1
|
Maggioni MB, Sibgatulin R, Krämer M, Güllmar D, Reichenbach JR. Assessment of training-associated changes of the lumbar back muscle using a multiparametric MRI protocol. Front Physiol 2024; 15:1408244. [PMID: 39483751 PMCID: PMC11524875 DOI: 10.3389/fphys.2024.1408244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Adaptations in muscle physiology due to long-term physical training have been monitored using various methods: ranging from invasive techniques, such as biopsy, to less invasive approaches, such as electromyography (EMG), to various quantitative magnetic resonance imaging (qMRI) parameters. Typically, these latter parameters are assessed immediately after exercise. In contrast, this work assesses such adaptations in a set of qMRI parameters obtained at rest in the lumbar spine muscles of volunteers. To this end, we developed a multiparametric measurement protocol to extract quantitative values of (water) T2, fat fraction, T1, and Intra Voxel Incoherent Motion (IVIM) diffusion parameters in the lumbar back muscle. The protocol was applied to 31 healthy subjects divided into three differently trained cohorts: two groups of athletes (endurance athletes and powerlifters) and a control group with a sedentary lifestyle. Significant differences in muscle water T2, fat fraction, and pseudo-diffusion coefficient linked to microcirculatory blood flow in muscle tissue were found between the trained and untrained cohorts. At the same time, diffusion coefficients (resolved along different directions) provided additional differentiation between the two groups of athletes. Specifically, the strength-trained athletes showed lower axial and higher radial diffusion components compared to the endurance-trained cohort, which may indicate muscle hypertrophy. In conclusion, utilizing multiparametric information revealed new insights into the potential of quantitative MR parameters to detect and quantify long-term effects associated with training in differently trained cohorts, even at rest.
Collapse
Affiliation(s)
- Marta B. Maggioni
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Renat Sibgatulin
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| | - Martin Krämer
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena–Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Mann CG, MacArthur MR, Zhang J, Gong S, AbuSalim JE, Hunter CJ, Lu W, Agius T, Longchamp A, Allagnat F, Rabinowitz J, Mitchell JR, De Bock K, Mitchell SJ. Sulfur Amino Acid Restriction Enhances Exercise Capacity in Mice by Boosting Fat Oxidation in Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601041. [PMID: 39005372 PMCID: PMC11244859 DOI: 10.1101/2024.06.27.601041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity. Indirect calorimetry showed that SAAR increased lipid oxidation at rest and delayed the onset of carbohydrate utilization during exercise. Transcriptomic analysis revealed increased expression of genes involved in fatty acid catabolism especially in glycolytic muscle following SAAR. These findings were functionally supported by increased fatty acid circulatory turnover flux and muscle β-oxidation. Reducing lipid uptake from circulation through endothelial cell (EC)-specific CD36 deletion attenuated the running phenotype. Mechanistically, VEGF-signaling inhibition prevented exercise increases following SAAR, without affecting angiogenesis, implicating noncanonical VEGF signaling and EC CD36-dependent fatty acid transport in regulating exercise capacity by influencing muscle substrate availability.
Collapse
Affiliation(s)
- Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Songlin Gong
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jenna E AbuSalim
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Craig J. Hunter
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Joshua Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Sarah J Mitchell
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Narkar VA. Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration. Methodist Debakey Cardiovasc J 2023; 19:58-68. [PMID: 38028974 PMCID: PMC10655757 DOI: 10.14797/mdcvj.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.
Collapse
Affiliation(s)
- Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, US
| |
Collapse
|
4
|
Kumar A, Narkar VA. Nuclear receptors as potential therapeutic targets in peripheral arterial disease and related myopathy. FEBS J 2023; 290:4596-4613. [PMID: 35942640 PMCID: PMC9908775 DOI: 10.1111/febs.16593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, UTHealth McGovern Medical School, Houston, TX, 77030
- University of Texas MD Anderson and UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030
| |
Collapse
|
5
|
Palzkill VR, Tan J, Yang Q, Morcos J, Laitano O, Ryan TE. Activation of the Aryl Hydrocarbon Receptor in Endothelial Cells Impairs Ischemic Angiogenesis in Chronic Kidney Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550410. [PMID: 37546909 PMCID: PMC10401998 DOI: 10.1101/2023.07.24.550410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Rationale Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to accumulation of tryptophan metabolites that associate with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR) which may regulate ischemic angiogenesis. Objectives To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Findings Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared to wildtype mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. Using primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide ranging sex-differences in angiogenic signaling pathways. Conclusion Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Juliana Morcos
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Mendelson AA, Erickson D, Villar R. The role of the microcirculation and integrative cardiovascular physiology in the pathogenesis of ICU-acquired weakness. Front Physiol 2023; 14:1170429. [PMID: 37234410 PMCID: PMC10206327 DOI: 10.3389/fphys.2023.1170429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle dysfunction after critical illness, defined as ICU-acquired weakness (ICU-AW), is a complex and multifactorial syndrome that contributes significantly to long-term morbidity and reduced quality of life for ICU survivors and caregivers. Historically, research in this field has focused on pathological changes within the muscle itself, without much consideration for their in vivo physiological environment. Skeletal muscle has the widest range of oxygen metabolism of any organ, and regulation of oxygen supply with tissue demand is a fundamental requirement for locomotion and muscle function. During exercise, this process is exquisitely controlled and coordinated by the cardiovascular, respiratory, and autonomic systems, and also within the skeletal muscle microcirculation and mitochondria as the terminal site of oxygen exchange and utilization. This review highlights the potential contribution of the microcirculation and integrative cardiovascular physiology to the pathogenesis of ICU-AW. An overview of skeletal muscle microvascular structure and function is provided, as well as our understanding of microvascular dysfunction during the acute phase of critical illness; whether microvascular dysfunction persists after ICU discharge is currently not known. Molecular mechanisms that regulate crosstalk between endothelial cells and myocytes are discussed, including the role of the microcirculation in skeletal muscle atrophy, oxidative stress, and satellite cell biology. The concept of integrated control of oxygen delivery and utilization during exercise is introduced, with evidence of physiological dysfunction throughout the oxygen delivery pathway - from mouth to mitochondria - causing reduced exercise capacity in patients with chronic disease (e.g., heart failure, COPD). We suggest that objective and perceived weakness after critical illness represents a physiological failure of oxygen supply-demand matching - both globally throughout the body and locally within skeletal muscle. Lastly, we highlight the value of standardized cardiopulmonary exercise testing protocols for evaluating fitness in ICU survivors, and the application of near-infrared spectroscopy for directly measuring skeletal muscle oxygenation, representing potential advancements in ICU-AW research and rehabilitation.
Collapse
Affiliation(s)
- Asher A. Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rodrigo Villar
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Bolívar-Monsalve EJ, Ceballos-González CF, Chávez-Madero C, de la Cruz-Rivas BG, Velásquez Marín S, Mora-Godínez S, Reyes-Cortés LM, Khademhosseini A, Weiss PS, Samandari M, Tamayol A, Alvarez MM, Trujillo-de Santiago G. One-Step Bioprinting of Multi-Channel Hydrogel Filaments Using Chaotic Advection: Fabrication of Pre-Vascularized Muscle-Like Tissues. Adv Healthc Mater 2022; 11:e2200448. [PMID: 35930168 DOI: 10.1002/adhm.202200448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/07/2022] [Indexed: 01/28/2023]
Abstract
The biofabrication of living constructs containing hollow channels is critical for manufacturing thick tissues. However, current technologies are limited in their effectiveness in the fabrication of channels with diameters smaller than hundreds of micrometers. It is demonstrated that the co-extrusion of cell-laden hydrogels and sacrificial materials through printheads containing Kenics static mixing elements enables the continuous and one-step fabrication of thin hydrogel filaments (1 mm in diameter) containing dozens of hollow microchannels with widths as small as a single cell. Pre-vascularized skeletal muscle-like filaments are bioprinted by loading murine myoblasts (C2C12 cells) in gelatin methacryloyl - alginate hydrogels and using hydroxyethyl cellulose as a sacrificial material. Higher viability and metabolic activity are observed in filaments with hollow multi-channels than in solid constructs. The presence of hollow channels promotes the expression of Ki67 (a proliferation biomarker), mitigates the expression of hypoxia-inducible factor 1-alpha , and markedly enhances cell alignment (i.e., 82% of muscle myofibrils aligned (in ±10°) to the main direction of the microchannels after seven days of culture). The emergence of sarcomeric α-actin is verified through immunofluorescence and gene expression. Overall, this work presents an effective and practical tool for the fabrication of pre-vascularized engineered tissues.
Collapse
Affiliation(s)
| | | | - Carolina Chávez-Madero
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Brenda Guadalupe de la Cruz-Rivas
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Silvana Velásquez Marín
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Shirley Mora-Godínez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| |
Collapse
|
9
|
Abstract
The Exercise Boom of the 1970's resulted in the adoption of habitual exercise in a significant portion of the population. Many of these individuals are defying the cultural norms by remaining physically active and competing at a high level in their later years. The juxtaposition between masters athletes and non-exercisers demonstrate the importance of remaining physically active throughout the lifespan on physiological systems related to healthspan (years of healthy living). This includes ~50% improved maximal aerobic capacity (VO2max) and enhanced skeletal muscle health (size, function, as well as metabolic and communicative properties) compared to non-exercisers at a similar age. By taking a reductionist approach to VO2max and skeletal muscle health, we can gain insight into how aging and habitual exercise affects the aging process. Collectively, this review provides a physiological basis for the elite performances seen in masters athletes, as well as the health implications of lifelong exercise with a focus on VO2max, skeletal muscle metabolic fitness, whole muscle size and function, single muscle fiber physiology, and communicative properties of skeletal muscle. This review has significant public health implications due to the potent health benefits of habitual exercise across the lifespan.
Collapse
Affiliation(s)
- Kevin J Gries
- Exercise and Sports Science, Marian University, Indianapolis, United States
| | - S W Trappe
- Human Performance Laboratory, Ball State University, Muncie, United States
| |
Collapse
|
10
|
Dech S, Bittmann FN, Schaefer LV. Muscle Oxygenation Level Might Trigger the Regulation of Capillary Venous Blood Filling during Fatiguing Isometric Muscle Actions. Diagnostics (Basel) 2021; 11:1973. [PMID: 34829320 PMCID: PMC8621102 DOI: 10.3390/diagnostics11111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
The regulation of oxygen and blood supply during isometric muscle actions is still unclear. Recently, two behavioral types of oxygen saturation (SvO2) and relative hemoglobin amount (rHb) in venous microvessels were described during a fatiguing holding isometric muscle action (HIMA) (type I: nearly parallel behavior of SvO2 and rHb; type II: partly inverse behavior). The study aimed to ascertain an explanation of these two regulative behaviors. Twelve subjects performed one fatiguing HIMA trial with each arm by weight holding at 60% of the maximal voluntary isometric contraction (MVIC) in a 90° elbow flexion. Six subjects additionally executed one fatiguing PIMA trial by pulling on an immovable resistance with 60% of the MVIC with each side and same position. Both regulative types mentioned were found during HIMA (I: n = 7, II: n = 17) and PIMA (I: n = 3, II: n = 9). During the fatiguing measurements, rHb decreased initially and started to increase in type II at an average SvO2-level of 58.75 ± 2.14%. In type I, SvO2 never reached that specific value during loading. This might indicate the existence of a threshold around 59% which seems to trigger the increase in rHb and could explain the two behavioral types. An approach is discussed to meet the apparent incompatibility of an increased capillary blood filling (rHb) despite high intramuscular pressures which were found by other research groups during isometric muscle actions.
Collapse
Affiliation(s)
- Silas Dech
- Devision of Regulative Physiology and Prevention, Department of Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany; (F.N.B.); (L.V.S.)
| | | | | |
Collapse
|
11
|
Lemieux P, Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front Physiol 2021; 12:735557. [PMID: 34552509 PMCID: PMC8450406 DOI: 10.3389/fphys.2021.735557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers during physical exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers complex angio-adaptive responses in the skeletal muscle tissue. These can result in the expression of a plethora of angio-adaptive molecules, ultimately leading to the growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber interface, which represent an important determinant of skeletal muscle function. These angio-adaptive molecules can also be released in the circulation as myokines to act on distant tissues. This review addresses the respective and combined potency of ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle. The major skeletal muscle angio-adaptive responses to hypoxia so far described in this context will be discussed, including existing controversies in the field. Finally, this review will highlight the molecular complexity of the skeletal muscle angio-adaptive response to hypoxia and identify current gaps of knowledges in this field of exercise and environmental physiology.
Collapse
Affiliation(s)
- Pierre Lemieux
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, Zhang J, Tan G, Fitzgerald G, Gorski T, Alvarado-Diaz A, Gilardoni P, Adams CM, Ghesquière B, De Bock K. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4 + endothelial cells. Cell Metab 2021; 33:1793-1807.e9. [PMID: 34358431 PMCID: PMC8432967 DOI: 10.1016/j.cmet.2021.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.
Collapse
Affiliation(s)
- Zheng Fan
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Moheb Ghobrial
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland; Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Tea Kocijan
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Ge Tan
- Functional Genomics Center Zürich, ETH/University of Zürich, Zürich 8093, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Tatiane Gorski
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Abdiel Alvarado-Diaz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Christopher M Adams
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Cancer Institute, KU Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland.
| |
Collapse
|
13
|
Miotto DS, Duchatsch F, Macedo AG, Ruiz TFR, Vicentini CA, Amaral SL. Perindopril Reduces Arterial Pressure and Does Not Inhibit Exercise-Induced Angiogenesis in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2021; 77:519-528. [PMID: 33394824 DOI: 10.1097/fjc.0000000000000977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
ABSTRACT Sympathetic activity, arteriolar structure, and angiogenesis are important mechanisms modulating hypertension and this study aimed to analyze the effects of perindopril treatment, associated or not with exercise training, on the mechanisms that control blood pressure (BP) in hypertensive rats. Spontaneously hypertensive rats (SHR) were allocated into 4 groups: 1/sedentary (S); 2/perindopril (P, 3.0 mg/kg/d); 3/trained (T); and 4/trained + perindopril (TP). Wistar rats were used as normotensive sedentary control group. SHR were assigned to undergo a treadmill training (T) or were kept sedentary. Heart rate, BP, sympathetic activity to the vessels (LF-SBP), and skeletal muscle and myocardial morphometric analyses were performed. BP was significantly lower after all 3 strategies, compared with S and was accompanied by lower LF-SBP (-76%, -53%, and -44%, for P, T, and TP, respectively). Arteriolar vessel wall cross-sectional area was lower after treatments (-56%, -52%, and -56%, for P, T, and TP, respectively), and only TP presented higher arteriolar lumen area. Capillary rarefaction was present in soleus muscle and myocardium in S group and both trained groups presented higher vessel density, although perindopril attenuated this increase in soleus muscle. Although myocyte diameter was not different between groups, myocardial collagen deposition area, higher in S group, was lower after 3 strategies. In conclusion, we may suggest that perindopril could be an option for the hypertensive people who practice exercise and need a specific pharmacological treatment to reach a better BP control, mainly because training-induced angiogenesis is an important response to facilitate blood flow perfusion and oxygen uptake and perindopril did not attenuate this response.
Collapse
Affiliation(s)
- Danyelle S Miotto
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Anderson G Macedo
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Thalles F R Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences- UNESP, School of Sciences, São José do Rio Preto/SP, Brazil; and
| | | | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
- Physical Education, UNESP, School of Sciences, Bauru/SP, Brazil
| |
Collapse
|
14
|
Lam B, Nwadozi E, Haas TL, Birot O, Roudier E. High Glucose Treatment Limits Drosha Protein Expression and Alters AngiomiR Maturation in Microvascular Primary Endothelial Cells via an Mdm2-dependent Mechanism. Cells 2021; 10:742. [PMID: 33801773 PMCID: PMC8065922 DOI: 10.3390/cells10040742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes promotes an angiostatic phenotype in the microvascular endothelium of skeletal muscle and skin. Angiogenesis-related microRNAs (angiomiRs) regulate angiogenesis through the translational repression of pro- and anti-angiogenic genes. The maturation of micro-RNA (miRs), including angiomiRs, requires the action of DROSHA and DICER proteins. While hyperglycemia modifies the expression of angiomiRs, it is unknown whether high glucose conditions alter the maturation process of angiomiRs in dermal and skeletal muscle microvascular endothelial cells (MECs). Compared to 5 mM of glucose, high glucose condition (30 mM, 6-24 h) decreased DROSHA protein expression, without changing DROSHA mRNA, DICER mRNA, or DICER protein in primary dermal MECs. Despite DROSHA decreasing, high glucose enhanced the maturation and expression of one angiomiR, miR-15a, and downregulated an miR-15a target: Vascular Endothelial Growth Factor-A (VEGF-A). The high glucose condition increased Murine Double Minute-2 (MDM2) expression and MDM2-binding to DROSHA. Inhibition of MDM2 prevented the effects evoked by high glucose on DROSHA protein and miR-15a maturation in dermal MECs. In db/db mice, blood glucose was negatively correlated with the expression of skeletal muscle DROSHA protein, and high glucose decreased DROSHA protein in skeletal muscle MECs. Altogether, our results suggest that high glucose reduces DROSHA protein and enhances the maturation of the angiostatic miR-15a through a mechanism that requires MDM2 activity.
Collapse
|
15
|
Zhan K, Bai L, Hu Q. Selective induction of sprouting and intussusception is associated with the concentration distributions of oxygen and hypoxia-induced VEGF. Microvasc Res 2020; 132:104041. [DOI: 10.1016/j.mvr.2020.104041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
|
16
|
Effect of Age and Acute Exercise on Circulating Angioregulatory Factors. J Aging Phys Act 2020; 29:423-430. [PMID: 33091872 DOI: 10.1123/japa.2020-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 11/18/2022]
Abstract
The balance of angiogenic factors, including vascular endothelial growth factor (VEGF), and angiostatic factors, like thrombospondin-1 (TSP-1) and endostatin, controls striated muscle angiogenic responses to exercise training. The effect of age on circulating levels of these factors following a bout of exercise is unclear. The authors hypothesized that older adults would have lower circulating VEGF but higher TSP-1 and endostatin after exercise compared with young adults. Ten young and nine older participants cycled for 45 min at 60% estimated HRmax. Serum [VEGF], [TSP-1], and [endostatin] obtained before (PREX), immediately after (POSTX0), and 3 hr after (POSTX3) exercise were analyzed. [VEGF] increased in older adults only from PREX to POSTX0 (p < .05). [TSP-1] increased in both age groups (p < .05). There was no effect of age or exercise on [endostatin]. In conclusion, immediately after exercise, both groups had a similar increase in [TSP-1], but [VEGF] increased in older adults only.
Collapse
|
17
|
Blervaque L, Pomiès P, Rossi E, Catteau M, Blandinières A, Passerieux E, Blaquière M, Ayoub B, Molinari N, Mercier J, Perez-Martin A, Marchi N, Smadja DM, Hayot M, Gouzi F. COPD is deleterious for pericytes: implications during training-induced angiogenesis in skeletal muscle. Am J Physiol Heart Circ Physiol 2020; 319:H1142-H1151. [PMID: 32986960 DOI: 10.1152/ajpheart.00306.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improvements in skeletal muscle endurance and oxygen uptake are blunted in patients with chronic obstructive pulmonary disease (COPD), possibly because of a limitation in the muscle capillary oxygen supply. Pericytes are critical for capillary blood flow adaptation during angiogenesis but may be impaired by COPD systemic effects, which are mediated by circulating factors. This study compared the pericyte coverage of muscle capillaries in response to 10 wk of exercise training in patients with COPD and sedentary healthy subjects (SHS). Fourteen patients with COPD were compared with seven matched SHS. SHS trained at moderate intensity corresponding to an individualized moderate-intensity patient with COPD trained at the same relative (%V̇o2: COPD-RI) or absolute (mL·min-1·kg-1: COPD-AI) intensity as SHS. Capillary-to-fiber ratio (C/F) and NG2+ pericyte coverage were assessed from vastus lateralis muscle biopsies, before and after 5 and 10 wk of training. We also tested in vitro the effect of COPD and SHS serum on pericyte morphology and mesenchymal stem cell (MSC) differentiation into pericytes. SHS showed greater improvement in aerobic capacity (V̇o2VT) than both patients with COPD-RI and patients with COPD-AI (Group × Time: P = 0.004). Despite a preserved increase in the C/F ratio, NG2+ pericyte coverage did not increase in patients with COPD in response to training, contrary to SHS (Group × Time: P = 0.011). Conversely to SHS serum, COPD serum altered pericyte morphology (P < 0.001) and drastically reduced MSC differentiation into pericytes (P < 0.001). Both functional capacities and pericyte coverage responses to exercise training are blunted in patients with COPD. We also provide direct evidence of the deleterious effect of COPD circulating factors on pericyte morphology and differentiation.NEW & NOTEWORTHY This work confirms the previously reported impairment in the functional response to exercise training of patients with COPD compared with SHS. Moreover, it shows for the first time that pericyte coverage of the skeletal capillaries is drastically reduced in patients with COPD compared with SHS during training-induced angiogenesis. Finally, it provides experimental evidence that circulating factors are involved in the impaired pericyte coverage of patients with COPD.
Collapse
Affiliation(s)
- Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Elisa Rossi
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France
| | - Matthias Catteau
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Adeline Blandinières
- Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, Paris, France
| | | | - Marine Blaquière
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - Bronia Ayoub
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| | - Nicolas Molinari
- IMAG, CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| | - Antonia Perez-Martin
- Vascular Medicine Department and Laboratory, CHU Nîmes and EA2992 Research Unit, Montpellier University, Nimes, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - David M Smadja
- Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, Paris, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHU Montpellier, Montpellier, France
| |
Collapse
|
18
|
Poole DC, Pittman RN, Musch TI, Østergaard L. August Krogh's theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. J Physiol 2020; 598:4473-4507. [PMID: 32918749 DOI: 10.1113/jp279223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
August Krogh twice won the prestigious international Steegen Prize, for nitrogen metabolism (1906) and overturning the concept of active transport of gases across the pulmonary epithelium (1910). Despite this, at the beginning of 1920, the consummate experimentalist was relatively unknown worldwide and even among his own University of Copenhagen faculty. But, in early 1919, he had submitted three papers to Dr Langley, then editor of The Journal of Physiology in England. These papers coalesced anatomical observations of skeletal muscle capillary numbers with O2 diffusion theory to propose a novel active role for capillaries that explained the prodigious increase in blood-muscle O2 flux from rest to exercise. Despite his own appraisal of the first two papers as "rather dull" to his friend, the eminent Cambridge respiratory physiologist, Joseph Barcroft, Krogh believed that the third one, dealing with O2 supply and capillary regulation, was"interesting". These papers, which won Krogh an unopposed Nobel Prize for Physiology or Medicine in 1920, form the foundation for this review. They single-handedly transformed the role of capillaries from passive conduit and exchange vessels, functioning at the mercy of their upstream arterioles, into independent contractile units that were predominantly closed at rest and opened actively during muscle contractions in a process he termed 'capillary recruitment'. Herein we examine Krogh's findings and some of the experimental difficulties he faced. In particular, the boundary conditions selected for his model (e.g. heavily anaesthetized animals, negligible intramyocyte O2 partial pressure, binary open-closed capillary function) have not withstood the test of time. Subsequently, we update the reader with intervening discoveries that underpin our current understanding of muscle microcirculatory control and place a retrospectroscope on Krogh's discoveries. The perspective is presented that the imprimatur of the Nobel Prize, in this instance, may have led scientists to discount compelling evidence. Much as he and Marie Krogh demonstrated that active transport of gases across the blood-gas barrier was unnecessary in the lung, capillaries in skeletal muscle do not open and close spontaneously or actively, nor is this necessary to account for the increase in blood-muscle O2 flux during exercise. Thus, a contemporary model of capillary function features most muscle capillaries supporting blood flow at rest, and, rather than capillaries actively vasodilating from rest to exercise, increased blood-myocyte O2 flux occurs predominantly via elevating red blood cell and plasma flux in already flowing capillaries. Krogh is lauded for his brilliance as an experimentalist and for raising scientific questions that led to fertile avenues of investigation, including the study of microvascular function.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Roland N Pittman
- Department of Physiology and Biophysics, Virginia Commonwealth University Richmond, Richmond, VA, 23298-0551, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
19
|
Nielsen JL, Frandsen U, Jensen KY, Prokhorova TA, Dalgaard LB, Bech RD, Nygaard T, Suetta C, Aagaard P. Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training-Exercise-Induced Adaptations and Signs of Perivascular Stress. Front Physiol 2020; 11:556. [PMID: 32595516 PMCID: PMC7303802 DOI: 10.3389/fphys.2020.00556] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023] Open
Abstract
Aim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR training. The present study, therefore, aimed to examine the effect of short-term high-frequency BFR training on human skeletal muscle vascularization. Methods: Participants completed 3 weeks of high-frequency (one to two daily sessions) training consisting of either BFR exercise [(BFRE) n = 10, 22.8 ± 2.3 years; 20% one-repetition maximum (1RM), 100 mmHg] performed to concentric failure or work-matched free-flow exercise [(CON) n = 8, 21.9 ± 3.0 years; 20% 1RM]. Muscle biopsies [vastus lateralis (VL)] were obtained at baseline, 8 days into the intervention, and 3 and 10 days after cessation of the intervention to examine capillary and perivascular adaptations, as well as angiogenesis-related protein signaling and gene expression. Results: Capillary per myofiber and capillary area (CA) increased 21–24 and 25–34%, respectively, in response to BFRE (P < 0.05–0.01), while capillary density (CD) remained unchanged. Overall, these adaptations led to a consistent elevation (15–16%) in the capillary-to-muscle area ratio following BFRE (P < 0.05–0.01). In addition, evaluation of perivascular properties indicated thickening of the perivascular basal membrane following BFRE. No or only minor changes were observed in CON. Conclusion: This study is the first to show that short-term high-frequency, low-load BFRE can lead to microvascular adaptations (i.e., capillary neoformation and changes in morphology), which may contribute to the endurance effects previously documented with BFR training. The observation of perivascular membrane thickening suggests that high-frequency BFRE may be associated with significant vascular stress.
Collapse
Affiliation(s)
- Jakob L Nielsen
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kasper Y Jensen
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Tatyana A Prokhorova
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Line B Dalgaard
- Section for Sports Science, Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Rune D Bech
- Department of Orthopaedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Nygaard
- Department of Orthopaedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark.,Geriatric Research Unit, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Chen L, Bai J, Li Y. miR‑29 mediates exercise‑induced skeletal muscle angiogenesis by targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. Mol Med Rep 2020; 22:661-670. [PMID: 32467996 PMCID: PMC7339600 DOI: 10.3892/mmr.2020.11164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the molecular changes and related regulatory mechanisms in the response of skeletal muscle to exercise. The microarray dataset ‘GSE109657’ of the skeletal muscle response to high-intensity intermittent exercise training (HIIT) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and analyzed using weighted gene co-expression network analysis (WGCNA) to identify the significant functional co-expressed gene modules. Moreover, functional enrichment analysis was performed for the DEGs in the significant modules. In addition, protein-protein interaction (PPI) network and microRNA (miR)-transcription factor (TF)-target regulatory network were constructed. A total of 530 DEGs in the skeletal muscle were screened after HIIT, suggesting an effect of HIIT on the skeletal muscle. Moreover, three significant modules (brown, blue and red modules) were identified after WGCNA, and the genes Collagen Type IV α1 Chain (COL4A1) and COL4A2 in the brown module showed the strongest correlation with HIIT. The DEGs in the three modules were significantly enriched in focal adhesion, extracellular matrix organization and the PI3K/Akt signaling pathway. Furthermore, the PPI network contained 104 nodes and 211 interactions. Vascular endothelial growth factor A (VEGFA), COL4A1 and COL4A2 were the hub genes in the PPI network, and were all regulated by miR-29a/b/c. In addition, VEGFA, COL4A1 and COL4A2 were significantly upregulated in the skeletal muscle response to HIIT. Therefore, the present results suggested that the growth and migration of vascular endothelial cells, and skeletal muscle angiogenesis may be regulated by miR-29a/b/c targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. The present results may provide a theoretical basis to investigate the effect of exercise on skeletal muscle.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physical Education, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jun Bai
- Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanfei Li
- Office of Academic Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| |
Collapse
|
21
|
|
22
|
Blervaque L, Passerieux E, Pomiès P, Catteau M, Héraud N, Blaquière M, Bughin F, Ayoub B, Molinari N, Cristol JP, Perez-Martin A, Mercier J, Hayot M, Gouzi F. Impaired training-induced angiogenesis process with loss of pericyte-endothelium interactions is associated with an abnormal capillary remodelling in the skeletal muscle of COPD patients. Respir Res 2019; 20:278. [PMID: 31806021 PMCID: PMC6896673 DOI: 10.1186/s12931-019-1240-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract Chronic obstructive pulmonary disease (COPD) is associated with exercise intolerance and limits the functional gains in response to exercise training in patients compared to sedentary healthy subjects (SHS). The blunted skeletal muscle angiogenesis previously observed in COPD patients has been linked to these limited functional improvements, but its underlying mechanisms, as well as the potential role of oxidative stress, remain poorly understood. Therefore, we compared ultrastructural indexes of angiogenic process and capillary remodelling by transmission electron microscopy in 9 COPD patients and 7 SHS after 6 weeks of individualized moderate-intensity endurance training. We also assessed oxidative stress by plasma-free and esterified isoprostane (F2-IsoP) levels in both groups. We observed a capillary basement membrane thickening in COPD patients only (p = 0.008) and abnormal variations of endothelial nucleus density in response to exercise training in these patients when compared to SHS (p = 0.042). COPD patients had significantly fewer occurrences of pericyte/endothelium interdigitations, a morphologic marker of capillary maturation, than SHS (p = 0.014), and significantly higher levels of F2-IsoP (p = 0.048). Last, the changes in pericyte/endothelium interdigitations and F2-IsoP levels in response to exercise training were negatively correlated (r = − 0.62, p = 0.025). This study is the first to show abnormal capillary remodelling and to reveal impairments during the whole process of angiogenesis (capillary creation and maturation) in COPD patients. Trial registration NCT01183039 & NCT01183052, both registered 7 August 2010 (retrospectively registered).
Collapse
Affiliation(s)
- Léo Blervaque
- Physiologie & médecine expérimentale du Cœur et des Muscles (PhyMedExp), INSERM - CNRS - Montpellier University. CHU Arnaud De Villeneuve, 371 avenue du Doyen Gaston Giraud, 34295, Montpellier cedex 5, France.
| | - Emilie Passerieux
- Physiologie & médecine expérimentale du Cœur et des Muscles (PhyMedExp), INSERM - CNRS - Montpellier University. CHU Arnaud De Villeneuve, 371 avenue du Doyen Gaston Giraud, 34295, Montpellier cedex 5, France
| | - Pascal Pomiès
- Physiologie & médecine expérimentale du Cœur et des Muscles (PhyMedExp), INSERM - CNRS - Montpellier University. CHU Arnaud De Villeneuve, 371 avenue du Doyen Gaston Giraud, 34295, Montpellier cedex 5, France
| | - Matthias Catteau
- Physiologie & médecine expérimentale du Cœur et des Muscles (PhyMedExp), INSERM - CNRS - Montpellier University. CHU Arnaud De Villeneuve, 371 avenue du Doyen Gaston Giraud, 34295, Montpellier cedex 5, France
| | - Nelly Héraud
- Les Cliniques du Souffle®, Groupe 5 Santé, Lodève, France
| | - Marine Blaquière
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - François Bughin
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Bronia Ayoub
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Nicolas Molinari
- IMAG, CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Antonia Perez-Martin
- Vascular Medicine Department and Laboratory, CHU Nîmes and EA2992 Research Unit, Montpellier University, Nimes, France
| | - Jacques Mercier
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, INSERM - CNRS, Montpellier University, CHU Montpellier, Montpellier, France
| |
Collapse
|
23
|
Zhan K, Bai L, Wang G, Zuo B, Xie L, Wang X. Different angiogenesis modes and endothelial responses in implanted porous biomaterials. Integr Biol (Camb) 2019; 10:406-418. [PMID: 29951652 DOI: 10.1039/c8ib00061a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in vivo experimental model based on implanting porous biomaterials to study angiogenesis was proposed. In the implanted porous polyvinyl alcohol, three major modes of angiogenesis, sprouting, intussusception and splitting, were found. By electron microscopy and three-dimensional simulation of the angiogenic vessels, we investigated the morphological characteristics of the three modes and paid special attention to the initial morphological difference between intussusception and splitting, and it was confirmed that the endothelial abluminal invagination and intraluminal protrusion are pre-representations of intussusception and splitting, respectively. Based on immunohistochemical analysis of HIF-1α, VEGF and Flt-1 expressions, it was demonstrated that the dominant mode of angiogenesis is related to the local hypoxic condition, and that there is difference in the response of endothelial cells to hypoxia-induced VEGF between sprouting and splitting. Specifically, in the biomaterials implanted for 3 days, the higher expression and gradient of VEGF induced by severe hypoxia in the avascular area caused sprouting of the peripheral capillaries, and in the biomaterial implanted for 9 days, with moderate hypoxia, splitting became a dominant mode. Whether on day 3 or day 9, Flt-1 expression in sprouting endothelia was significantly higher than that in splitting endothelia, which indicates that sprouting is caused by the strong response of endothelial cells to VEGF, while splitting is associated with their weaker response. As a typical experimental example, these results show the effectiveness of the porous biomaterial implantation model for studying angiogenesis, which is expected to become a new general model.
Collapse
Affiliation(s)
- Kuihua Zhan
- School of Mechanical and Electric Engineering, Soochow University, 8 Jixue Road, Suzhou, 215131, China.
| | | | | | | | | | | |
Collapse
|
24
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|
25
|
An aPPARent Functional Consequence in Skeletal Muscle Physiology via Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2018; 19:ijms19051425. [PMID: 29747466 PMCID: PMC5983589 DOI: 10.3390/ijms19051425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle comprises 30–40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.
Collapse
|
26
|
HOLLOWAY TANYAM, SNIJDERS TIM, VAN KRANENBURG JANNEAU, VAN LOON LUCJC, VERDIJK LEXB. Temporal Response of Angiogenesis and Hypertrophy to Resistance Training in Young Men. Med Sci Sports Exerc 2018; 50:36-45. [DOI: 10.1249/mss.0000000000001409] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Abstract
Precision (P4) medicine represents a new medical paradigm that focuses on Personalized, Predictive, Preventive and Participatory approaches. The P4 paradigm is particularly appropriate for moving the care of persons with myopenia forward. Muscular dystrophies are clearly a set of genetically different diseases where genomics are the basis of diagnosis, and genetic modulation via DNA, oligonucleotides and clustered regularly interspaced short palendronic repeats hold great potential for a cure. The utility of personalized genomics for sarcopenia coupled with utilizing a predictive approach for the diagnosis with early preventive strategies is a key to improving sarcopenic outcomes. The importance of understanding different levels of patient enthusiasm and different responses to exercise should guide the participatory phase of sarcopenic treatment. In the case of cachexia, understanding the effects of the different therapies now available through the P4 approach on muscle wasting is a key to management strategies.
Collapse
Affiliation(s)
- John E. Morley
- Division of Geriatric MedicineSaint Louis University School of Medicine1402 S. Grand Blvd., M238St. LouisMO63104USA
| | - Stefan D. Anker
- Division of Innovative Clinical Trials, Department of Cardiology and PneumologyUniversity Medical Centre GöttingenRobert‐Koch‐Straße 40, D‐37075GöttingenGermany
| |
Collapse
|
28
|
Watanabe A, Poole DC, Kano Y. The effects of RSR13 on microvascular Po2 kinetics and muscle contractile performance in the rat arterial ligation model of peripheral arterial disease. J Appl Physiol (1985) 2017; 123:764-772. [DOI: 10.1152/japplphysiol.00257.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 06/08/2017] [Indexed: 01/12/2023] Open
Abstract
Exercise intolerance and claudication are symptomatic of peripheral arterial disease. There is a close relationship between muscle O2 delivery, microvascular oxygen partial pressure (P mvO2), and contractile performance. We therefore hypothesized that a reduction of hemoglobin-oxygen affinity via RSR13 would maintain a higher P mvO2 and enhance blood-muscle O2 transport and contractile function. In male Wistar rats (12 wk of age), we created hindlimb ischemia via right-side iliac artery ligation (AL). The contralateral (left) muscle served as control (CONT). Seven days after AL, phosphorescence-quenching techniques were used to measure P mvO2 at rest and during contractions (electrical stimulation; 1 Hz, 300 s) in tibialis anterior muscle (TA) under saline ( n = 10) or RSR13 ( n = 10) conditions. RSR13 at rest increased TA P mvO2 in CONT (13.9 ± 1.6 to 19.3 ± 1.9 Torr, P < 0.05) and AL (9.0 ± 0.5 to 9.9 ± 0.7 Torr, P < 0.05). Furthermore, RSR13 extended maintenance of the initial TA force (i.e., improved contractile performance) such that force was not decreased significantly until contraction 240 vs. 150 in CONT and 80 vs. 20 in AL. This improved muscle endurance with RSR13 was accompanied by a greater ΔP mvO2 (P mvO2 decrease from baseline) (CONT, 7.4 ± 1.0 to 11.2 ± 1.3; AL, 6.9 ± 0.5 to 8.6 ± 0.6 Torr, both P < 0.05). Whereas RSR13 did not alter the kinetics profile of P mvO2 (i.e., mean response time) substantially during contractions, muscle force was elevated, and the ratio of muscle force to P mvO2 increased. In conclusion, reduction of hemoglobin-oxygen affinity via RSR13 in AL increased P mvO2 and improved muscle contractile performance most likely via enhanced blood-muscle O2 diffusion. NEW & NOTEWORTHY This is the first investigation to examine the effect of RSR13 (erythrocyte allosteric effector) on skeletal muscle microvascular oxygen partial pressure kinetics and contractile function using an arterial ligation model of peripheral arterial disease in experimental animals. The present results provide strong support for the concept that reducing hemoglobin-O2 affinity via RSR13 improved tibialis anterior muscle contractile performance most likely via enhanced blood-muscle O2 diffusion.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan; and
| | - David C. Poole
- Departments of Anatomy, Physiology and Kinesiology, Kansas State University, Manhattan, KS
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan; and
| |
Collapse
|