agriculture/mining. Therefore, the understanding of hoof conditions/shape variations affecting equids' ability to work is still a persistent concern. To bridge this gap, using a multi-scale interdisciplinary approach, we provide a bio-physical model predicting the shape of equids' hooves as a function of physical and biological parameters. In particular, we show (i) where the hoof growth stress originates from, (ii) why the hoof growth rate is one order of magnitude higher than the proliferation rate of epithelial cells and (iii) how the soft-to-hard transformation of the epithelium is possible allowing the hoof to fulfil its function as a weight-bearing element. Finally (iv), we demonstrate that the reason for hoof misshaping is linked to the asymmetrical design of equids' feet (shorter quarters/long toe) together with the inability of the biological growth stress to compensate for such an asymmetry. Consequently, the hoof can adopt a dorsal curvature and become 'dished' overtime, which is a function of the animal's mass and the hoof growth rate. This approach allows us to discuss the potential occurrence of this multifaceted pathology in equids.
Collapse
Affiliation(s)
- Ramzi Al-Agele
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
- Department of Anatomy, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Emily Paul
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Charlotte Watson
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Craig Sturrock
- CIPB, Hounsfield Building, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Michael Drakopoulos
- BL12, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Robert C. Atwood
- BL12, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Nicola Menzies-Gow
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
| | - Edd Knowles
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
| | - Jonathan Elliott
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
| | - Patricia Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicester LE14 4RT, UK
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
45
|
Serwotka-Suszczak AM, Marcinkowska KA, Smieszek A, Michalak IM, Grzebyk M, Wiśniewski M, Marycz KM. The Haematococcus pluvialis extract enriched by bioaccumulation process with Mg(II) ions improves insulin resistance in equine adipose-derived stromal cells (EqASCs). Biomed Pharmacother 2019; 116:108972. [PMID: 31103825 DOI: 10.1016/j.biopha.2019.108972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022] Open
Abstract
Insulin resistance (IR) is one of the characteristic features of equine metabolic syndrome (EMS). Presently, the only therapies of choice are caloric restrictions combined with mineral supplementation, which might improve insulin sensitivity. In this study we investigated the effect of Haematococcus pluvialis algae water extract enriched in bioaccumulation process in magnesium ions (Hp_Mg(II)) on equine adipose derived mesenchymal stromal stem cells, in which insulin resistance was induced by palmitic acid (IR-EqASCs). For this purpose, chemical characterization of H. pluvialis was performed with special emphasis on the analysis of minerals composition, total phenolic and carotenoids contents, as well as scavenging activity. To examine the influence of H. pluvialis extract on IR-EqASCs, various methods of molecular biology and microscopic observations (i.e., immunofluorescence staining, SEM, gene expression by RT-qPCR, proliferative and metabolic cells activity analysis) were applied to investigate in vitro viability, oxidative stress markers and apoptosis-related factor accumulation, along with insulin resistance-related genes expression. Obtained results show, that Hp_Mg(II) significantly improves proliferative and metabolic activity of IR-EqASCs, shortens their population doubling time, improves their clonogenic potential and reduces expression of apoptosis related genes. Moreover, anti-oxidative effect of extract was presented.
Collapse
Affiliation(s)
- Anna M Serwotka-Suszczak
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Klaudia A Marcinkowska
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Agnieszka Smieszek
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| | - Izabela M Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25 St, 50-372 Wrocław, Poland.
| | | | | | - Krzysztof M Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland.
| |
Collapse
|
46
|
5-Azacytidine and Resveratrol Enhance Chondrogenic Differentiation of Metabolic Syndrome-Derived Mesenchymal Stem Cells by Modulating Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1523140. [PMID: 31214275 PMCID: PMC6535830 DOI: 10.1155/2019/1523140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Recently, metabolic syndrome (MS) has gained attention in human and animal metabolic medicine. Insulin resistance, inflammation, hyperleptinemia, and hyperinsulinemia are critical to its definition. MS is a complex cluster of metabolic risk factors that together exert a wide range of effects on multiple organs, tissues, and cells in the body. Adipose stem cells (ASCs) are multipotent stem cell population residing within the adipose tissue that is inflamed during MS. Studies have indicated that these cells lose their stemness and multipotency during MS, which strongly reduces their therapeutic potential. They suffer from oxidative stress, apoptosis, and mitochondrial deterioration. Thus, the aim of this study was to rejuvenate these cells in vitro in order to improve their chondrogenic differentiation effectiveness. Pharmacotherapy of ASCs was based on resveratrol and 5-azacytidine pretreatment. We evaluated whether those substances are able to reverse aged phenotype of metabolic syndrome-derived ASCs and improve their chondrogenic differentiation at its early stage using immunofluorescence, transmission and scanning electron microscopy, real-time PCR, and flow cytometry. Obtained results indicated that 5-azacytidine and resveratrol modulated mitochondrial dynamics, autophagy, and ER stress, leading to the enhancement of chondrogenesis in metabolically impaired ASCs. Therefore, pretreatment of these cells with 5-azacytidine and resveratrol may become a necessary intervention before clinical application of these cells in order to strengthen their multipotency and therapeutic potential.
Collapse
|
47
|
McFarlane D. Diagnostic Testing for Equine Endocrine Diseases: Confirmation Versus Confusion. Vet Clin North Am Equine Pract 2019; 35:327-338. [PMID: 31076223 DOI: 10.1016/j.cveq.2019.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite there being only 2 common endocrine diseases in horses, pituitary pars intermedia dysfunction (PPID) and equine metabolic syndrome (EMS), diagnosis is still confusing. Failing to consider horse factors and treating based on laboratory results only have caused many animals to receive lifelong drug treatment unnecessarily. Increased plasma ACTH, baseline or TRH stimulated, supports a diagnosis of PPID; however, breed, age, thriftiness, illness, coat color, geography, diet, and season also affect ACTH concentration. Insulin dysregulation, the hallmark of EMS, can result from insulin resistance or excessive postprandial insulin release. Each requires a different diagnostic test to reach a diagnosis.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, 264 McElroy Hall, CVHS-OSU, Stillwater, OK 74078, USA.
| |
Collapse
|
48
|
Durham AE, Frank N, McGowan CM, Menzies-Gow NJ, Roelfsema E, Vervuert I, Feige K, Fey K. ECEIM consensus statement on equine metabolic syndrome. J Vet Intern Med 2019; 33:335-349. [PMID: 30724412 PMCID: PMC6430910 DOI: 10.1111/jvim.15423] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Equine metabolic syndrome (EMS) is a widely recognized collection of risk factors for endocrinopathic laminitis. The most important of these risk factors is insulin dysregulation (ID). Clinicians and horse owners must recognize the presence of these risk factors so that they can be targeted and controlled to reduce the risk of laminitis attacks. Diagnosis of EMS is based partly on the horse's history and clinical examination findings, and partly on laboratory testing. Several choices of test exist which examine different facets of ID and other related metabolic disturbances. EMS is controlled mainly by dietary strategies and exercise programs that aim to improve insulin regulation and decrease obesity where present. In some cases, pharmacologic aids might be useful. Management of an EMS case is a long‐term strategy requiring diligence and discipline by the horse's carer and support and guidance from their veterinarians.
Collapse
Affiliation(s)
| | - Nicholas Frank
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - Cathy M McGowan
- Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Nicola J Menzies-Gow
- Department of clinical sciences and services, Royal Veterinary College, Herts, United Kingdom
| | - Ellen Roelfsema
- Department of Equine Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ingrid Vervuert
- Faculty of Veterinary Medicine, University of Leipzig, Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Germany
| | - Kerstin Fey
- Equine Clinic, Internal Medicine, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
49
|
Wiśniewska M, Janczarek I, Piwczyński D. The Aging Phenomenon of Horses With Reference to Human–Horse Relations. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Cassimeris L, Engiles JB, Galantino-Homer H. Detection of endoplasmic reticulum stress and the unfolded protein response in naturally-occurring endocrinopathic equine laminitis. BMC Vet Res 2019; 15:24. [PMID: 30630474 PMCID: PMC6327420 DOI: 10.1186/s12917-018-1748-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Laminitis is often associated with endocrinopathies that cause hyperinsulinemia and is also induced experimentally by hyperinsulinemia, suggesting that insulin initiates laminitis pathogenesis. Hyperinsulinemia is expected to activate pro-growth and anabolic signaling pathways. We hypothesize that chronic over-stimulation of these pathways in lamellar tissue results in endoplasmic reticulum stress, contributing to tissue pathology, as it does in human metabolic diseases. We tested this hypothesis by asking whether lamellar tissue from horses with naturally-occurring endocrinopathic laminitis showed expression of protein markers of endoplasmic reticulum stress. Results Three markers of endoplasmic reticulum stress, spliced XBP1, Grp78/BiP and Grp94, were upregulated 2.5–9.5 fold in lamellar tissues of moderately to severely laminitic front limbs (n = 12) compared to levels in controls (n = 6–7) measured by immunoblotting and densitometry. Comparing expression levels between laminitic front limbs and less affected hind limbs from the same horses (paired samples from 7 to 8 individual horses) demonstrated significantly higher expression for both spliced XBP1 and Grp78/BiP in the laminitic front limbs, and a similar trend for Grp94. Expression levels of the 3 markers were minimal in all samples of the control (n = 6–7) or hind limb groups (n = 7–8). Immunofluorescent localizations were used to identify cell types expressing high levels of Grp78/BiP, as an indicator of endoplasmic reticulum stress. Grp78/BiP expression was highly elevated in suprabasal epidermal keratinocytes and only observed in laminitic front limbs (10/12 laminitic samples, compared to 0/7 in sections from the hind limbs and 0/5 of controls). Conclusions These data demonstrate that the endoplasmic reticulum stress pathway is active in naturally occurring cases of laminitis and is most active within a subset of epidermal keratinocytes. These data provide the rationale for further study of endoplasmic reticulum stress in experimental models of laminitis and the links between laminitis and human diseases sharing activation of this stress pathway. Pharmacological options to manipulate the endoplasmic reticulum stress pathway under investigation for human disease could be applicable to laminitis treatment and prevention should this pathway prove to be a driver of disease progression. Electronic supplementary material The online version of this article (10.1186/s12917-018-1748-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Julie B Engiles
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, USA.,Department of Pathobiology/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah Galantino-Homer
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, 19348, USA
| |
Collapse
|