1
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Vendramini THA, Amaral AR, Rentas MF, Nogueira JPDS, Pedrinelli V, de Oliveira VV, Zafalon RVA, Brunetto MA. Ketogenic diets: A systematic review of current scientific evidence and possible applicability in dogs and cats. J Anim Physiol Anim Nutr (Berl) 2024; 108:541-556. [PMID: 38091342 DOI: 10.1111/jpn.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 03/06/2024]
Abstract
Ketogenic diets (KD) have been used in the treatment of epilepsy in humans for around a century and, more recently, they have been implanted for cancer patients, as well as in the treatment of obesity. This type of diet consists of high-fat levels, an adequate amount of protein and restricted carbohydrates, or high medium-chain triglycerides. Recently, the ketogenic diet has gained attention in veterinary medicine and studies were published evaluating the effects of KD in dogs with epilepsy. The objective of this review was to highlight recent studies about the application of KD in dogs and cats, to describe the neurobiochemical mechanisms through which KD improves epilepsy crisis, and their adverse effects. Studies were identified by a systematic review of literature available on PubMed, Embase, and Scopus. All cohort and case-control studies were included, and all articles were exported to Mendeley® citation manager, and duplicates were automatically removed. Seven articles and three conference abstracts conducted with dogs were included in the present study. There is evidence that the consumption of diets with medium-chain triglycerides increases the concentration of circulating ketone bodies and improves epilepsy signs, although these diets have higher carbohydrate and lower fat content when compared to the classic KD.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andressa R Amaral
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana F Rentas
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliana P D S Nogueira
- Department of Research & Development, Archer Daniels Midland Company (ADM), Animal Nutrition, Paulínia, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vinicius V de Oliveira
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | |
Collapse
|
3
|
Peek SI, Meller S, Twele F, Packer RMA, Volk HA. Epilepsy is more than a simple seizure disorder: Parallels between human and canine cognitive and behavioural comorbidities. Vet J 2024; 303:106060. [PMID: 38123061 DOI: 10.1016/j.tvjl.2023.106060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Psychiatric and cognitive comorbidities have been known to play a major role in human epilepsy for a long time. People with epilepsy (PWE) frequently express signs of varying psychiatric and cognitive disorders affecting their quality and quantity of life (QoL/QaoL). Over the last few years, research on behavioural comorbidities and their effect on the underlying disease have been performed in canine epilepsy. The following article reviews manifestations of comorbidities in canine epilepsy with an emphasis on patterns of clinical signs and their effects on QoL and QaoL. Cognitive and behavioural alterations in epileptic dogs are mainly represented by fear-/anxiety related behaviour and cognitive impairment (CI). Reduced trainability and altered reactions to daily situations are common results of comorbid changes posing obstacles in everyday life of owners and their dog. In addition, clinical signs similar to attention deficit hyperactivity disorder (ADHD) in humans have been reported. Canine attention-deficit-hyperactivity-disorder-like (c-ADHD-like) behaviour should, however, be evaluated critically, as there are no official criteria for diagnosis of ADHD or ADHD-like behaviour in dogs, and some of the reported signs of c-ADHD-like behaviour could be confused with anxiety-associated behaviour. Many intrinsic and extrinsic factors could potentially influence the development of behavioural and cognitive comorbidities in canine epilepsy. In particular, seizure frequency/severity, signalment and factors concerning disease management, such as pharmacotherapy and nutrition, are closely linked with the presence of the aforementioned comorbid disorders. Further studies of behavioural alterations in epileptic dogs are needed to comprehend the complexity of clinical signs and their multifactorial origin.
Collapse
Affiliation(s)
- Saskia I Peek
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | | | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany.
| |
Collapse
|
4
|
Hemida M, Rosendahl S, Jokinen TS, Moore R, Vuori KA, Anturaniemi J, Hielm-Björkman A. Assessing the association between supplemented puppyhood dietary fat sources and owner-reported epilepsy in adulthood, among Finnish companion dogs. Front Vet Sci 2023; 10:1227437. [PMID: 37781290 PMCID: PMC10540444 DOI: 10.3389/fvets.2023.1227437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Epilepsy is a serious and common neurological condition in dogs, despite the wide number of antiepileptic drugs available, in approximately one third of the patients, epilepsy remains unsatisfactorily controlled. We aim to analyze whether feeding dietary fat sources during puppyhood was associated with canine epilepsy in adulthood. Methods A nested case-control study was compiled from the validated DogRisk food frequency questionnaire (DogRisk FFQ). DogRisk FFQ collected feeding, disease, and background data about the dog. The study sample consisted of 108 owner-reported epileptic cases and 397 non-epileptic controls. Each case was matched with up to four controls for the key confounding factors of sex, breed, and age. We analyzed associations between feeding as a puppy and owner-reported epilepsy as an adult dog using Cox regression. We tested 55 different food variables. Results We found that feeding fish fat from dietary sources at least once a week during puppyhood was inversely associated with epilepsy in later life in the unadjusted analysis [OR 0.46 (95% CI 0.25-0.83), p=0.01], while when adjusting for keeping conditions and dog characteristics the association was [OR 0.45 (95% CI 0.23-0.88), p=0.02]. When adjusted for keeping conditions, dog characteristics, and other feeding factors, the association was of similar magnitude but not significance [OR 0.56 (95% CI 0.27-1.15), p=0.12]. Discussion The study indicates possible protective associations of feeding the dog with dietary sources of fish fat against epilepsy, although the result could be confounded by other feeding factors. Findings are compatible with current knowledge regarding the role of omega-3 fatty acids and ketogenic diet, a low carbohydrate, high fat diet as supportive treatments of epilepsy. As our findings are based on observations, we suggest the possibility of causality but do not prove it. Dietary intervention studies should now be conducted to confirm our findings.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Nakatsuka K, Zanghi B, Hasegawa D. Efficacy evaluation of a commercially available MCT enriched therapeutic diet on dogs with idiopathic epilepsy treated with zonisamide: a prospective, randomized, double-blinded, placebo-controlled, crossover dietary preliminary study. BMC Vet Res 2023; 19:145. [PMID: 37674206 PMCID: PMC10481612 DOI: 10.1186/s12917-023-03710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) is a common, chronic brain dysfunction in dogs. Recently, the effect of feeding a diet enriched with medium-chain triglycerides (MCTs) on seizure frequency has been evaluated in several studies in dogs with IE. However, most dogs with IE in previous studies were treated with phenobarbital as the main antiseizure medication (ASM). In Japan, zonisamide (ZNS) is the most prescribed ASM for dogs with IE. The interaction between ZNS and various nutrients including MCTs and the potential effects on treatment efficacy resulting from combining these therapies have not been previously studied. A prospective, randomized, double-blinded, placebo-controlled, crossover dietary study was conducted. Dogs (n = 7) treated with ZNS were fed either a placebo diet (PL) or Purina ProPlan Veterinary Diet NeuroCare (NC) for 3 months, after which treatments were crossed over and continued for another 3 months. Seizure frequency (seizures/month; sz/m), blood tests including concentrations of ZNS and β-hydroxybutyric acid, and owner's visual analogue scale score were collected from all dogs for both treatment periods. RESULTS There was no significant difference in the seizure frequency between PL (2.95 ± 0.80 sz/m) and NC (1.90 ± 0.57 sz/m) during the 6 months of trial. Three of 7 dogs showed ≥ 50% seizure reduction, and 1 of those 3 dogs achieved seizure freedom in NC period. However, 2 of 7 dogs had no changes in epileptic seizure frequency, 2 of 7 dogs had a deterioration in seizure frequency in the NC period. Feeding the MCT diet concurrent with ZNS showed no apparent adverse effects and did not affect ZNS concentration. CONCLUSIONS This study indicated that the commercially available MCT-enriched diet (NC) can be safely used concurrently with ZNS for dogs with IE.
Collapse
Affiliation(s)
- Kazumasa Nakatsuka
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Academic, Nestlé Purina PetCare, Kobe, Japan
| | - Brian Zanghi
- Global Nutrition and Communications, Nestlé Purina PetCare, St. Louis, USA
| | - Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.
- The Research Center for Animal Life Sciences, Nippon Veterinary and Life Science University, Tokyo, Japan.
| |
Collapse
|
6
|
Jackson MI, Jewell DE. Feeding of fish oil and medium-chain triglycerides to canines impacts circulating structural and energetic lipids, endocannabinoids, and non-lipid metabolite profiles. Front Vet Sci 2023; 10:1168703. [PMID: 37691632 PMCID: PMC10484482 DOI: 10.3389/fvets.2023.1168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The effect of medium-chain fatty acid-containing triglycerides (MCT), long-chain polyunsaturated fatty acid-containing triglycerides from fish oil (FO), and their combination (FO+MCT) on the serum metabolome of dogs (Canis familiaris) was evaluated. Methods Dogs (N = 64) were randomized to either a control food, one with 7% MCT, one with FO (0.18% eicosapentaenoate and 1.3% docosahexaenoate), or one with FO+MCT for 28 days following a 14-day washout period on the control food. Serum metabolites were analyzed via chromatography followed by mass spectrometry. Results Additive effects of serum metabolites were observed for a number of metabolite classes, including fatty acids, phospholipids, acylated amines including endocannabinoids, alpha-oxidized fatty acids, and methyl donors. Some effects of the addition of FO+MCT were different when the oils were combined compared with when each oil was fed separately, namely for acylcarnitines, omega-oxidized dicarboxylic acids, and amino acids. Several potentially beneficial effects on health were observed, including decreased circulating triglycerides and total cholesterol with the addition of FO (with or without MCT) and decreases in N-acyl taurines with the addition of MCT, FO, or FO+MCT. Discussion Overall, the results of this study provide a phenotypic characterization of the serum lipidomic response to dietary supplementation of long-chain n3-polyunsaturated and medium-chain saturated fats in canines.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
7
|
Potschka H, Fischer A, Löscher W, Volk HA. Pathophysiology of drug-resistant canine epilepsy. Vet J 2023; 296-297:105990. [PMID: 37150317 DOI: 10.1016/j.tvjl.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
8
|
García-Belenguer S, Grasa L, Palacio J, Moral J, Rosado B. Effect of a Ketogenic Medium Chain Triglyceride-Enriched Diet on the Fecal Microbiota in Canine Idiopathic Epilepsy: A Pilot Study. Vet Sci 2023; 10:vetsci10040245. [PMID: 37104400 PMCID: PMC10144861 DOI: 10.3390/vetsci10040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Ketogenic diets have been successfully used in people and dogs with idiopathic epilepsy. This study examined the effect of a ketogenic medium chain triglycerides (MCT)- enriched diet administered for one month on the fecal microbiota of epileptic (n = 11) (six with drug-sensitive epilepsy, DSE; five with drug-refractory epilepsy, DRE) and non-epileptic beagle dogs (n = 12). A significant reduction after diet in the relative abundance of bacteria from the Actinobacteria phylum was observed in all dogs. Epileptic dogs showed a higher relative abundance of Lactobacillus compared with non-epileptic dogs at baseline but these differences disappeared after diet. Epileptic dogs also showed a significantly higher abundance of Negativicutes and Selenomonadales after dietary intervention. Baseline microbiota patterns were similar in non-epileptic beagles and dogs with DSE but significantly different from dogs with DRE. In non-epileptic and DSE groups, the MCT diet decreased the relative abundance of Firmicutes and increased that of Bacteroidetes and Fusobacteria, but the opposite effect was observed in dogs with DRE. These results suggest that the MCT diet effect would depend on individual baseline microbiota patterns and that ketogenic diets could help reduce gut microbiota differences between dogs with DRE and DSE.
Collapse
Affiliation(s)
- Sylvia García-Belenguer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain
| | - Jorge Palacio
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Jon Moral
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| | - Belén Rosado
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
9
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
10
|
Bazin I, Desmarchelier M. Retrospective study on the use of fluvoxamine in 72 dogs with anxiety disorders. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
García-Belenguer S, Grasa L, Valero O, Palacio J, Luño I, Rosado B. Gut Microbiota in Canine Idiopathic Epilepsy: Effects of Disease and Treatment. Animals (Basel) 2021; 11:ani11113121. [PMID: 34827852 PMCID: PMC8614570 DOI: 10.3390/ani11113121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is evidence that supports the existence of a gut-brain axis system through which bi-directional communication occurs between gut bacteria and the brain. Epilepsy is one of the most common neurological disorders in humans and dogs. The role of microbiota in epilepsy remains unknown but it has been suggested that it is a possible influence of gut bacteria in controlling seizures. The aim of this study was to investigate the changes in gut microbiota from dogs with idiopathic epilepsy and the possible effect of antiepileptic drugs on the modulation of the composition of this microbiota. In comparison with control dogs, drug-naive epileptic individuals showed a significantly reduced abundance of GABA and SCFAs-producing bacteria, as well as bacteria associated with reduced risk for brain disease. Moreover, the use of phenobarbital or imepitoin monotherapy during one month in epileptic dogs did not modify the gut microbiota composition. These results open up the possibility of studying probiotic interventions in epilepsy. Considering the phylogenetic and metabolic similarities in intestinal microbiome between humans and dogs, this study contributes to the understanding of epilepsy both in human and veterinary medicine. Abstract Epilepsy is one of the most common neurological disorders in humans and dogs. The structure and composition of gut microbiome associated to this disorder has not yet been analyzed in depth but there is evidence that suggests a possible influence of gut bacteria in controlling seizures. The aim of this study was to investigate the changes in gut microbiota associated to canine idiopathic epilepsy (IE) and the possible influence of antiepileptic drugs (AEDs) on the modulation of this microbiota. Faecal microbiota composition was analyzed using sequencing of bacterial 16S rRNA gene in a group of healthy controls (n = 12) and a group of epileptic dogs both before (n = 10) and after a 30-day single treatment with phenobarbital or imepitoin (n = 9). Epileptic dogs showed significantly reduced abundance of GABA (Pseudomonadales, Pseudomonadaceae, Pseudomonas and Pseudomona_graminis) and SCFAs-producing bacteria (Peptococcaceae, Ruminococcaceae and Anaerotruncus) as well as bacteria associated with reduced risk for brain disease (Prevotellaceae) than control dogs. The administration of AEDs during 30 days did not modify the gut microbiota composition. These results are expected to contribute to the understanding of canine idiopathic epilepsy and open up the possibility of studying new therapeutic approaches for this disorder, including probiotic intervention to restore gut microbiota in epileptic individuals.
Collapse
Affiliation(s)
- Sylvia García-Belenguer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
- Correspondence:
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2, Universidad de Zaragoza—CITA, 50009 Zaragoza, Spain
| | - Olga Valero
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| | - Jorge Palacio
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| | - Isabel Luño
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| | - Belén Rosado
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| |
Collapse
|
12
|
Han FY, Conboy‐Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 2021; 62:1790-1806. [PMID: 34169513 PMCID: PMC8453917 DOI: 10.1111/epi.16972] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Many studies show that glucose metabolism in epileptic brain areas can be impaired. Energy is crucial to maintain normal brain function, including ion and neurotransmitter balances. Energy deficits can lead to disruption of ion gradients, which can trigger neuronal depolarization and generation of seizures. Thus, perturbed metabolic processing of glucose in epileptogenic brain areas indicates a specific nutritional need for people and animals with epilepsy, as they are likely to benefit from auxiliary brain fuels other than glucose. Ketogenic diets provide the ketone bodies acetoacetate and β-hydroxybutyrate, which can be used as auxiliary fuel by the brain. In approximately 50% children and adults with certain types of epilepsy, who can tolerate and maintain these dietary regimens, seizure frequency can be effectively reduced. More recent data demonstrate that addition of medium chain triglycerides (MCTs), which provide the medium chain fatty acids octanoic and decanoic acid, as well as ketone bodies as auxiliary brain energy, can be beneficial in rodent seizure models, and dogs and humans with epilepsy. Here, this evidence is reviewed, including tolerance in 65% of humans, efficacy studies in dogs, possible anticonvulsant mechanisms of actions of MCTs, and specifically decanoic acid as well as metabolic and antioxidant mechanisms. In conclusion, MCTs are a promising adjunct to standard pharmacological treatment for both humans and dogs with epilepsy, as they lack central nervous system side effects found with current antiepileptic drugs. There is now a need for larger clinical trials in children, adults, and dogs to find the ideal composition and doses of MCTs and the types of epilepsy that respond best.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| | | | - Galena Rybachuk
- Technical CommunicationsNestlé Purina PetCare EMENABarcelonaSpain
| | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHanoverGermany
| | - Brian Zanghi
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Yuanlong Pan
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
13
|
Jones GMC, Volk HA, Packer RMA. Research priorities for idiopathic epilepsy in dogs: Viewpoints of owners, general practice veterinarians, and neurology specialists. J Vet Intern Med 2021; 35:1466-1479. [PMID: 33960544 PMCID: PMC8162594 DOI: 10.1111/jvim.16144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epilepsy is the most common chronic neurological disease in dogs that adversely affects the quality of life (QoL) of affected dogs and their owners. Research on epilepsy in dogs is expanding internationally, but where best to focus limited research time, funds, and expertise to achieve better outcomes for affected dogs and their owners has not been studied. OBJECTIVE To explore idiopathic epilepsy (IE) research priorities of owners of dogs with IE, general practice veterinarians, and veterinary neurologists. METHODS An international online survey was conducted in 2016 and repeated in 2020. Participants rated the absolute importance and relative rank of 18 areas of IE research, which were compared between groups and time points. RESULTS Valid responses were received from 414 respondents in 2016 and 414 respondents in 2020. The development of new anti-seizure drugs (ASD) and improving the existing ASD management were considered the most important research priorities. Areas of research with increasing priority between 2016 and 2020 included non-ASD management, with the greatest potential seen in behavioral and dietary-based interventions. Disagreements in priorities were identified between groups; owners prioritized issues that impacted their and their dog's QoL, for example, adverse effects and comorbidities, whereas general practitioner vets and neurologists prioritized clinical issues and longer-term strategies to manage or prevent IE, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE Ensuring that voices of owners are heard in the planning of future research should be a broader goal of veterinary medicine, to target research efforts toward areas most likely to improve the QoL of the dog-owner dyad.
Collapse
Affiliation(s)
| | - Holger Andreas Volk
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHertfordshireUK
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine HannoverHannoverGermany
| | | |
Collapse
|
14
|
Pilla R, Suchodolski JS. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet Clin North Am Small Anim Pract 2021; 51:605-621. [PMID: 33653538 DOI: 10.1016/j.cvsm.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome is a functional organ, and responds metabolically to the nutrient composition within the diet. Fiber, starch, and protein content have strong effects on the microbiome composition, and changes in these nutrient profiles can induce rapid shifts. Due to functional redundancy of bacteria within microbial communities, important metabolites for health can be produced by different bacteria. Microbiome alterations associated with disease are of greater magnitude than those seen in healthy dogs on different diets. Dietary changes, addition of prebiotics, and probiotics, can be beneficial to improve microbial diversity and to normalize metabolite production in diseased dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|