1
|
Hayman O, Ansdell P, Angius L, Thomas K, Horsbrough L, Howatson G, Kidgell DJ, Škarabot J, Goodall S. Changes in motor unit behaviour across repeated bouts of eccentric exercise. Exp Physiol 2024; 109:1896-1908. [PMID: 39226215 PMCID: PMC11522828 DOI: 10.1113/ep092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Unaccustomed eccentric exercise (EE) is protective against muscle damage following a subsequent bout of similar exercise. One hypothesis suggests the existence of an alteration in motor unit (MU) behaviour during the second bout, which might contribute to the adaptive response. Accordingly, the present study investigated MU changes during repeated bouts of EE. During two bouts of exercise where maximal lengthening dorsiflexion (10 repetitions × 10 sets) was performed 3 weeks apart, maximal voluntary isometric torque (MVIC) and MU behaviour (quantified using high-density electromyography; HDsEMG) were measured at baseline, during (after set 5), and post-EE. The HDsEMG signals were decomposed into individual MU discharge timings, and a subset were tracked across each time point. MVIC was reduced similarly in both bouts post-EE (Δ27 vs. 23%, P = 0.144), with a comparable amount of total work performed (∼1,300 J; P = 0.905). In total, 1,754 MUs were identified and the decline in MVIC was accompanied by a stepwise increase in discharge rate (∼13%; P < 0.001). A decrease in relative recruitment was found immediately after EE in Bout 1 versus baseline (∼16%; P < 0.01), along with reductions in derecruitment thresholds immediately after EE in Bout 2. The coefficient of variation of inter-spike intervals was lower in Bout 2 (∼15%; P < 0.001). Our data provide new information regarding a change in MU behaviour during the performance of a repeated bout of EE. Importantly, such changes in MU behaviour might contribute, at least in part, to the repeated bout phenomenon.
Collapse
Affiliation(s)
- Oliver Hayman
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Center, College of Medical, Veterinary, and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paul Ansdell
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Luca Angius
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Kevin Thomas
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Lauren Horsbrough
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Glyn Howatson
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneAustralia
| | - Jakob Škarabot
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Stuart Goodall
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
2
|
Protzen G, Matoso B, Doma K, de Oliveira S, Boullosa D. Does the Repeated-Bout Effect Influence Post-Activation Performance Enhancement in Recreational Runners? RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024:1-8. [PMID: 38959957 DOI: 10.1080/02701367.2024.2353719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/23/2024] [Indexed: 07/05/2024]
Abstract
Purpose: This study examined how a low dose of an eccentric-oriented lunge exercise could induce the repeated-bout effect (RBE) and affect the subsequent post-activation performance enhancement (PAPE) in recreational runners. Methods: Twenty male recreational runners (32.1 ± 2.8 years; 173.4 ± 6.1 cm; 73.3 ± 11.5 kg; 57.8 ± 7.2 mL·kg-1·min-1) were divided into control (N = 10) and experimental (N = 10) groups. In the first and fourth weeks, the groups were assessed for jump capacity, dynamic balance, and submaximal running kinematics before and after an incremental shuttle-run test until exhaustion. The experimental group was also submitted to two sessions of the eccentric-oriented lunge exercise (3 sets of 10 repetitions with 2 min of passive recovery) in the second and third weeks. Results: We observed that the first session promoted muscle damage, which was significantly (p < .05) reduced after the second training session, thus indicating an RBE. Meanwhile, there was no effect of the RBE on dynamic balance and submaximal running kinematics in the post-intervention. However, there was a significant increase in countermovement jump height (p = .008) for the experimental group when compared to the control group, although no PAPE was observed. Conclusions: The current results demonstrate that a simple, low-dose eccentric-oriented exercise may induce an RBE, leading to reduced muscle damage and a possibly improved lower limbs' muscle power in recreational runners. However, the absence of PAPE effects suggests that the RBE may not directly influence the potentiation/fatigue balance after fatiguing running exercises.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Boullosa
- University of León
- Federal University of Mato Grosso do Sul
- James Cook University
| |
Collapse
|
3
|
Devantier-Thomas B, Deakin GB, Crowther F, Schumann M, Doma K. The repeated bout effect of traditional resistance training on cycling efficiency and performance. Eur J Appl Physiol 2024; 124:2005-2017. [PMID: 38376510 PMCID: PMC11199296 DOI: 10.1007/s00421-024-05422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE This study examined the repeated bout effect of two resistance training bouts on cycling efficiency and performance. METHODS Ten male resistance-untrained cyclists (age 38 ± 13 years; height 180.4 ± 7.0 cm; weight 80.1 ± 10.1; kg; VO2max 51.0 ± 7.6 ml.kg-1.min-1) undertook two resistance training bouts at six-repetition maximum. Blood creatine kinase (CK), delayed-onset of muscle soreness (DOMS), counter-movement jump (CMJ), squat jump (SJ), submaximal cycling and time-trial performance were examined prior to (Tbase), 24 (T24) and 48 (T48) h post each resistance training bout. RESULTS There were significantly lower values for DOMS (p = 0.027) after Bout 2 than Bout 1. No differences were found between bouts for CK, CMJ, SJ and submaximal cycling performance. However, jump height (CMJ and SJ) submaximal cycling measures (ventilation and perceived exertion) were impaired at T24 and T48 compared to Tbase (p < 0.05). Net efficiency during submaximal cycling improved at Bout 2 (23.8 ± 1.2) than Bout 1 (24.3 ± 1.0%). There were no changes in cycling time-trial performance, although segmental differences in cadence were observed between bouts and time (i.e. Tbase vs T24 vs T48; p < 0.05). CONCLUSION Cyclists improved their cycling efficiency from Bout 1 to Bout 2 possibly due to the repeated bout effect. However, cyclists maintained their cycling completion times during exercise-induced muscle damage (EIMD) in both resistance training bouts, possibly by altering their cycling strategies. Thus, cyclists should consider EIMD symptomatology after resistance training bouts, particularly for cycling-specific technical sessions, regardless of the repeated bout effect.
Collapse
Affiliation(s)
- Baily Devantier-Thomas
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Glen B Deakin
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Fiona Crowther
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Moritz Schumann
- Department of Sports Medicine and Exercise Therapy, Chemnitz University of Technology, Chemnitz, Germany
| | - Kenji Doma
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
4
|
Simmons R, Leicht A, Sinclair W, Bowman P, Dobbin M, Doma K. Acute Response to Training after Returning from the Off-Season in Elite Rugby League Athletes. J Hum Kinet 2024; 92:133-146. [PMID: 38736597 PMCID: PMC11079931 DOI: 10.5114/jhk/185442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/27/2024] [Indexed: 05/14/2024] Open
Abstract
The purposes of this study were to quantify the physiological response to the initial two-week preseason period in elite male rugby league (RL) athletes, and to determine if a repeated bout effect (RBE) occurs. Eighteen RL players were monitored for the initial two-week preseason period. Blood samples were collected on days (D)1, D2, D4, D5, D8, D9, D11 and D12 to measure creatine kinase (CK). Neuromuscular power was assessed on D1, D5, D8 and D12. During field-based sessions, the external training load was quantified using global positioning system technology, whilst the internal load was quantified using the training impulse and the session rating of perceived exertion. Resistance-based gym session volume was quantified by total repetitions x weight lifted. Perceived measures of fatigue and muscle soreness were assessed on all training days. Two-way (day x week) repeated measures analysis of variance and Bonferroni's corrected post-hoc tests identified significant changes. There were no significant changes in CK activity (649.2 ± 255.0 vs. 673.8 ± 299.1 µL; p = 0.63) or internal training load measures from week 1 to week 2. External training load measures including total distance (4138.1 ± 198.4 vs. 4525.0 ± 169.2 m; p < 0.001) and repeated high-intensity efforts (12.6 ± 1.8 vs. 17.5 ± 1.8 au; p < 0.001) significantly increased in week 2 compared to week 1. Internal training loads and CK activity did not change in response to an increase in external training loads during the initial preseason. The current results provide support for a 'real world' perspective of the RBE phenomenon that may be more applicable for team sport practitioners.
Collapse
Affiliation(s)
- Ryan Simmons
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Anthony Leicht
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Wade Sinclair
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
- North Queensland Cowboys Rugby League Football Club, Townsville, Australia
| | - Paul Bowman
- North Queensland Cowboys Rugby League Football Club, Townsville, Australia
| | | | - Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
- Orthopeadic Institute of Queensland, Townsville, Australia
| |
Collapse
|
5
|
Doma K, Matoso B, Protzen G, Singh U, Boullosa D. The Repeated Bout Effect of Multiarticular Exercises on Muscle Damage Markers and Physical Performances: A Systematic Review and Meta-Analyses. J Strength Cond Res 2023; 37:2504-2515. [PMID: 38015738 DOI: 10.1519/jsc.0000000000004628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Doma, K, Matoso, B, Protzen, G, Singh, U, and Boullosa, D. The repeated bout effect of multiarticular exercises on muscle damage markers and physical performances: a systematic review and meta-analyses. J Strength Cond Res 37(12): 2504-2515, 2023-This systematic review and meta-analysis compared muscle damage markers and physical performance measures between 2 bouts of multiarticular exercises and determined whether intensity and volume of muscle-damaging exercises affected the outcomes. The eligibility criteria consisted of (a) healthy male and female adults; (b) multiarticular exercises to cause muscle damage across 2 bouts; (c) outcome measures were compared at 24-48 hours after the first and second bouts of muscle-damaging exercise; (d) at least one of the following outcome measures: creatine kinase (CK), delayed onset of muscle soreness (DOMS), muscle strength, and running economy. Study appraisal was conducted using the Kmet tool, whereas forest plots were derived to calculate standardized mean differences (SMDs) and statistical significance and alpha set a 0.05. After screening, 20 studies were included. The levels of DOMS and CK were significantly greater during the first bout when compared with the second bout at T24 and T48 (p < 0.001; SMD = 0.51-1.23). Muscular strength and vertical jump performance were significantly lower during the first bout compared with the second bout at T24 and T48 (p ≤ 0.05; SMD = -0.27 to -0.40), whereas oxygen consumption and rating of perceived exertion were significantly greater during the first bout at T24 and T48 (p < 0.05; SMD = 0.28-0.65) during running economy protocols. The meta-analyses were unaffected by changes in intensity and volume of muscle-damaging exercises between bouts. Multiarticular exercises exhibited a repeated bout effect, suggesting that a single bout of commonly performed exercises involving eccentric contractions may provide protection against exercise-induced muscle damage for subsequent bouts.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Orthopeadic Research Institute of Queensland, Townsville, Australia
| | - Bruno Matoso
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriel Protzen
- Physical Education College, Federal University of Pelotas, Pelotas, Brazil; and
| | - Utkarsh Singh
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
| | - Daniel Boullosa
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Faculty of Physical Activity and Sports Sciences, Universidad de León, Ponferrada, Spain
| |
Collapse
|
6
|
Boyd L, Deakin GB, Devantier-Thomas B, Singh U, Doma K. The Effects of Pre-conditioning on Exercise-Induced Muscle Damage: A Systematic Review and Meta-analysis. Sports Med 2023; 53:1537-1557. [PMID: 37160563 PMCID: PMC10356650 DOI: 10.1007/s40279-023-01839-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Several studies have utilised isometric, eccentric and downhill walking pre-conditioning as a strategy for alleviating the signs and symptoms of exercise-induced muscle damage (EIMD) following a bout of damaging physical activity. OBJECTIVES This systematic review and meta-analysis examined the effects of pre-conditioning strategies on indices of muscle damage and physical performance measures following a second bout of strenuous physical activity. DATA SOURCES PubMed, CINAHL and Scopus. ELIGIBILITY CRITERIA Studies meeting the PICO (population, intervention/exposure, comparison, and outcome) criteria were included in this review: (1) general population or "untrained" participants with no contraindications affecting physical performance; (2) studies with a parallel design to examine the prevention and severity of muscle-damaging contractions; (3) outcome measures were compared using baseline and post-intervention measures; and (4) outcome measures included any markers of indirect muscle damage and muscular contractility measures. PARTICIPANTS Individuals with no resistance training experiences in the previous 6 or more months. INTERVENTIONS A single bout of pre-conditioning exercises consisting of eccentric or isometric contractions performed a minimum of 24 h prior to a bout of damaging physical activity were compared to control interventions that did not perform pre-conditioning prior to damaging physical activity. STUDY APPRAISAL Kmet appraisal system. SYNTHESIS METHODS Quantitative analysis was conducted using forest plots to examine standardised mean differences (SMD, i.e. effect size), test statistics for statistical significance (i.e. Z-values) and between-study heterogeneity by inspecting I2. RESULTS Following abstract and full-text screening, 23 articles were included in this paper. Based on the meta-analysis, the pre-conditioning group exhibited lower levels of creatine kinase at 24 h (SMD = - 1.64; Z = 8.39; p = 0.00001), 48 h (SMD = - 2.65; Z = 7.78; p = 0.00001), 72 h (SMD = - 2.39; Z = 5.71; p = 0.00001) and 96 h post-exercise (SMD = - 3.52; Z = 7.39; p = 0.00001) than the control group. Delayed-onset muscle soreness was also lower for the pre-conditioning group at 24 h (SMD = - 1.89; Z = 6.17; p = 0.00001), 48 h (SMD = - 2.50; Z = 7.99; p = 0.00001), 72 h (SMD = - 2.73; Z = 7.86; p = 0.00001) and 96 h post-exercise (SMD = - 3.30; Z = 8.47; p = 0.00001). Maximal voluntary contraction force was maintained and returned to normal sooner in the pre-conditioning group than in the control group, 24 h (SMD = 1.46; Z = 5.49; p = 0.00001), 48 h (SMD = 1.59; Z = 6.04; p = 0.00001), 72 h (SMD = 2.02; Z = 6.09; p = 0.00001) and 96 h post-exercise (SMD = 2.16; Z = 5.69; p = 0.00001). Range of motion was better maintained by the pre-conditioning group compared with the control group at 24 h (SMD = 1.48; Z = 4.30; p = 0.00001), 48 h (SMD = 2.20; Z = 5.64; p = 0.00001), 72 h (SMD = 2.66; Z = 5.42; p = 0.00001) and 96 h post-exercise (SMD = 2.5; Z = 5.46; p = 0.00001). Based on qualitative analyses, pre-conditioning activities were more effective when performed at 2-4 days before the muscle-damaging protocol compared with immediately prior to the muscle-damaging protocol, or 1-3 weeks prior to the muscle-damaging protocol. Furthermore, pre-conditioning activities performed using eccentric contractions over isometric contractions, with higher volumes, greater intensity and more lengthened muscle contractions provided greater protection from EIMD. LIMITATIONS Several outcome measures showed high inter-study heterogeneity. The inability to account for differences in durations between pre-conditioning and the second bout of damaging physical activity was also limiting. CONCLUSIONS Pre-conditioning significantly reduced the severity of creatine kinase release, delayed-onset muscle soreness, loss of maximal voluntary contraction force and the range of motion decrease. Pre-conditioning may prevent severe EIMD and accelerate recovery of muscle force generation capacity.
Collapse
Affiliation(s)
- Lachlan Boyd
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Glen B Deakin
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Baily Devantier-Thomas
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Utkarsh Singh
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Kenji Doma
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia.
| |
Collapse
|
7
|
Bersiner K, Park SY, Schaaf K, Yang WH, Theis C, Jacko D, Gehlert S. Resistance exercise: a mighty tool that adapts, destroys, rebuilds and modulates the molecular and structural environment of skeletal muscle. Phys Act Nutr 2023; 27:78-95. [PMID: 37583075 PMCID: PMC10440184 DOI: 10.20463/pan.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Skeletal muscle regulates health and performance by maintaining or increasing strength and muscle mass. Although the molecular mechanisms in response to resistance exercise (RE) significantly target the activation of protein synthesis, a plethora of other mechanisms and structures must be involved in orchestrating the communication, repair, and restoration of homeostasis after RE stimulation. In practice, RE can be modulated by variations in intensity, continuity and volume, which affect molecular responses and skeletal muscle adaptation. Knowledge of these aspects is important with respect to planning of training programs and assessing the impact of RE training on skeletal muscle. METHODS In this narrative review, we introduce general aspects of skeletal muscle substructures that adapt in response to RE. We further highlighted the molecular mechanisms that control human skeletal muscle anabolism, degradation, repair and memory in response to acute and repeated RE and linked these aspects to major training variables. RESULTS Although RE is a key stimulus for the activation of skeletal muscle anabolism, it also induces myofibrillar damage. Nevertheless, to increase muscle mass accompanied by a corresponding adaptation of the essential substructures of the sarcomeric environment, RE must be continuously repeated. This requires the permanent engagement of molecular mechanisms that re-establish skeletal muscle integrity after each RE-induced muscle damage. CONCLUSION Various molecular regulators coordinately control the adaptation of skeletal muscle after acute and repeated RE and expand their actions far beyond muscle growth. Variations of key resistance training variables likely affect these mechanisms without affecting muscle growth.
Collapse
Affiliation(s)
- Käthe Bersiner
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - So-Young Park
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Pocheon, Republic of Korea
- Department of Medicine, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Christian Theis
- Center for Anaesthesiology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
8
|
Api G, Legnani RFDS, Foschiera DB, Clemente FM, Legnani E. Influence of Cluster Sets on Mechanical and Perceptual Variables in Adolescent Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2810. [PMID: 36833507 PMCID: PMC9956823 DOI: 10.3390/ijerph20042810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cluster sets (CS) are effective in maintaining performance and reducing perceived effort compared to traditional sets (TRD). However, little is known about these effects on adolescent athletes. The purpose of this study was to compare the effect of CS on the performance of mechanical and perceptual variables in young athletes. Eleven subjects [4 boys (age = 15.5 ± 0.8 years; body mass = 54.3 ± 7.0 kg; body height = 1.67 ± 0.04 m; Back Squat 1RM/body mass: 1.62 ± 0.19 kg; years from peak height velocity [PHV]: 0.94 ± 0.50) and 7 girls (age = 17.2 ± 1.4 years; body mass = 54.7 ± 6.3 kg; body height = 1.63 ± 0.08 m; Back Squat 1RM/body mass: 1.22 ± 0.16 kg; years from PHV: 3.33 ± 1.00)] participated in a randomized crossover design with one traditional (TRD: 3 × 8, no intra-set and 225 s interest rest) and two clusters (CS1: 3 × 2 × 4, one 30 s intra-set and 180 s inter-set rest; and CS2: 3 × 4 × 2, three 30 s intra-set and 90 s inter-set rest) protocols. The subjects were assessed for a Back Squat 1RM for the first meet, then performed the three protocols on three different days, with at least 48 h between them. During experimental sessions, a back squat exercise was performed, and mean propulsive velocity (MPV), power (MPP), and force (MPF) were collected to analyze performance between protocols, together with measures of countermovement jump (CMJ) and perceptual responses through Rating of Perceived Exertion for each set (RPE-Set) and the overall session (S-RPE), and Muscle Soreness (DOMS). The results showed that velocity and power decline (MVD and MPD) were favorable for CS2 (MVD: -5.61 ± 14.84%; MPD: -5.63 ± 14.91%) against TRD (MVD: -21.10 ± 11.88%; MPD: -20.98 ± 11.85%) (p < 0.01) and CS1 (MVD: -21.44 ± 12.13%; MPD: -21.50 ± 12.20%) (p < 0.05). For RPE-Set, the scores were smaller for CS2 (RPE8: 3.23 ± 0.61; RPE16: 4.32 ± 1.42; RPE24: 4.46 ± 1.51) compared to TRD (RPE8: 4.73 ± 1.33; RPE16: 5.46 ± 1.62; RPE24: 6.23 ± 1.97) (p = 0.008), as well as for Session RPE (CS2: 4.32 ± 1.59; TRD: 5.68 ± 1.75) (p = 0.015). There were no changes for jump height (CMJ: p = 0.985), and the difference between time points in CMJ (ΔCMJ: p = 0.213) and muscle soreness (DOMS: p = 0.437) were identified. Our findings suggest that using CS with a greater number of intra-set rests is more efficient even with the total rest interval equalized, presenting lower decreases in mechanical performance and lower perceptual effort responses.
Collapse
Affiliation(s)
- Gustavo Api
- Department of Physical Education, Federal University of Technology, Curitiba 81310-900, Paraná, Brazil
| | | | | | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Elto Legnani
- Department of Physical Education, Federal University of Technology, Curitiba 81310-900, Paraná, Brazil
| |
Collapse
|
9
|
Burt D, Doma K, Connor J. The effects of exercise-induced muscle damage on varying intensities of endurance running performance: A systematic review and meta-analysis. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2022; 8:105. [PMID: 35976540 PMCID: PMC9385928 DOI: 10.1186/s40798-022-00497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Background Strength training (ST) is commonly used to improve muscle strength, power, and neuromuscular adaptations and is recommended combined with runner training. It is possible that the acute effects of the strength training session lead to deleterious effects in the subsequent running. The aim of this systematic review and meta-analysis was to verify the acute effects of ST session on the neuromuscular, physiological and performance variables of runners.
Methods Studies evaluating running performance after resistance exercise in runners in the PubMed and Scopus databases were selected. From 6532 initial references, 19 were selected for qualitative analysis and 13 for meta-analysis. The variables of peak torque (PT), creatine kinase (CK), delayed-onset muscle soreness (DOMS), rating of perceived exertion (RPE), countermovement jump (CMJ), ventilation (VE), oxygen consumption (VO2), lactate (La) and heart rate (HR) were evaluated.
Results The methodological quality of the included studies was considered reasonable; the meta-analysis indicated that the variables PT (p = 0.003), DOMS (p < 0.0001), CK (p < 0.0001), RPE (p < 0.0001) had a deleterious effect for the experimental group; for CMJ, VE, VO2, La, FC there was no difference. By qualitative synthesis, running performance showed a reduction in speed for the experimental group in two studies and in all that assessed time to exhaustion.
Conclusion The evidence indicated that acute strength training was associated with a decrease in PT, increases in DOMS, CK, RPE and had a low impact on the acute responses of CMJ, VE, VO2, La, HR and submaximal running sessions.
Collapse
|
11
|
Harrison DC, Doma K, Leicht AS, McGuckin TA, Woods CT, Connor JD. Repeated Bout Effect of Two Resistance Training Bouts on Bowling-Specific Performance in Male Cricketers. Sports (Basel) 2022; 10:sports10090126. [PMID: 36136381 PMCID: PMC9500931 DOI: 10.3390/sports10090126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
To examine the repeated bout effect (RBE) following two identical resistance bouts and its effect on bowling-specific performance in male cricketers. Male cricket pace bowlers (N = 10), who had not undertaken resistance exercises in the past six months, were invited to complete a familiarisation and resistance maximum testing, before participating in the study protocol. The study protocol involved the collection of muscle damage markers, a battery of anaerobic (jump and sprint), and a bowling-specific performance test at baseline, followed by a resistance training bout, and a retest of physical and bowling-specific performance at 24 h (T24) and 48 h (T48) post-training. The study protocol was repeated 7–10 days thereafter. Indirect markers of muscle damage were lower (creatine kinase: 318.7 ± 164.3 U·L−1; muscle soreness: 3 ± 1), whilst drop jump was improved (~47.5 ± 8.1 cm) following the second resistance training bout when compared to the first resistance training bout (creatine kinase: 550.9 ± 242.3 U·L−1; muscle soreness: 4 ± 2; drop jump: ~43.0 ± 9.7 cm). However, sport-specific performance via bowling speed declined (Bout 1: −2.55 ± 3.43%; Bout 2: 2.67 ± 2.41%) whilst run-up time increased (2.34 ± 3.61%; Bout 2: 3.84 ± 4.06%) after each bout of resistance training. Findings suggest that while an initial resistance training bout reduced muscle damage indicators and improved drop jump performance following a second resistance training bout, this RBE trend was not observed for bowling-specific performance. It was suggested that pace bowlers with limited exposure to resistance training should minimise bowling-specific practice for 1–2 days following the initial bouts of their resistance training program.
Collapse
Affiliation(s)
- Drew C. Harrison
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| | - Anthony S. Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Teneale A. McGuckin
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Carl T. Woods
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Jonathan D. Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Markus I, Constantini K, Goldstein N, Amedi R, Bornstein Y, Stolkovsky Y, Vidal M, Lev-Ari S, Balaban R, Leibou S, Blumenfeld-Katzir T, Ben-Eliezer N, Peled D, Assaf Y, Jensen D, Constantini N, Dubnov-Raz G, Halperin I, Gepner Y. Age Differences in Recovery Rate Following an Aerobic-Based Exercise Protocol Inducing Muscle Damage Among Amateur, Male Athletes. Front Physiol 2022; 13:916924. [PMID: 35774290 PMCID: PMC9239318 DOI: 10.3389/fphys.2022.916924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Compare recovery rates between active young (Y) and middle-aged (MA) males up to 48H post aerobically based, exercise-induced muscle damage (EIMD) protocol. A secondary aim was to explore the relationships between changes in indices associated with EIMD and recovery throughout this timeframe. Methods: Twenty-eight Y (n = 14, 26.1 ± 2.9y, 74.5 ± 9.3 kg) and MA (n = 14, 43.6 ± 4.1y, 77.3 ± 12.9 kg) physically active males, completed a 60-min downhill running (DHR) on a treadmill at −10% incline and at 65% of maximal heart rate (HR). Biochemical, biomechanical, psychological, force production and muscle integrity (using MRI diffusion tensor imaging) markers were measured at baseline, immediately-post, and up to 48H post DHR. Results: During the DHR, HR was lower (p < 0.05) in MA compared to Y, but running pace and distance covered were comparable between groups. No statistical or meaningful differences were observed between groups for any of the outcomes. Yet, Significant (p < 0.05) time-effects within each group were observed: markers of muscle damage, cadence and perception of pain increased, while TNF-a, isometric and dynamic force production and stride-length decreased. Creatine-kinase at 24H-post and 48H-post were correlated (p < 0.05, r range = −0.57 to 0.55) with pain perception, stride-length, and cadence at 24H-post and 48H-post. Significant (p < 0.05) correlations were observed between isometric force production at all time-points and IL-6 at 48H-post DHR (r range = −0.62 to (−0.74). Conclusion: Y and MA active male amateur athletes recover in a comparable manner following an EIMD downhill protocol. These results indicate that similar recovery strategies can be used by trainees from both age groups following an aerobic-based EIMD protocol.
Collapse
Affiliation(s)
- Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Constantini
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Goldstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Amedi
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Bornstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Stolkovsky
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Vidal
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Lev-Ari
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roy Balaban
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Stav Leibou
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States
| | - David Peled
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montreal, QC, Canada
| | - Naama Constantini
- Shaare Zedek Medical center affiliated to the Hebrew University, Jerusalem, Israel
| | - Gal Dubnov-Raz
- Sports and Exercise Medicine Clinic, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Israel Halperin
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
- *Correspondence: Yftach Gepner,
| |
Collapse
|
13
|
Smith C, Doma K, Heilbronn B, Leicht A. Effect of Exercise Training Programs on Physical Fitness Domains in Military Personnel: A Systematic Review and Meta-Analysis. Mil Med 2022; 187:1065-1073. [PMID: 35247052 DOI: 10.1093/milmed/usac040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Physical training is important to prepare soldiers for the intense occupational demands in the military. However, current physical training may not address all fitness domains crucial for optimizing physical readiness and reducing musculoskeletal injury. The effects of nontraditional military physical training on fitness domains have been inconsistently reported, which limits the design of the ideal training program for performance optimization and injury prevention in the military. The aim of this systematic review was to identify the effects of exercise training on various fitness domains (i.e., aerobic fitness, flexibility, muscular endurance, muscular power, muscular strength, and occupationally specific physical performance) that contribute to occupational performance and musculoskeletal injury risk in military personnel. METHODS An extensive literature search was conducted in January 2021 and was subsequently updated in July 2021 and December 2021. Included studies consisted of comparative groups of healthy military personnel performing traditional and nontraditional military physical training with at least one assessment representative of a fitness domain. Study appraisal was conducted using the PEDro scale. Meta-analysis was conducted via forest plots, standard mean difference (SMD, effect size), and intertrial heterogeneity (I2). RESULTS From a total of 7,350 records, 15 studies were identified as eligible for inclusion in this review, with a total of 1,613 participants. The average study quality via the PEDro score was good (5.3/10; range 4/10 to 6/10). Nontraditional military physical training resulted in greater posttraining values for muscular endurance (SMD = 0.46; P = .004; I2 = 68%), power (SMD = 1.57; P < .0001; I2 = 90%), strength via repetition maximum testing (SMD = 1.95; P < .00001; I2 = 91%), and occupationally specific physical performance (SMD = 0.54; P = .007; I2 = 66%) compared to the traditional group. There was no significant difference for aerobic fitness (SMD = -0.31; P = .23; I2 = 86%), flexibility (SMD = 0.58; P = .16; I2 = 76%), and muscular strength via maximal voluntary contraction (SMD = 0.18; P = .28; I2 = 66%) between training groups. CONCLUSIONS The current systematic review identified that nontraditional military physical training had a greater posttraining effect on muscular endurance, power, strength measured via repetition maximum, and occupationally specific physical performance compared to traditional military physical training. Overall, these findings suggest that nontraditional military physical training may be beneficial in optimizing occupational performance while potentially reducing musculoskeletal injury risk.
Collapse
Affiliation(s)
- Chelsea Smith
- Royal Australian Army Medical Corps, Australian Army, Townsville, QLD 4811, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Brian Heilbronn
- Royal Australian Army Medical Corps, Australian Army, Townsville, QLD 4811, Australia
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Anthony Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
14
|
Doma K, Ramachandran AK, Boullosa D, Connor J. The Paradoxical Effect of Creatine Monohydrate on Muscle Damage Markers: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1623-1645. [PMID: 35218552 PMCID: PMC9213373 DOI: 10.1007/s40279-022-01640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 11/07/2022]
Abstract
Background Several studies have examined the effect of creatine monohydrate (CrM) on indirect muscle damage markers and muscle performance, although pooled data from several studies indicate that the benefits of CrM on recovery dynamics are limited. Objective This systematic review and meta-analysis determined whether the ergogenic effects of CrM ameliorated markers of muscle damage and performance following muscle-damaging exercises. Methods In total, 23 studies were included, consisting of 240 participants in the CrM group (age 23.9 ± 10.4 years, height 178 ± 5 cm, body mass 76.9 ± 7.6 kg, females 10.4%) and 229 participants in the placebo group (age 23.7 ± 8.5 years, height 177 ± 5 cm, body mass 77.0 ± 6.6 kg, females 10.0%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the CrM and placebo groups at 24–36 h and 48–90 h following muscle-damaging exercises, using standardised mean differences (SMDs) and associated p-values via forest plots. Furthermore, sub-group analyses were conducted by separating studies into those that examined the effects of CrM as an acute training response (i.e., after one muscle-damaging exercise bout) and those that examined the chronic training response (i.e., examining the acute response after the last training session following several weeks of training). Results According to the meta-analysis, the CrM group exhibited significantly lower indirect muscle damage markers (i.e., creatine kinase, lactate dehydrogenase, and/or myoglobin) at 48–90 h post-exercise for the acute training response (SMD − 1.09; p = 0.03). However, indirect muscle damage markers were significantly greater in the CrM group at 24 h post-exercise (SMD 0.95; p = 0.04) for the chronic training response. Although not significant, a large difference in indirect muscle damage markers was also found at 48 h post-exercise (SMD 1.24) for the chronic training response. The CrM group also showed lower inflammation for the acute training response at 24–36 h post-exercise and 48–90 h post-exercise with a large effect size (SMD − 1.38 ≤ d ≤ − 1.79). Similarly, the oxidative stress markers were lower for the acute training response in the CrM group at 24–36 h post-exercise and 90 h post-exercise, with a large effect size (SMD − 1.37 and − 1.36, respectively). For delayed-onset muscle soreness (DOMS), the measures were lower for the CrM group at 24 h post-exercise with a moderate effect size (SMD − 0.66) as an acute training response. However, the inter-group differences for inflammation, oxidative stress, and DOMS were not statistically significant (p > 0.05). Conclusion Overall, our meta-analysis demonstrated a paradoxical effect of CrM supplementation post-exercise, where CrM appears to minimise exercise-induced muscle damage as an acute training response, although this trend is reversed as a chronic training response. Thus, CrM may be effective in reducing the level of exercise-induced muscle damage following a single bout of strenuous exercises, although training-induced stress could be exacerbated following long-term supplementation of CrM. Although long-term usage of CrM is known to enhance training adaptations, whether the increased level of exercise-induced muscle damage as a chronic training response may provide potential mechanisms to enhance chronic training adaptations with CrM supplementation remains to be confirmed. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01640-z.
Collapse
Affiliation(s)
- Kenji Doma
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.
| | | | - Daniel Boullosa
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.,Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Jonathan Connor
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia
| |
Collapse
|
15
|
Doma K, Singh U, Boullosa D, Connor JD. The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: a systematic review and meta-analysis. Appl Physiol Nutr Metab 2021; 46:1303-1313. [PMID: 34612716 DOI: 10.1139/apnm-2021-0110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This systematic review and meta-analysis determined whether the ergogenic effects of branched-chain amino acids (BCAA) ameliorated markers of muscle damage and performance following strenuous exercise. In total, 25 studies were included, consisting of 479 participants (age 24.3 ± 8.3 years, height 1.73 ± 0.06 m, body mass 70.8 ± 9.5 kg, females 26.3%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the BCAA and placebo conditions at 24 and 48 hours following muscle-damaging exercises, using standardised mean differences and associated p-values via forest plots. Our meta-analysis demonstrated significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) at 48 hours post-exercise (standardised mean difference [SMD] = -0.41; p < 0.05) for the BCAA than placebo conditions, whilst muscle soreness was significant at 24 hours post-exercise (SMD = -0.28 ≤ d ≤ -0.61; p < 0.05) and 48 hours post-exercise (SMD = -0.41 ≤ d≤ -0.92; p < 0.01). However, no significant differences were identified between the BCAA and placebo conditions for muscle performance at 24 or 48 hours post-exercise (SMD = 0.08 ≤ d ≤ 0.21; p > 0.05). Overall, BCAA reduced the level of muscle damage biomarkers and muscle soreness following muscle-damaging exercises. However, the potential benefits of BCAA for muscle performance recovery is questionable and warrants further investigation to determine the practicality of BCAA for ameliorating muscle damage symptoms in diverse populations. PROSPERO registration number: CRD42020191248. Novelty: BCAA reduces the level of creatine kinase and muscle soreness following strenuous exercise with a dose-response relationship. BCAA does not accelerate recovery for muscle performance.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| | - Utkarsh Singh
- Sports Dynamix Private Limited, Chennai, Nadu, India
| | - Daniel Boullosa
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia.,INISA, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jonathan Douglas Connor
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
16
|
Doma K, Burt D, Connor JD. The acute effect of a multi-modal plyometric training session on field-specific performance measures. J Sports Med Phys Fitness 2021; 61:899-906. [PMID: 34296839 DOI: 10.23736/s0022-4707.20.11603-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Plyometric and resistance exercises are known to cause exercise-induced muscle damage (EIMD). Thus, this study examined the impact of EIMD on various field-specific performance measures following a training session that combined plyometric and resistance exercises. METHODS Nine competitive Ultimate Frisbee players undertook a training session consisting of several modes of plyometric and resistance exercises. Indirect markers of muscle damage (i.e., creatine kinase [CK] and delayed onset of muscle soreness [DOMS]) and field-specific performance measures (i.e., run-up vertical jump, standing broad jump, linear sprint and repeated agility) were measured prior to, 24 hours (T24) and 48 hours (T48) post training. RESULTS The combined plyometric and resistance training session significantly increased muscle damage markers at T24 (CK: 326.5±210.4% and DOMS: 343.3±181.6%) and T48 (CK: 969.2±1262.3% and DOMS: 371.1±179.3%). The jump performance measures were significantly reduced at T24 (run-up vertical jump -5.5±6.3% and standing broad jump -4.7±3.7%) and T48 (run-up vertical jump -4.2±5.1% and standing broad jump -5.0±4.4%). Furthermore, completion times for linear sprint performance was significantly increased at T24 (4.5±3.4%) and T48 (7.2±4.2%), whilst the average completion time for the repeated agility protocol was significantly increased at T24 (1.4±1.4%). CONCLUSIONS Competitive team sport athletes may require at least 48 hours of recovery when implementing field-based conditioning sessions after a training session that combines plyometrics and resistance exercises, particular if unfamiliar with such training modalities.
Collapse
Affiliation(s)
- Kenji Doma
- Department of Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia -
| | - Dean Burt
- Department of Sport and Exercise Science, Staffordshire University, Staffordshire, UK
| | - Jonathan D Connor
- Department of Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
| |
Collapse
|
17
|
Effect of Exercise-Induced Muscle Damage on Bowling-Specific Motor Skills in Male Adolescent Cricketers. Sports (Basel) 2021; 9:sports9070103. [PMID: 34357937 PMCID: PMC8309793 DOI: 10.3390/sports9070103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The current study examined the acute effects of a bout of resistance training on cricket bowling-specific motor performance. Eight sub-elite, resistance-untrained, adolescent male fast bowlers (age 15 ± 1.7 years; height 1.8 ± 0.1 m; weight 67.9 ± 7.9 kg) completed a bout of upper and lower body resistance exercises. Indirect markers of muscle damage (creatine kinase [CK] and delayed onset of muscle soreness [DOMS]), anaerobic performance (15-m sprint and vertical jump), and cricket-specific motor performance (ball speed, run-up time, and accuracy) were measured prior to and 24 (T24) and 48 (T48) hours following the resistance training bout. The resistance training bout significantly increased CK (~350%; effect size [ES] = 1.89-2.24), DOMS (~240%; ES = 1.46-3.77) and 15-m sprint times (~4.0%; ES = 1.33-1.47), whilst significantly reducing vertical jump height (~7.0%; ES = 0.76-0.96) for up to 48 h. The ball speed (~3.0%; ES = 0.50-0.61) and bowling accuracy (~79%; ES = 0.39-0.70) were significantly reduced, whilst run-up time was significantly increased (~3.5%; ES = 0.36-0.50) for up to 24 h. These findings demonstrate that a bout of resistance training evokes exercise-induced muscle damage amongst sub-elite, adolescent male cricketers, which impairs anaerobic performance and bowling-specific motor performance measures. Cricket coaches should be cautious of incorporating bowling sessions within 24-h following a bout of resistance training for sub-elite adolescent fast bowlers, particularly for those commencing a resistance training program.
Collapse
|
18
|
Doma K, Devantier-Thomas B, Gahreman D, Connor J. Selected root plant supplementation reduces indices of exercise-induced muscle damage: A systematic review and meta-analysis. INT J VITAM NUTR RES 2020; 92:448-468. [PMID: 33196371 DOI: 10.1024/0300-9831/a000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | | | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
19
|
Nagata A, Doma K, Yamashita D, Hasegawa H, Mori S. The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. J Strength Cond Res 2020; 34:3110-3117. [PMID: 33105361 DOI: 10.1519/jsc.0000000000002514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nagata, A, Doma, K, Yamashita, D, Hasegawa, H, and Mori, S. The effect of augmented feedback type and frequency on velocity-based training-induced adaptation and retention. J Strength Cond Res 34(11): 3110-3117, 2020-The purpose of this study was to compare the benefits of 4 weeks of velocity-based training (VBT) using different augmented feedback (AugFb) types and the frequency of AugFb, and whether adaptations are retained 10 days post-training. Thirty-seven collegiate male rugby players were divided into groups that received immediate feedback (ImFb; n = 9), visual feedback (ViFb; n = 10), average feedback (AvgFb; n = 10) and no feedback (NoFb; n = 8) during each VBT session consisting of 3 sets of 5 repetitions of loaded jump squats. The ImFb group received AugFb regarding lifting velocity under loaded jump squats (LV-JS) after every jump, whereas LV-JS measures were averaged after each set of jumps and presented to the AvgFb group. The LV-JS were video-recorded and displayed as kinematic feedback for the ViFb group after each set, although NoFb was provided for the NoFb group. Loaded jump squats measures were reported at baseline, during each training session and 10 days post-training. Loaded jump squats measures were significantly greater for the ImFb Group compared with the other groups during a number of post-baseline time points (p ≤ 0.05). Furthermore, at 4 weeks of VBT and 10 days post-retention, effect size (ES) calculations showed that LV-JS measures were greater with moderate to large effects for the ImFb group compared with the NoFb (ES = 1.02-1.25), AvgFb (ES = 0.78-0.82) and ViFb (ES = 0.74-1.60), respectively. However, LV-JS measures were reduced with moderate to large effects 10 days post-retention for the ViFb (ES = -0.60) and NoFb (ES = -0.85) groups. Providing LV-JS feedback after each jump appears to optimize performance and should be considered as a training tool during VBT.
Collapse
Affiliation(s)
- Akinori Nagata
- Faculty of Sports Science, Chukyo University, Aichi, Japan
| | - Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | | | - Hiroshi Hasegawa
- Faculty of Sports Science, Ryukoku University, Kyoto, Japan; and
| | - Shuji Mori
- Faculty of Information Science and Electrical Engineering Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Doma K, Connor J, Gahreman D, Boullosa D, Ahtiainen JP, Nagata A. Resistance Training Acutely Impairs Agility and Spike-Specific Performance Measures in Collegiate Female Volleyball Players Returning from the Off-Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186448. [PMID: 32899731 PMCID: PMC7559839 DOI: 10.3390/ijerph17186448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/27/2023]
Abstract
This study examined the acute effects of resistance training (RT) on volleyball-specific performance. Sixteen female volleyball players undertook their initial, pre-season RT bout. Countermovement jump (CMJ), delayed onset of muscle soreness (DOMS), and sport-specific performances (i.e., run-up jump, agility, and spiking speed and accuracy) were measured before, 24 (T24), and 48 (T48) hours after RT. A significant increase in DOMS was observed at T24 and T48 (~207.6% ± 119.3%; p < 0.05; ES = 1.8 (95% CI: 0.94–2.57)), whilst agility was significantly impaired at T48 (1.7% ± 2.5%; p < 0.05; ES = 0.30 (95% CI: −0.99–0.40)). However, there were no differences in CMJ (~−2.21% ± 7.6%; p > 0.05; ES = −0.11 (95% CI: −0.80–0.58)) and run-up jump (~−1.4% ± 4.7%; p > 0.05; ES = −0.07 (95% CI: −0.76–0.63)). Spiking speed was significantly reduced (−3.5% ± 4.4%; p < 0.05; ES = −0.28 (95% CI: −0.43–0.97)), although accuracy was improved (38.3% ± 81.4%: p < 0.05) at T48. Thus, the initial, preseason RT bout compromised agility and spiking speed for several days post-exercise. Conversely, spiking accuracy improved, suggesting a speed–accuracy trade-off. Nonetheless, at least a 48-h recovery may be necessary after the initial RT bout for athletes returning from the off-season or injury.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville 4811, Australia; (J.C.); (D.B.)
- Correspondence: ; Tel.: +61-747814952
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville 4811, Australia; (J.C.); (D.B.)
| | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin 0909, Australia;
| | - Daniel Boullosa
- College of Healthcare Sciences, James Cook University, Townsville 4811, Australia; (J.C.); (D.B.)
- INISA, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Juha P. Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland;
| | - Akinori Nagata
- Faculty of Social Welfare, Rissho University, Kumagaya 360-0194, Japan;
| |
Collapse
|
21
|
Doma K, Gahreman D, Connor J. Fruit supplementation reduces indices of exercise-induced muscle damage: a systematic review and meta-analysis. Eur J Sport Sci 2020; 21:562-579. [PMID: 32460679 DOI: 10.1080/17461391.2020.1775895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This systematic review and meta-analysis examined the effects of fruit supplements on indices of muscle damage and physical performance measures following muscle-damaging exercise protocols. The PEDro scale and Cochrane's risk of bias tool was used to critically appraise each study, whilst forest plots were generated to report on standardised mean differences (SMD) and p-values. The studies employed a crossover-randomised design, or a randomised controlled placebo design, with measures compared between the supplement (SUPP) and placebo (PLA) conditions at 24 and 48 h following the muscle-damaging exercise protocols. Compared to the PLA condition, the SUPP condition exhibited significantly lower levels of indirect muscle damage markers (p = 0.02; I2 = 44%), inflammatory markers (p = 0.03; I2 = 45%) and oxidative stress (p < 0.001; I2 = 58%), whilst antioxidant capacity was significantly increased (p = 0.04; I2 = 82%) at 24 h post-exercise. The maximal isometric voluntary contraction was significantly greater for the SUPP condition than the PLA at 24 h (p < 0.001; I2 = 81%) and 48 h (p < 0.001; 84%) post-exercise. Only a few studies reported on functional outcome measures (i.e. countermovement jump, cycling, sprint and running maximal oxygen uptake), and the findings appeared conflicting according to qualitative analyses. Fruit supplementation minimised the level of several biomarkers of muscle damage, inflammation and oxidative stress, whilst improved muscular contractility during periods of EIMD. These findings demonstrate that fruit supplements could be used as recovery strategies from strenuous exercise sessions.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
22
|
Nicholls A, Leicht A, Connor J, Halliday A, Doma K. Convergent validity and reliability of a novel repeated agility protocol in junior rugby league players. F1000Res 2020; 9:624. [PMID: 34804503 PMCID: PMC8577058 DOI: 10.12688/f1000research.23129.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 04/05/2024] Open
Abstract
Background: Rugby league involves repeated, complex, change-of-direction movements, although there are no test protocols that specifically assesses these physical fitness profiles. Thus, the current study examined the convergent validity and reliability of a repeated Illinois Agility (RIA) protocol in adolescent Rugby League players. Methods: Twenty-two junior Rugby League players completed 4 sessions with each separated by 7 days. Initially, physical fitness characteristics at baseline (i.e., multi-stage fitness, countermovement jump, 30-m sprint, single-effort agility and repeated sprint ability [RSA]) were assessed. The second session involved a familiarisation of RIA and repeated T-agility test (RTT) protocols. During the third and fourth sessions, participants completed the RIA and RTT protocols in a randomised, counterbalanced design to examine the validity and test-retest reliability of these protocols. Results: For convergent validity, significant correlations were identified between RIA and RTT performances (r= >0.80; p<0.05). For contributors to RIA performance, significant correlations were identified between all baseline fitness characteristics and RIA (r = >0.71; p < 0.05). Reliability of the RIA protocol was near perfect with excellent intra-class correlation coefficient (0.87-0.97), good ratio limits of agreement (×/÷ 1.05-1.06) and low coefficient of variations (1.77-1.97%). Conclusions: The current study has demonstrated the RIA to be a simple, valid and reliable field test that can provide coaches with information about their athlete's ability to sustain high intensity, multi-directional running efforts.
Collapse
Affiliation(s)
- Anthony Nicholls
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Jonathan Connor
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Aaron Halliday
- Physical Education, Kirwan State Highschool, Kirwan, Queensland, 4817, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| |
Collapse
|
23
|
Nicholls A, Leicht A, Connor J, Halliday A, Doma K. Convergent validity and reliability of a novel repeated agility protocol in junior rugby league players. F1000Res 2020; 9:624. [PMID: 34804503 PMCID: PMC8577058 DOI: 10.12688/f1000research.23129.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 04/05/2024] Open
Abstract
Background:: Rugby league involves repeated, complex, and high intensity change-of-direction (COD) movements with no existing test protocols that specifically assesses these multiple physical fitness components simultaneously. Thus, the current study examined the convergent validity of a repeated Illinois Agility (RIA) protocol with the repeated T-agility protocol, and the repeatability of the RIA protocol in adolescent Rugby League players. Furthermore, aerobic capacity and anaerobic and COD performance were assessed to determine whether these physical qualities were important contributors to the RIA protocol. Methods: Twenty-two junior Rugby League players completed 4 sessions with each separated by 7 days. Initially, physical fitness characteristics at baseline (i.e., Beep test,, countermovement jump, 30-m sprint, single-effort COD and repeated sprint ability [RSA]) were assessed. The second session involved a familiarisation of RIA and repeated T-agility test (RTT) protocols. During the third and fourth sessions, participants completed the RIA and RTT protocols in a randomised, counterbalanced design to examine the validity and test-retest reliability of these protocols. Results: For convergent validity, significant correlations were identified between RIA and RTT performances (r= >0.80; p<0.05). For contributors to RIA performance, significant correlations were identified between all baseline fitness characteristics and RIA (r = >0.71; p < 0.05). Reliability of the RIA protocol was near perfect with excellent intra-class correlation coefficient (0.87-0.97), good ratio limits of agreement (×/÷ 1.05-1.06) and low coefficient of variations (1.8-2.0%). Conclusions: The current study has demonstrated the RIA to be a simple, valid and reliable field test for RL athletes that can provide coaches with information about their team's ability to sustain high intensity, multi-directional running efforts.
Collapse
Affiliation(s)
- Anthony Nicholls
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Jonathan Connor
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Aaron Halliday
- Physical Education, Kirwan State Highschool, Kirwan, Queensland, 4817, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| |
Collapse
|
24
|
Nicholls A, Leicht A, Connor J, Halliday A, Doma K. Convergent validity and reliability of a novel repeated agility protocol in junior rugby league players. F1000Res 2020; 9:624. [PMID: 34804503 PMCID: PMC8577058 DOI: 10.12688/f1000research.23129.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background: : Rugby league involves repeated, complex, and high intensity change-of-direction (COD) movements with no existing test protocols that specifically assesses these multiple physical fitness components simultaneously. Thus, the current study examined the convergent validity of a repeated Illinois Agility (RIA) protocol with the repeated T-agility protocol, and the repeatability of the RIA protocol in adolescent Rugby League players. Furthermore, aerobic capacity and anaerobic and COD performance were assessed to determine whether these physical qualities were important contributors to the RIA protocol. Methods: Twenty-two junior Rugby League players completed 4 sessions with each separated by 7 days. Initially, physical fitness characteristics at baseline (i.e., Multi-stage Shuttle test, countermovement jump, 30-m sprint, single-effort COD and repeated sprint ability [RSA]) were assessed. The second session involved a familiarisation of RIA and repeated T-agility test (RTT) protocols. During the third and fourth sessions, participants completed the RIA and RTT protocols in a randomised, counterbalanced design to examine the validity and test-retest reliability of these protocols. Results: For convergent validity, significant correlations were identified between RIA and RTT performances (r= >0.80; p<0.05). For contributors to RIA performance, significant correlations were identified between all baseline fitness characteristics and RIA (r = >0.71; p < 0.05). Reliability of the RIA protocol was near perfect with excellent intra-class correlation coefficient (0.87-0.97), good ratio limits of agreement (×/÷ 1.05-1.06) and low coefficient of variations (1.8-2.0%). Conclusions: The current study has demonstrated the RIA to be a simple, valid and reliable field test for RL athletes that can provide coaches with information about their team's ability to sustain high intensity, multi-directional running efforts.
Collapse
Affiliation(s)
- Anthony Nicholls
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Jonathan Connor
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Aaron Halliday
- Physical Education, Kirwan State Highschool, Kirwan, Queensland, 4817, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| |
Collapse
|
25
|
Postactivation potentiation effect of two lower body resistance exercises on repeated jump performance measures. Biol Sport 2020; 37:105-112. [PMID: 32508377 PMCID: PMC7249795 DOI: 10.5114/biolsport.2020.93034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/25/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
This study examined the postactivation potentiation effects of combining squat and deadlift exercises on subsequent repeated jump performance. Fifteen, resistance-trained youth wrestlers were randomly allocated to either undertake back squats (BSq), deadlift (DL) or BSq and DL as supersets (BSq+DL), with a repeated jump protocol performed 8-minutes post-exercise in each session. Thereafter, a control condition (CON) was completed involving a general warm-up, followed by the repeated jump protocols. Power outputs, flight time, contact time and reactive strength index were recorded from each repeated jump protocol. Measures were compared between the BSq, DL and BSq+DL sessions and between sessions that generated the best power output (BEST) with CON via inferential statistics and effect size (ES) calculations. The BSq condition exhibited significantly greater power output compared to the CON condition (p<0.05, ES = 1.07), although no differences were identified for the other conditioning activities. Furthermore, power output, flight time and reactive strength index were significantly greater for the BEST compared to the CON condition (p<0.05, ES = 0.97–1.47). Results indicated that BSq was the optimal conditioning activity to increase power output during a repeated jump protocol. However, greater improvement during the BEST condition suggests that the type of conditioning activity should also be considered on an individual-basis.
Collapse
|
26
|
Training Considerations for Optimising Endurance Development: An Alternate Concurrent Training Perspective. Sports Med 2020; 49:669-682. [PMID: 30847824 DOI: 10.1007/s40279-019-01072-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whilst the "acute hypothesis" was originally coined to describe the detrimental effects of concurrent training on strength development, similar physiological processes may occur when endurance training adaptations are compromised. There is a growing body of research indicating that typical resistance exercises impair neuromuscular function and endurance performance during periods of resistance training-induced muscle damage. Furthermore, recent evidence suggests that the attenuating effects of resistance training-induced muscle damage on endurance performance are influenced by exercise intensity, exercise mode, exercise sequence, recovery and contraction velocity of resistance training. By understanding the influence that training variables have on the level of resistance training-induced muscle damage and its subsequent attenuating effects on endurance performance, concurrent training programs could be prescribed in such a way that minimises fatigue between modes of training and optimises the quality of endurance training sessions. Therefore, this review will provide considerations for concurrent training prescription for endurance development based on scientific evidence. Furthermore, recommendations will be provided for future research by identifying training variables that may impact on endurance development as a result of concurrent training.
Collapse
|
27
|
Doma K, Leicht AS, Boullosa D, Woods CT. Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance. Eur J Appl Physiol 2020; 120:687-695. [PMID: 32006099 DOI: 10.1007/s00421-020-04308-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE This study examined the post-activation potentiation effects of body-weight lunge exercises with blood-flow restriction on jump performance. Eighteen anaerobically trained men took part in this study across 3 weeks. METHODS During the first week, participants were familiarised with the lunge exercises with blood-flow restriction and the drop-jump protocol. In the second and third week, participants were randomly allocated to complete body-weight lunges (three sets of eight repetitions) either with or without blood-flow restriction (occlusion set at 130% of systolic blood pressure) to induce post-activation potentiation. Drop-jump performance was assessed between blood-flow conditions, and prior to, and at the third, sixth, ninth, twelfth and fifteenth minute following each lunge exercise. Relationships between mechanical contributors of jump performance and final jump performance were examined via Pearson correlation coefficients. RESULTS Lunges with blood-flow restriction significantly improved jump height (~ 4.5% ± 0.8%), flight time (~ 3.4% ± 0.3%) and power (~ 4.1% ± 0.3%) within 6-15 min post-exercise (p < 0.05) with the magnitude of effect between blood-flow conditions, moderate-large (0.54-1.16). No significant changes (p > 0.05) were found in jump performance measures following lunge exercises without blood-flow restriction. Significant correlations (p < 0.05) between mechanical contributors of jump performance and jump performance highlighted the potential of blood-flow restriction to enhance stretch-shortening cycle mechanics in the current study. CONCLUSION Lunge exercises with blood-flow restriction improved subsequent jump performance in anaerobically trained men. The use of blood-flow restriction may be a practical alternative to heavy resistance training equipment during warm-up protocols.
Collapse
Affiliation(s)
- Kenji Doma
- James Cook University, Townsville, QLD, Australia.
| | | | - Daniel Boullosa
- INISA, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Carl T Woods
- Institute for health and sport, Victoria University, Melbourne, Australia
| |
Collapse
|
28
|
Doma K, Nicholls A, Gahreman D, Damas F, Libardi CA, Sinclair W. The Effect of a Resistance Training Session on Physiological and Thermoregulatory Measures of Sub-maximal Running Performance in the Heat in Heat-Acclimatized Men. SPORTS MEDICINE-OPEN 2019; 5:21. [PMID: 31165339 PMCID: PMC6548784 DOI: 10.1186/s40798-019-0195-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study examined the acute effects of a lower body resistance training (RT) session on physiological and thermoregulatory measures during a sub-maximal running protocol in the heat in heat-acclimatized men. Ten resistance-untrained men (age 27.4 ± 4.1 years; height 1.78 ± 0.06 m; body mass 76.8 ± 9.9 kg; peak oxygen uptake 48.2 ± 7.0 mL kg-1 min-1) undertook a high-intensity RT session at six-repetition maximum. Indirect muscle damage markers (i.e., creatine kinase [CK], delayed-onset muscle soreness [DOMS], and countermovement jump [CMJ]) were collected prior to, immediately post and 24 and 48 h after the RT session. The sub-maximal running protocol was performed at 70% of the ventilatory threshold, which was conducted prior to and 24 and 48 h following the RT session to obtain physiological and thermoregulatory measures. RESULTS The RT session exhibited significant increases in DOMS (p < 0.05; effect size [ES]: 1.41-10.53), whilst reduced CMJ (p < 0.05; ES: - 0.79-1.41) for 48 h post-exercise. There were no differences in CK (p > 0.05), although increased with moderate to large ES (0.71-1.12) for 48 h post-exercise. The physiological cost of running was increased for up to 48 h post-exercise (p < 0.05) with moderate to large ES (0.50-0.84), although no differences were shown in thermoregulatory measures (p > 0.05) with small ES (0.33). CONCLUSION These results demonstrate that a RT session impairs sub-maximal running performance for several days post-exercise, although thermoregulatory measures are unperturbed despite elevated muscle damage indicators in heat-acclimatized, resistance untrained men. Accordingly, whilst a RT session may not increase susceptibility to heat-related injuries in heat-acclimatized men during sub-maximal running in the heat, endurance sessions should be undertaken with caution for at least 48 h post-exercise following the initial RT session in resistance untrained men.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia.
| | - Anthony Nicholls
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| | - Daniel Gahreman
- Exercise and Sport Science, Charles Darwin University, Casuarina, Australia
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Wade Sinclair
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| |
Collapse
|
29
|
Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sports Med 2018; 47:2187-2200. [PMID: 28702901 DOI: 10.1007/s40279-017-0758-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A single bout of resistance training induces residual fatigue, which may impair performance during subsequent endurance training if inadequate recovery is allowed. From a concurrent training standpoint, such carry-over effects of fatigue from a resistance training session may impair the quality of a subsequent endurance training session for several hours to days with inadequate recovery. The proposed mechanisms of this phenomenon include: (1) impaired neural recruitment patterns; (2) reduced movement efficiency due to alteration in kinematics during endurance exercise and increased energy expenditure; (3) increased muscle soreness; and (4) reduced muscle glycogen. If endurance training quality is consistently compromised during the course of a specific concurrent training program, optimal endurance development may be limited. Whilst the link between acute responses of training and subsequent training adaptation has not been fully established, there is some evidence suggesting that cumulative effects of fatigue may contribute to limiting optimal endurance development. Thus, the current review will (1) explore cross-sectional studies that have reported impaired endurance performance following a single, or multiple bouts, of resistance training; (2) identify the potential impact of fatigue on chronic endurance development; (3) describe the implications of fatigue on the quality of endurance training sessions during concurrent training, and (4) explain the mechanisms contributing to resistance training-induced attenuation on endurance performance from neurological, biomechanical and metabolic standpoints. Increasing the awareness of resistance training-induced fatigue may encourage coaches to consider modulating concurrent training variables (e.g., order of training mode, between-mode recovery period, training intensity, etc.) to limit the carry-over effects of fatigue from resistance to endurance training sessions.
Collapse
|
30
|
Lima LCR, Bassan NM, Cardozo AC, Gonçalves M, Greco CC, Denadai BS. Isometric pre-conditioning blunts exercise-induced muscle damage but does not attenuate changes in running economy following downhill running. Hum Mov Sci 2018; 60:1-9. [PMID: 29751254 DOI: 10.1016/j.humov.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
Abstract
Running economy (RE) is impaired following unaccustomed eccentric-biased exercises that induce muscle damage. It is also known that muscle damage is reduced when maximal voluntary isometric contractions (MVIC) are performed at a long muscle length 2-4 days prior to maximal eccentric exercise with the same muscle, a phenomenon that can be described as isometric pre-conditioning (IPC). We tested the hypothesis that IPC could attenuate muscle damage and changes in RE following downhill running. Thirty untrained men were randomly assigned into experimental or control groups and ran downhill on a treadmill (-15%) for 30 min. Participants in the experimental group completed 10 MVIC in a leg press machine two days prior to downhill running, while participants in the control group did not perform IPC. The magnitude of changes in muscle soreness determined 48 h after downhill running was greater for the control group (122 ± 28 mm) than for the experimental group (92 ± 38 mm). Isometric peak torque recovered faster in the experimental group compared with the control group (3 days vs. no full recovery, respectively). No significant effect of IPC was found for countermovement jump height, serum creatine kinase activity or any parameters associated with RE. These results supported the hypothesis that IPC attenuates changes in markers of muscle damage. The hypothesis that IPC attenuates changes in RE was not supported by our data. It appears that the mechanisms involved in changes in markers of muscle damage and parameters associated with RE following downhill running are not completely shared.
Collapse
Affiliation(s)
- Leonardo C R Lima
- Human Performance Laboratory, São Paulo State University, Av 24-A, 1515, Rio Claro, SP 13506-900, Brazil; Faculty of Biological and Health Sciences, Centro Universitário Hermínio Ometto, Av. Maximiliano Baruto, 500, Araras, SP 13607-339, Brazil; Faculty of Physical Education, Centro Universitário Salesiano de São Paulo, Rua Baronesa Geraldo Resende, 330, Campinas, SP 13075-270, Brazil.
| | - Natália M Bassan
- Human Performance Laboratory, São Paulo State University, Av 24-A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Adalgiso C Cardozo
- Biomechanics Laboratory, São Paulo State University, Av 24-A, 1515, Rio Claro, SP 13506-900, Brazil.
| | - Mauro Gonçalves
- Biomechanics Laboratory, São Paulo State University, Av 24-A, 1515, Rio Claro, SP 13506-900, Brazil
| | - Camila C Greco
- Human Performance Laboratory, São Paulo State University, Av 24-A, 1515, Rio Claro, SP 13506-900, Brazil.
| | - Benedito S Denadai
- Human Performance Laboratory, São Paulo State University, Av 24-A, 1515, Rio Claro, SP 13506-900, Brazil.
| |
Collapse
|