1
|
Kennedy SM, Passler T, Ditchkoff SS, Brown VR, Raithel GW, Chamorro MF, Walz PH, Kyriakis CS, Falkenberg SM. Seroprevalence of Bovine Viral Diarrhea Virus in Wild Pigs (Sus scrofa) in 17 States in the USA. J Wildl Dis 2024; 60:647-659. [PMID: 38752344 DOI: 10.7589/jwd-d-23-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/02/2024] [Indexed: 07/09/2024]
Abstract
Wild pigs (Sus scrofa) are among the most detrimental invasive species in the USA. They are damaging to crops and agriculture, pose a public health risk as reservoirs of zoonotic pathogens, and may also spread disease to livestock. One pathogen identified in wild pigs is bovine viral diarrhea virus (BVDV), a virus that causes an economically important disease of cattle (Bos taurus and Bos indicus). We sought to determine the BVDV seroprevalence in wild pigs in 17 states across the US and to determine whether age category, sex, or location were associated with a positive antibody titer. Serum samples from 945 wild pigs were collected from 17 US states. Virus neutralization assays were performed to determine antibody titers against BVDV-1b and BVDV-2a. Total BVDV seroprevalence for the study area was 5.8% (95% confidence interval [CI], 4.11-8.89). Seroprevalence across all evaluated states was determined to be 4.4% (95% CI, 2.48-6.82) for BVDV-1b and 3.6% (95% CI, 1.54-5.60) for BVDV-2a. The seroprevalence for individual states varied from 0% to 16.7%. There was no statistical difference in median antibody titer for BVDV-1b or BVDV-2a by sex or age category. State seroprevalences for both BVDV-1b and BVDV-2a were associated with wild pig population estimates for those states.
Collapse
Affiliation(s)
- Shari M Kennedy
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, Alabama 36849, USA
- Current address: Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, 2065 W. Farm Road, Stillwater, Oklahoma, USA
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, Alabama 36849, USA
| | - Stephen S Ditchkoff
- College of Forestry, Wildlife and Environment, Auburn University, 3301 Forestry Wildlife, Auburn University, Alabama 36849, USA
| | - Vienna R Brown
- National Feral Swine Damage Management Program, 4101 Laporte Avenue, Fort Collins, Colorado 80521, USA
| | - Gage W Raithel
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| | - Manuel F Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, Alabama 36849, USA
| | - Paul H Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| | - Constantinos S Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| | - Shollie M Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University 1130 Wire Road, Auburn, Alabama 36849, USA
| |
Collapse
|
2
|
Rivas J, Hasanaj A, Deblon C, Gisbert P, Garigliany MM. Genetic diversity of Bovine Viral Diarrhea Virus in cattle in France between 2018 and 2020. Front Vet Sci 2022; 9:1028866. [PMID: 36304414 PMCID: PMC9593101 DOI: 10.3389/fvets.2022.1028866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) is one of the main pathogens that affects ruminants worldwide, generating significant economic losses. Like other RNA viruses, BVDV is characterized by a high genetic variability, generating the emergence of new variants, and increasing the risk of new outbreaks. The last report on BVDV genotypes in France was in 2008, since which there have been no new information. The goal of this study is to determine the genetic diversity of BVDV strains currently circulating in France. To this aim, samples of cattle were taken from different departments that are part of the main areas of livestock production during the years 2018 to 2020. Using the partial sequence of the 5'UTR region of the viral genome, we identified and classified 145 samples corresponding to Pestivirus A and one sample corresponding to Pestivirus D. For the Pestivirus A samples, the 1e, 1b, 1d, and 1l genotypes, previously described in France, were identified. Next, the 1r and 1s genotypes, not previously described in the country, were detected. In addition, a new genotype was identified and was tentatively assigned as 1x genotype. These results indicate an increase in the genetic diversity of BVDV in France.
Collapse
Affiliation(s)
- José Rivas
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alesia Hasanaj
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Caroline Deblon
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Mutien-Marie Garigliany
| |
Collapse
|
3
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
4
|
Jiménez-Ruiz S, García-Bocanegra I, Acevedo P, Espunyes J, Triguero-Ocaña R, Cano-Terriza D, Torres-Sánchez MJ, Vicente J, Risalde MÁ. A survey of shared pathogens at the domestic-wild ruminants' interface in Doñana National Park (Spain). Transbound Emerg Dis 2021; 69:1568-1576. [PMID: 33900033 DOI: 10.1111/tbed.14126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022]
Abstract
A cross-sectional study was carried out to evaluate shared pathogens that can be transmitted by close or non-close contact at the domestic-wild ruminants' interface. During summer-autumn 2015, a total of 138 cattle and 203 wild ruminants (red deer, Cervus elaphus, and fallow deer, Dama dama) were sampled in Doñana National Park (DNP, south-western Spain), a Mediterranean ecosystem well known for the interaction network occurring in the ungulate host community. Pestiviruses, bovine respiratory syncytial virus (BRSV; Bovine orthopneumovirus), bovine herpesvirus 1 (BoHV-1; Bovine alphaherpesvirus 1) and Mycobacterium tuberculosis complex (MTC) were assessed using serological, microbiological and molecular techniques. The overall seroprevalence against viruses in cattle was 2.2% for pestiviruses, 11.6% for BRSV and 27.5% for BoHV-1. No virus-specific antibodies were found in wildlife. MTC incidence in cattle was 15.9%, and MTC seroprevalence in wild ruminants was 14.3%. The same Mycobacterium bovis spoligotypes (SB1232, SB1230 and SB1610) were identified in cattle, red deer and fallow deer. The serological results for the selected respiratory viruses suggest epidemiological cycles only in cattle. Surveillance efforts in multi-host epidemiological scenarios are needed to better drive and prioritize control strategies for shared pathogens.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Pelayo Acevedo
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Research and Conservation Department. Zoo de Barcelona, Barcelona, Spain
| | - Roxana Triguero-Ocaña
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain.,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | | | - Joaquín Vicente
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - María Ángeles Risalde
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
5
|
Jiménez-Ruiz S, Vicente J, García-Bocanegra I, Cabezón Ó, Arnal MC, Balseiro A, Ruiz-Fons F, Gómez-Guillamón F, Lázaro S, Escribano F, Acevedo P, Domínguez L, Gortázar C, Fernández de Luco D, Risalde MA. Distribution of Pestivirus exposure in wild ruminants in Spain. Transbound Emerg Dis 2020; 68:1577-1585. [PMID: 32920992 DOI: 10.1111/tbed.13827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 01/26/2023]
Abstract
A large-scale study was carried out to determine the prevalence of antibodies against Pestivirus species in wild ruminants and describe their spatial variation in mainland Spain. Serum samples of 1,874 wild ruminants from different regions of this country were collected between the years 2000 and 2017. A total of 6.6% (123/1,874) animals showed antibodies against Pestivirus by both blocking ELISA (bELISA) and virus neutralization tests (VNT). The prevalence of antibodies against pestiviruses was different both among species and regions. Seroprevalence by species was 30.0% (75/250) in Southern chamois (Rupicapra pyrenaica), 7.0% (25/357) in fallow deer (Dama dama), 2.5% (10/401) in red deer (Cervus elaphus), 2.4% (8/330) in Iberian wild goat (Capra pyrenaica), 1.1% (4/369) in roe deer (Capreolus capreolus) and 0.8% (1/130) in mouflon (Ovis aries musimon), not detecting seropositivity (0/37) in Barbary sheep (Ammotragus lervia). The results confirm that exposure to pestiviruses was detected throughout mainland Spain, with significantly higher seroprevalence in Northern regions associated with the presence of Southern chamois. This indicates an endemic circulation of pestiviruses in Southern chamois and a limited circulation of these viruses in the remaining wild ruminant species during the last two decades, thus suggesting that non-chamois species are not true Pestivirus reservoirs in Spain. Nonetheless, the high spatial spread of these viruses points out that new epidemic outbreaks in naïve wild ruminant populations or transmission to livestock may occur, evidencing the usefulness of monitoring pestiviruses in wild ruminants, especially at the wildlife-livestock interface.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, España
| | - Joaquín Vicente
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, España
| | - Óscar Cabezón
- UAB, Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus UAB, Bellaterra, Spain.,Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, España
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León (ULE), León, España.,Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, España
| | - Francisco Ruiz-Fons
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Félix Gómez-Guillamón
- Programa de Vigilancia Epidemiológica de la Fauna Silvestre, Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible (CAGPDS), Junta de Andalucía, Málaga, España
| | - Sonia Lázaro
- Unidad Analítica Regional de Sanidad Animal, Consejería de Agricultura, Medio Ambiente y Desarrollo Rural de Castilla-la Mancha, Talavera de la Reina, España
| | - Fernando Escribano
- Programa de Conservación y Recuperación de Fauna Silvestre, Dirección General del Medio Natural de la Región de Murcia, Murcia, España
| | - Pelayo Acevedo
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Lucas Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid (UCM), Madrid, España
| | - Christian Gortázar
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, España
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza (UNIZAR), Zaragoza, España
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, España
| |
Collapse
|
6
|
Gómez-Guillamón F, Díaz-Cao JM, Camacho-Sillero L, Cano-Terriza D, Alcaide EM, Cabezón Ó, Arenas A, García-Bocanegra I. Spatiotemporal monitoring of selected pathogens in Iberian ibex (Capra pyrenaica). Transbound Emerg Dis 2020; 67:2259-2265. [PMID: 32303109 DOI: 10.1111/tbed.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/01/2022]
Abstract
An epidemiological surveillance programme was carried out to assess exposure and spatiotemporal patterns of selected pathogens (Brucella spp., Mycobacterium avium subsp. paratuberculosis (MAP), Mycoplasma agalactiae, Pestivirus and bluetongue virus (BTV)) in Iberian ibex (Capra pyrenaica) from Andalusia (southern Spain), the region with the largest population of this species. A total of 602 animals in five distribution areas were sampled during 2010-2012 (P1) and 2013-2015 (P2). The Rose Bengal test (RBT) and complement fixation test (CFT) were used in parallel to detect anti-Brucella spp. antibodies. Commercial ELISAs were used to test for antibodies against the other selected pathogens. Sera positive for BTV and Pestivirus by ELISA were tested by serum neutralization test (SNT) to identify circulating serotypes/genotypes. The overall seroprevalences were as follows: 0.4% for Brucella spp. (2/549; CI 95%: 0.1-1.3) (14/555 positive by RBT; 2/564 by CFT), 0.5% for MAP (3/564; CI 95%: 0.1-1.5), 5.7% for M. agalactiae (30/529; CI 95%: 3.9-8.0), 11.1% for Pestivirus (58/525; CI 95%: 8.5-14.1) and 3.3% for BTV (18/538; CI 95%: 2.0-5.2). Significantly higher seropositivity to both M. agalactiae and BTV was observed in P1 compared with P2. Spatiotemporal clusters of high seroprevalence were also found for M. agalactiae in four of the five sampling areas in 2010, and for BTV in one of five areas in 2012. Specific antibodies against BTV-4, BDV-4 and BVDV-1 were confirmed by SNT. Our results indicate that the Iberian ibex may be considered spillover hosts of Brucella spp. and MAP rather than true reservoirs. The prevalence of antibodies against M. agalactiae and BTV suggests spatiotemporal variation in the circulation of these pathogens, while Pestivirus has a moderately endemic circulation in Iberian ibex populations. Our study highlights the importance of long-term surveillance for a better understanding of the spatiotemporal distribution of shared infectious diseases and providing valuable information to improve control measures at the wildlife-livestock interface.
Collapse
Affiliation(s)
- Félix Gómez-Guillamón
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - José M Díaz-Cao
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Leonor Camacho-Sillero
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Eva M Alcaide
- Centro de Análisis y Diagnóstico de la Fauna Silvestre en Andalucía, Agencia de Medio Ambiente y Agua M.P., Junta de Andalucía, Málaga, Spain
| | - Óscar Cabezón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
7
|
Walz PH, Chamorro MF, M Falkenberg S, Passler T, van der Meer F, R Woolums A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 2020; 34:1690-1706. [PMID: 32633084 PMCID: PMC7517858 DOI: 10.1111/jvim.15816] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022] Open
Abstract
Control of bovine viral diarrhea virus (BVDV) in cattle populations across most of the world has remained elusive in spite of advances in knowledge about this viral pathogen. A central feature of virus perseverance in cattle herds is the unique mechanism of persistent infection. Managing BVDV infection in herds involves controlling persistently infected carrier animals using a multidimensional approach of vaccination, biosecurity, and identification of BVDV reservoirs. A decade has passed since the original American College of Veterinary Internal Medicine consensus statement on BVDV. While much has remained the same with respect to clinical signs of disease, pathogenesis of infection including persistent infection, and diagnosis, scientific articles published since 2010 have led to a greater understanding of difficulties associated with control of BVDV. This consensus statement update on BVDV presents greater focus on topics currently relevant to the biology and control of this viral pathogen of cattle, including changes in virus subpopulations, infection in heterologous hosts, immunosuppression, and vaccination.
Collapse
Affiliation(s)
- Paul H Walz
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Manuel F Chamorro
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Shollie M Falkenberg
- USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Thomas Passler
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amelia R Woolums
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
8
|
Ricci S, Bartolini S, Morandi F, Cuteri V, Preziuso S. Genotyping of Pestivirus A (Bovine Viral Diarrhea Virus 1) detected in faeces and in other specimens of domestic and wild ruminants at the wildlife-livestock interface. Vet Microbiol 2019; 235:180-187. [PMID: 31383300 DOI: 10.1016/j.vetmic.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/19/2022]
Abstract
Pestiviruses are widespread in the world among ungulates and infect both domestic and wild animals causing severe economic losses in livestock. Bovine Viral Diarrhea Virus type 1 (BVDV-1), now re-designated as Pestivirus A, causes diseases mainly in cattle, while few data are available about infection in wild ruminants and about the role of these animals in viral maintenance and spread. In order to investigate BVDV-1 infection in domestic and wild ruminants, especially at the wildlife/livestock interface, bulk tank milk from dairy cattle and sheep and spleen from red deer, roe deer and fallow deer were analysed. Furthermore, faecal samples from Apennine chamois and from wild deer were evaluated as a suitable sample for detecting and genotyping pestiviruses. BVDV-1 RNA was found in all animal species tested but not sheep. Genotyping based on partial 5'UTR and Npro sequences detected BVDV-1a in samples from Apennine chamois, red deer, roe deer and pasture-raised cattle, while BVDV-1c was found in a faecal sample from Apennine chamois and in a spleen sample from roe deer. For the first time BVDV-1 RNA was found and genotyped from faecal samples of wild ruminants and of cattle. BVDV-1a detection in Apennine chamois, red deer, roe deer and pasture-raised cattle suggests that the eventuality of viral transmission at the wildlife/livestock interface should be carefully evaluated. BVDV subgenotype 1c was found for the first time in roe deer and Apennine chamois in Central Italy, therefore the epidemiological role of these animals and the viral ecology should be further investigated.
Collapse
Affiliation(s)
- Sara Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Sofia Bartolini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | | | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Silvia Preziuso
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.
| |
Collapse
|
9
|
Braun U, Hilbe M, Peterhans E, Schweizer M. Border disease in cattle. Vet J 2019; 246:12-20. [PMID: 30902184 DOI: 10.1016/j.tvjl.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Within the family Flaviviridae, viruses within the genus Pestivirus, such as Border disease virus (BDV) of sheep, can cause great economic losses in farm animals. Originally, the taxonomic classification of pestiviruses was based on the host species they were isolated from, but today, it is known that many pestiviruses exhibit a broad species tropism. This review provides an overview of BDV infection in cattle. The clinical, hematological and pathological-anatomical findings in bovines that were transiently or persistently infected with BDV largely resemble those in cattle infected with the closely related pestivirus bovine viral diarrhoea virus (BVDV). Accordingly, the diagnosis of BDV infection can be challenging, as it must be differentiated from various pestiviruses in cattle. The latter is very relevant in countries with control programs to eradicate BVDV in Bovidae, as in most circumstances, pestivirus infections in sheep, which act as reservoir for BDV, are not included in the eradication scheme. Interspecies transmission of BDV between sheep and cattle occurs regularly, but BDV in cattle appears to be of minor general importance. Nevertheless, BDV outbreaks at farm or local level can be very costly.
Collapse
Affiliation(s)
- Ueli Braun
- Department of Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Ernst Peterhans
- Institute for Virology and Immunology, Länggass-Strasse 122, 3001 Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute for Virology and Immunology, Länggass-Strasse 122, 3001 Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| |
Collapse
|
10
|
Ma JG, Tian AL, Zheng WB, Zou Y, Zhang YT, Yang ZQ. First report of bovine viral diarrhea virus and Mycobacterium avium subspecies paratuberculosis infection in Tibetan sheep (Ovis aries) in Tibetan Plateau, China. Trop Anim Health Prod 2018; 51:719-722. [PMID: 30269235 DOI: 10.1007/s11250-018-1718-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Bovine viral diarrhea virus (BVDV) and Mycobacterium avium subspecies paratuberculosis (MAP) are important pathogens, which cause serious disease in animals. However, information about BVDV and MAP infection in Tibetan sheep in China is limited. Two thousand one hundred and eighty-seven blood samples were collected from Tibetan sheep between April 2013 and March 2014 from the Tibetan Plateau and tested for BVDV and MAP antibodies using commercial ELISA kits. The overall seroprevalence of BVDV and MAP in Tibetan sheep was 36.7 and 11.29%, respectively. Furthermore, risk factor analysis indicated that the age of sheep was statistically significant associated with BVDV infection and the region was considered as the risk factor of MAP infection in sheep (P < 0.05), gender and season were not considered as risk factors. This is the first report of seroprevalence and risk factors associated with BVDV and MAP infection in Tibetan Sheep in China, which will provide baseline information for controlling BVDV and MAP infection in ruminants in the Tibetan Plateau, western China.
Collapse
Affiliation(s)
- Jian-Gang Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yu-Ti Zhang
- Tai'erzhuang District Agricultural Comprehensive Development Office, Tai'erzhuang, 277400, Shandong Province, People's Republic of China
| | - Zeng-Qi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China.
| |
Collapse
|
11
|
Silveira S, Falkenberg SM, Elderbrook MJ, Sondgeroth KS, Dassanayake RP, Neill JD, Ridpath JF, Canal CW. Serological survey for antibodies against pestiviruses in Wyoming domestic sheep. Vet Microbiol 2018; 219:96-99. [PMID: 29778211 DOI: 10.1016/j.vetmic.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 11/19/2022]
Abstract
Pestiviruses including Bovine viral diarrhea virus type 1 (BVDV-1), BVDV-2 and Border disease virus (BDV) have been reported in both sheep and cattle populations, together with the HoBi-like, an emerging group of pestiviruses. Pestivirus control programs in the United States have focused on the control of BVDV-1 and 2. The incidence of pestivirus infection in sheep in the United States and the risk of transmission between cattle and sheep populations are unknown. The aim of this study was to perform serological surveillance for pestivirus exposure in sheep from an important sheep producing state in the Unites States, Wyoming. For this, sera from 500 sheep, collected across the state of Wyoming (US) in 2015-2016, were examined by comparative virus neutralization assay against four species/proposed species of pestiviruses: BVDV-1, BVDV-2, BDV and HoBi-like virus. Rates of exposure varied between geographic regions within the state. The overall pestivirus prevalence of antibodies was 5.6%. Antibodies were most frequently detected against BVDV-1 (4%), and the highest antibody titers were also against BVDV-1. Data from this study highlights understanding of the dynamics of sheep pestivirus exposure, consideration of reference strains used for VN assays, transmission patterns, and potential vaccination history should be taken into account in implementation of control measures against pestiviruses in sheep and for successful BVDV control programs in cattle.
Collapse
Affiliation(s)
- S Silveira
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - S M Falkenberg
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA.
| | - M J Elderbrook
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - K S Sondgeroth
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - R P Dassanayake
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA
| | - J D Neill
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA
| | - J F Ridpath
- Ruminant Diseases and Immunology Unit, National Animal Disease Center/ARS/USDA, Ames, IA, USA
| | - C W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Colom-Cadena A, Espunyes J, Cabezón O, Fernández-Aguilar X, Rosell R, Marco I. New insights on pestivirus infections in transhumant sheep and sympatric Pyrenean chamois ( Rupicapra p. pyrenaica ). Vet Microbiol 2018; 217:82-89. [DOI: 10.1016/j.vetmic.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
13
|
Torsson E, Berg M, Misinzo G, Herbe I, Kgotlele T, Päärni M, Roos N, Blomström AL, Ståhl K, Johansson Wensman J. Seroprevalence and risk factors for peste des petits ruminants and selected differential diagnosis in sheep and goats in Tanzania. Infect Ecol Epidemiol 2017; 7:1368336. [PMID: 29081918 PMCID: PMC5645728 DOI: 10.1080/20008686.2017.1368336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Introduction: Livestock husbandry is critical for food security and poverty reduction in a low-income country like Tanzania. Infectious disease is one of the major constraints reducing the productivity in this sector. Peste des petits ruminants (PPR) is one of the most important diseases affecting small ruminants, but other infectious diseases may also be present. Objective: The objective of this study was to determine the seroprevalence and risk factors for exposure to PPR, contagious caprine pleuropneumonia (CCPP), foot-and-mouth disease (FMD), bluetongue (BT), and bovine viral diarrhoea (BVD) in sheep and goats in Tanzania. Methods: Serum samples were collected in 2014 and 2015, and analysed using enzyme-linked immunosorbent assays to detect antibodies to the five pathogens. Results and discussion: This is the first description of seroprevalence of FMD and BT among small ruminants in Tanzania. Risk factor analysis identified sex (female) (OR for 2014: PPR: 2.49, CCPP: 3.11, FMD: 2.98, BT: 12.4, OR for 2015: PPR: 14.1, CCPP: 1.10, FMD: 2.67, BT: 1.90, BVD: 4.73) and increasing age (>2 years) (OR for 2014: PPR: 14.9, CCPP: 2.34, FMD: 7.52, BT: 126, OR for 2015: PPR: 8.13, CCPP: 1.11, FMD: 2.98, BT: 7.83, BVD: 4.74) as risk factors for exposure to these diseases.
Collapse
Affiliation(s)
- Emeli Torsson
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mikael Berg
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gerald Misinzo
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ida Herbe
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tebogo Kgotlele
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Malin Päärni
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nils Roos
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Anne-Lie Blomström
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karl Ståhl
- National Veterinary Institute, Department of Disease Control and Epidemiology, Uppsala, Sweden
| | - Jonas Johansson Wensman
- Department of Veterinary Microbiology and Parasitology, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bovine viral diarrhoea (BVD). EFSA J 2017; 15:e04952. [PMID: 32625618 PMCID: PMC7009957 DOI: 10.2903/j.efsa.2017.4952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bovine viral diarrhoea (BVD) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of BVD to be listed, Article 9 for the categorisation of BVD according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to BVD. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, BVD can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 3 of Annex IV referred to in point (c) of Article 9(1) is inconclusive. The animal species to be listed for BVD according to Article 8(3) criteria are mainly species of the families Bovidae, Cervidae and Camelidae as susceptible species and several mammalian species as reservoirs.
Collapse
|
15
|
Graham DA, Gallagher C, Carden RF, Lozano JM, Moriarty J, O'Neill R. A survey of free-ranging deer in Ireland for serological evidence of exposure to bovine viral diarrhoea virus, bovine herpes virus-1, bluetongue virus and Schmallenberg virus. Ir Vet J 2017; 70:13. [PMID: 28503294 PMCID: PMC5427525 DOI: 10.1186/s13620-017-0091-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background Deer are an important wildlife species in both the Republic of Ireland and Northern Ireland having colonised most regions across the island of Ireland. In comparison to cattle and sheep which represent the main farmed ruminant species on the island, there is a lack of data concerning their exposure, as measured by the presence of antibodies, to important viral pathogens of ruminants. A study was therefore undertaken to investigate the seroprevalence of wild deer to four viruses, namely bovine viral diarrhoea virus (BVDV), bovine herpesvirus-1 (BoHV-1), Schmallenberg virus (SBV) and bluetongue virus (BTV). Results Two panels of sera were assembled; Panel 1 comprised 259 samples (202 collected in the Republic of Ireland and 57 in Northern Ireland) between 2013 and 2015, while Panel 2 comprised 131 samples collected in the Republic of Ireland between 2014 and 2015. Overall sika deer (Cervus nippon) were sampled most commonly (54.8%), followed by fallow deer (Dama dama) (35.3%), with red deer (Cervus elaphus) (4.3%) and hybrid species (0.3%) sampled less frequently, with the species not being recorded for the remaining 5.3% of deer sampled. Age was not recorded for 96 of the 390 deer sampled. 196 of the remainder were adults, while 68 and 30 were yearlings and calves, respectively. Using commercially available enzyme-linked immunosorbent assays, true prevalence and 95% confidence intervals were calculated as 9.9%, (6.8-13.0% CI), SBV; 1.5% (0.1-3.0% CI), BoHV-1; 0.0%, 0-1.7% CI), BVDV; and 0.0%, (0.01-0.10% CI), BTV. Conclusions The results indicate a very low seroprevalence for both BVDV and BoHV-1 in the wild deer tested within the study and, are consistent with a very low prevalence in Ireland. While serological cross-reaction with cervid herpesviruses cannot be excluded, the results in both cases suggest that the presence of these viruses in deer is not a significant risk to their control and eradication from the cattle population. This is important given the ongoing programme to eradicate BVDV in Ireland and deliberations on a national eradication programme for BoHV-1. The SBV results show consistency with those reported from cattle and sheep on the island of Ireland, while the BTV results are consistent with this virus remaining exotic to Ireland. The results provide a baseline against which future surveys of either wild or farmed/captive deer populations can be compared.
Collapse
Affiliation(s)
- David A Graham
- Animal Health Ireland, 4-5 The Archways, Carrick on Shannon, Co. Leitrim Ireland
| | - Clare Gallagher
- Animal Health Ireland, 4-5 The Archways, Carrick on Shannon, Co. Leitrim Ireland
| | - Ruth F Carden
- Adjunct Research Fellow, School of Archaeology, University College Dublin, Belfield, Dublin 4 Ireland
| | - Jose-Maria Lozano
- Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Ireland
| | - John Moriarty
- Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Ireland
| | - Ronan O'Neill
- Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Ireland
| |
Collapse
|