1
|
Fernandes MSDS, Fidelis DEDS, Aidar FJ, Badicu G, Greco G, Cataldi S, Santos GCJ, de Souza RF, Ardigò LP. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023; 15:3990. [PMID: 37764774 PMCID: PMC10535924 DOI: 10.3390/nu15183990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND To summarize available evidence in the literature on the impacts of CoQ10 supplementation on metabolic, biochemical, and performance outcomes in athletes. METHODS Six databases, Cochrane Library (33 articles), PubMed (90 articles), Scopus (55 articles), Embase (60 articles), SPORTDiscus (1056 articles), and Science Direct (165 articles), were researched. After applying the eligibility criteria, articles were selected for peer review independently as they were identified by June 2022. The protocol for this systematic review was registered on PROSPERO (CRD42022357750). RESULTS Of the 1409 articles found, 16 were selected for this systematic review. After CoQ10 supplementation, a decrease in oxidative stress markers was observed, followed by higher antioxidant activity. On the other hand, lower levels of liver damage markers (ALT); Aspartate aminotransferase (AST); and Gamma-glutamyl transpeptidase (γGT) were identified. Finally, we found a reduction in fatigue indicators such as Creatine Kinase (CK) and an increase in anaerobic performance. CONCLUSIONS This systematic review concludes that supplementation with orally administered CoQ10 (30-300 mg) was able to potentiate plasma antioxidant activity and anaerobic performance, reducing markers linked to oxidative stress and liver damage in athletes from different modalities aged 17 years old and older.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife 50740-600, Pernambuco, Brazil;
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Débora Eduarda da Silvia Fidelis
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | | | - Raphael Frabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 5812 Oslo, Norway;
| |
Collapse
|
2
|
Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon 2023; 9:e15700. [PMID: 37180899 PMCID: PMC10172930 DOI: 10.1016/j.heliyon.2023.e15700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent progressive disease that frequently coexists with obesity. For several decades, OA was thought to be the result of ageing and mechanical stress on cartilage. Researchers' perspective has been greatly transformed when cumulative findings emphasized the role of adipose tissue in the diseases. Nowadays, the metabolic effect of obesity on cartilage tissue has become an integral part of obesity research; hoping to discover a disease-modifying drug for OA. Recently, several adipokines have been reported to be associated with OA. Particularly, metrnl (meteorin-like) and retinol-binding protein 4 (RBP4) have been recognized as emerging adipokines that can mediate OA pathogenesis. Accordingly, in this review, we will summarize the latest findings concerned with the metabolic contribution of obesity in OA pathogenesis, with particular emphasis on dyslipidemia, insulin resistance and adipokines. Additionally, we will discuss the most recent adipokines that have been reported to play a role in this context. Careful consideration of these molecular mechanisms interrelated with obesity and OA will undoubtedly unveil new avenues for OA treatment.
Collapse
Affiliation(s)
- Basma H. Sobieh
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O. El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Corresponding author. Associate Professor of Biochemistry Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, street of African Union Organization, 11566, Cairo, Egypt.
| |
Collapse
|
3
|
Tippairote T, Bjørklund G, Gasmi A, Semenova Y, Peana M, Chirumbolo S, Hangan T. Combined Supplementation of Coenzyme Q 10 and Other Nutrients in Specific Medical Conditions. Nutrients 2022; 14:4383. [PMID: 36297067 PMCID: PMC9609170 DOI: 10.3390/nu14204383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 07/23/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is a compound with a crucial role in mitochondrial bioenergetics and membrane antioxidant protection. Despite the ubiquitous endogenous biosynthesis, specific medical conditions are associated with low circulating CoQ10 levels. However, previous studies of oral CoQ10 supplementation yielded inconsistent outcomes. In this article, we reviewed previous CoQ10 trials, either single or in combination with other nutrients, and stratified the study participants according to their metabolic statuses and medical conditions. The CoQ10 supplementation trials in elders reported many favorable outcomes. However, the single intervention was less promising when the host metabolic statuses were worsening with the likelihood of multiple nutrient insufficiencies, as in patients with an established diagnosis of metabolic or immune-related disorders. On the contrary, the mixed CoQ10 supplementation with other interacting nutrients created more promising impacts in hosts with compromised nutrient reserves. Furthermore, the results of either single or combined intervention will be less promising in far-advanced conditions with established damage, such as neurodegenerative disorders or cancers. With the limited high-level evidence studies on each host metabolic category, we could only conclude that the considerations of whether to take supplementation varied by the individuals' metabolic status and their nutrient reserves. Further studies are warranted.
Collapse
Affiliation(s)
- Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 020000, Kazakhstan
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
4
|
Al Namat R, Al Namat D, Ciocoiu M, Hînganu MV, Șorodoc L, Șorodoc V, Foia LG, Florea L, Vlad C, Tănasă A, Constantin M, Cioloca D, Bădescu MC, Bazyani A, Felea M. H-FABP Levels and Psycho-Emotional Improvement of CABG Patients during Cardiac Rehabilitation. J Cardiovasc Dev Dis 2022; 9:242. [PMID: 36005406 PMCID: PMC9409770 DOI: 10.3390/jcdd9080242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: The heart-type fatty acid-binding protein (H-FABP) is a specific myocardial biomarker and high levels indicate ischemia regardless of patient-reported symptoms. Concurrently, major adverse cardiovascular events and surgery such as coronary artery by-pass grafting (CABG) cause substantial psycho-emotional distress e.g., depression and anxiety. Comprehensive cardiac rehabilitation is, therefore, essential to both physical and psychological recovery. (2) Methods: This is a unicentric, prospective study on 120 consecutive post-CABG patients undergoing a 6-month cardiac rehabilitation program based on physical exercise, Mediterranean diet principles, and Q10 coenzyme antioxidant supplements. H-FABP levels, depression, and anxiety scores (Hamilton HAM-D and HAM-A scales) were monitored after surgery and at 6 months. (3) Results: Mean H-FABP dropped from 60.56 to 4.81. Physical ability increased from 1-2 to 4-5 METS. Mean depression and anxiety improved from 15.88 to 6.96 and from 25.13 to 15.68, respectively. Median scores went down 50% for depression and 9% for anxiety. Explored associations between H-FABP and psycho-emotional status were statistically insignificant. (4) Conclusions: patients adhered to the program and improved significantly in all studied aspects. Clinical significance is discussed in the context of countries like Romania, where such programs are limited by systemic and financial constraints. Further research directions are identified.
Collapse
Affiliation(s)
- Razan Al Namat
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Dina Al Namat
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Manuela Ciocoiu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Marius Valeriu Hînganu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Laurențiu Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Victorița Șorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Liliana Georgeta Foia
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Laura Florea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Cristiana Vlad
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Ana Tănasă
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Mihai Constantin
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Daniel Cioloca
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Minerva Codruța Bădescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| | - Amin Bazyani
- “Prof. George I.M. Georgescu” Institute of Cardiovascular Diseases Iași, 700503 Iasi, Romania;
| | - Maura Felea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 700115 Iasi, Romania; (D.A.N.); (M.C.); (M.V.H.); (L.Ș.); (V.Ș.); (L.G.F.); (L.F.); (C.V.); (A.T.); (M.C.); (D.C.); (M.C.B.); (M.F.)
| |
Collapse
|
5
|
Mustafa G, Cai CL, Bodkin D, Aranda JV, Beharry KD. Antioxidants and/or fish oil reduce intermittent hypoxia-induced inflammation in the neonatal rat terminal ileum. Prostaglandins Other Lipid Mediat 2021; 155:106565. [PMID: 34051366 DOI: 10.1016/j.prostaglandins.2021.106565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Intermittent hypoxia (IH) is associated with the pathogenesis of necrotizing enterocolitis (NEC). We tested the hypothesis that early supplementation with antioxidants and/or fish oil protects the terminal ileum from oxidative injury induced by neonatal IH. Newborn rats were exposed to neonatal IH from birth (P0) until P14 during which they received daily fish oil, coenzyme Q10 (CoQ10), glutathione nanoparticles (nGSH), fish oil + CoQ10, or olive oil. Pups were then placed in room air from P14 to P21 with no further supplementation. Terminal ileum was assessed for IH-induced injury and inflammatory biomarkers. Neonatal IH induced severe damage consistent with NEC, and was associated with oxidative stress and elevations in PGE2, PGF2α, TxB2, NOS-2 and TLR-4, effects that were ameliorated with nGSH and combination CoQ10+fish oil. Early postnatal supplementation with antioxidants and/or fish oil during neonatal IH may be favorable for preserving gut integrity and reducing oxidative injury.
Collapse
Affiliation(s)
- Ghassan Mustafa
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Darren Bodkin
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
6
|
Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:nu13082658. [PMID: 34444817 PMCID: PMC8399248 DOI: 10.3390/nu13082658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multisystem, and profoundly debilitating neuroimmune disease, probably of post-viral multifactorial etiology. Unfortunately, no accurate diagnostic or laboratory tests have been established, nor are any universally effective approved drugs currently available for its treatment. This study aimed to examine whether oral coenzyme Q10 and NADH (reduced form of nicotinamide adenine dinucleotide) co-supplementation could improve perceived fatigue, unrefreshing sleep, and health-related quality of life in ME/CFS patients. A 12-week prospective, randomized, double-blind, placebo-controlled trial was conducted in 207 patients with ME/CFS, who were randomly allocated to one of two groups to receive either 200 mg of CoQ10 and 20 mg of NADH (n = 104) or matching placebo (n = 103) once daily. Endpoints were simultaneously evaluated at baseline, and then reassessed at 4- and 8-week treatment visits and four weeks after treatment cessation, using validated patient-reported outcome measures. A significant reduction in cognitive fatigue perception and overall FIS-40 score (p < 0.001 and p = 0.022, respectively) and an improvement in HRQoL (health-related quality of life (SF-36)) (p < 0.05) from baseline were observed within the experimental group over time. Statistically significant differences were also shown for sleep duration at 4 weeks and habitual sleep efficiency at 8 weeks in follow-up visits from baseline within the experimental group (p = 0.018 and p = 0.038, respectively). Overall, these findings support the use of CoQ10 plus NADH supplementation as a potentially safe therapeutic option for reducing perceived cognitive fatigue and improving the health-related quality of life in ME/CFS patients. Future interventions are needed to corroborate these clinical benefits and also explore the underlying pathomechanisms of CoQ10 and NADH administration in ME/CFS.
Collapse
|
7
|
Ali FEM, Ahmed SF, Eltrawy AH, Yousef RS, Ali HS, Mahmoud AR, Abd-Elhamid TH. Pretreatment with Coenzyme Q10 Combined with Aescin Protects against Sepsis-Induced Acute Lung Injury. Cells Tissues Organs 2021; 210:195-217. [PMID: 34280918 DOI: 10.1159/000516192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1β and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Salwa F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reda S Yousef
- Department of Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Tarek H Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Testai L, Martelli A, Flori L, Cicero AFG, Colletti A. Coenzyme Q 10: Clinical Applications beyond Cardiovascular Diseases. Nutrients 2021; 13:1697. [PMID: 34067632 PMCID: PMC8156424 DOI: 10.3390/nu13051697] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in oxidative phosphorylation (OXPHOS), present in mitochondria and cell membranes in reduced and oxidized forms. Acting as an energy transfer molecule, it occurs in particularly high levels in the liver, heart, and kidneys. CoQ10 is also an anti-inflammatory and antioxidant agent able to prevent the damage induced by free radicals and the activation of inflammatory signaling pathways. In this context, several studies have shown the possible inverse correlation between the blood levels of CoQ10 and some disease conditions. Interestingly, beyond cardiovascular diseases, CoQ10 is involved also in neuronal and muscular degenerative diseases, in migraine and in cancer; therefore, the supplementation with CoQ10 could represent a viable option to prevent these and in some cases might be used as an adjuvant to conventional treatments. This review is aimed to summarize the clinical applications regarding the use of CoQ10 in migraine, neurodegenerative diseases (including Parkinson and Alzheimer diseases), cancer, or degenerative muscle disorders (such as multiple sclerosis and chronic fatigue syndrome), analyzing its effect on patients' health and quality of life.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
- Department of Science and Drug Technology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
9
|
Mantle D, Heaton RA, Hargreaves IP. Coenzyme Q10 and Immune Function: An Overview. Antioxidants (Basel) 2021; 10:759. [PMID: 34064686 PMCID: PMC8150987 DOI: 10.3390/antiox10050759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response. In view of the differing roles CoQ10 plays in the immune system, together with the reported ability of CoQ10 supplementation to improve the functioning of this system, the aim of this article is to review the current literature available on both the role of CoQ10 in human immune function and the effect of CoQ10 supplementation on this system.
Collapse
Affiliation(s)
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Iain P. Hargreaves
- School of Pharmacy, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
10
|
Abdollahi S, Rahmati-Ahmadabad S, Abdollahi K, Gholami N, Ziyarati A, Nikbin S, Iraji R, Hajiaghaee R, Azarbayjani MA. Phoenix dactylifera pollen does not affect eccentric resistance exercise-induced delayed-onset muscle soreness (DOMS) in female athletes. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00723-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Nazary-Vannani A, Ghaedi E, Salamat S, Sayyaf A, Varkaneh HK, Mohammadi H, Djalali M. Effects of Coenzyme Q10 Supplementation on Serum Adiponectin Levels: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190308162322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background:
Adiponectin, a well-known adipokine plays a number of regulatory actions
in human body metabolism. Decreased levels of adiponectin have been reported in type 2 diabetes
mellitus, cardiovascular diseases, metabolic syndrome and hypertension. Coenzyme Q10 (Co Q10)
is a fat-soluble antioxidant substance which has been reported to be effective in several metabolic
disturbances such as insulin resistance and inflammation.
Objective:
Present systematic review and meta-analysis were performed to assess the effects of
CoQ10 supplementation on adiponectin serum level.
Methods:
A comprehensive search was performed in electronic databases including EMBASE,
Google scholar, and PubMed up to January 2018. A meta-analysis of eligible studies was performed
using random effects model to estimate pooled effect size of CoQ10 supplementation on adiponectin.
Results:
A total of 209 subjects were recruited from 5 eligible studies. Meta-analysis did not suggest
any significant effect of CoQ10 supplementation on adiponectin serum level (0.240 mg/dl,
95%CI: -0.216, 0.696, P= 0.303), without significant heterogeneity between included studies (I2=
40.9%, p= 0.149).
Conclusion:
Although present meta-analysis did not indicate any significant effects of CoQ10 supplementation
on serum adiponectin levels but future long-term dose-response trials are needed before
any firm conclusion.
Collapse
Affiliation(s)
- Ali Nazary-Vannani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Salamat
- Nutrition and Metabolic Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Sayyaf
- Nutrition and Metabolic Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed K. Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Dark Chocolate Intake Positively Modulates Redox Status and Markers of Muscular Damage in Elite Football Athletes: A Randomized Controlled Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4061901. [PMID: 30584461 PMCID: PMC6280237 DOI: 10.1155/2018/4061901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/18/2018] [Indexed: 02/05/2023]
Abstract
Intensive physical exercise may cause increase oxidative stress and muscular injury in elite football athletes. The aim of this study was to exploit the effect of cocoa polyphenols on oxidative stress and muscular injuries induced by intensive physical exercise in elite football players. Oxidant/antioxidant status and markers of muscle damage were evaluated in 24 elite football players and 15 controls. Furthermore, the 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Oxidative stress, antioxidant status, and muscle damage were assessed at baseline and after 30 days of chocolate intake. Compared to controls, elite football players showed lower antioxidant power and higher oxidative stress paralleled by an increase in muscle damage markers. After 30 days of dark chocolate intake, an increased antioxidant power was found in elite athletes assuming dark chocolate. Moreover, a significant reduction in muscle damage markers (CK and LDH, p < 0.001) was observed. In the control group, no changes were observed with the exception of an increase of sNox2-dp, H2O2, and myoglobin. A simple linear regression analysis showed that sNox2-dp was associated with a significant increase in muscle damage biomarker release (p = 0.001). An in vitro study also confirmed that polyphenol extracts significantly decreased oxidative stress in murine myoblast cell line C2C12-derived. These results indicate that polyphenol-rich nutrient supplementation by means of dark chocolate positively modulates redox status and reduced exercise-induced muscular injury biomarkers in elite football athletes. This trial is registered with NCT03288623.
Collapse
|
13
|
Saleh DO, Ahmed RF, Amin MM. Modulatory role of Co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis (NASH) in albino rats. Appl Physiol Nutr Metab 2017; 42:243-249. [DOI: 10.1139/apnm-2016-0320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day)−1) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet−fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet−induced NASH in rats.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt
| | - Rania F. Ahmed
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed M. Amin
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt
- Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
14
|
Neyrinck AM, Catry E, Sohet FM, Cani PD, Pachikian BD, Bindels LB, Delzenne NM. Lack of anti-inflammatory effect of coenzyme Q10 supplementation in the liver of rodents after lipopolysaccharide challenge. CLINICAL NUTRITION EXPERIMENTAL 2015. [DOI: 10.1016/j.yclnex.2015.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|