1
|
Su Y, Li X, Zhao J, Ji B, Zhao X, Feng J, Zhao J. Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity. Food Funct 2024; 15:4515-4526. [PMID: 38567805 DOI: 10.1039/d3fo05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xinrui Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiamin Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Bingzhen Ji
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Xiaoyi Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jinxin Feng
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| |
Collapse
|
2
|
Wang Y, Yang Y, Song Y. Cardioprotective Effects of Exercise: The Role of Irisin and Exosome. Curr Vasc Pharmacol 2024; 22:316-334. [PMID: 38808716 DOI: 10.2174/0115701611285736240516101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Exercise is an effective measure for preventing and treating cardiovascular diseases, although the exact molecular mechanism remains unknown. Previous studies have shown that both irisin and exosomes can improve the course of cardiovascular disease independently. Therefore, it is speculated that the cardiovascular protective effect of exercise is also related to its ability to regulate the concentrations of irisin and exosomes in the circulatory system. In this review, the potential synergistic interactions between irisin and exosomes are examined, as well as the underlying mechanisms including the AMPK/PI3K/AKT pathway, the TGFβ1/Smad2/3 pathway, the PI3K/AKT/VEGF pathway, and the PTEN/PINK1/Parkin pathway are examined. This paper provides evidence to propose that exercise promotes the release of exosomes enriched with irisin, miR-486-5p and miR-342-5p from skeletal muscles, which results in the activation protective networks in the cardiovascular system. Moreover, the potential synergistic effect in exosomal cargo can provide new ideas for clinical research of exercise mimics.
Collapse
Affiliation(s)
- Yuehuan Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention research center, Wuhan Sports University, Wuhan, 430079, China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China
| | - Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
3
|
Naderi N, Souri M, Nasr-Esfahani MH, Hajian M, Nazem MN. Ferulago angulata extract alleviates testicular toxicity in male mice exposed to diazinon and lead. Tissue Cell 2023; 85:102257. [PMID: 37924715 DOI: 10.1016/j.tice.2023.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
In this study, we investigated the protective effects of Ferulago angulata extract (FAE) against the reproductive toxicants Diazinon (DZN) and Lead (Pb) in mice. These pollutants are known to induce oxidative stress (OS), while FAE acts as a natural antioxidant. Adult male NMRI mice were exposed to DZN, Pb, and DZN+Pb, with or without FAE treatment for six weeks. We evaluated OS markers, testicular histology, and expression of mRNA related to enzymatic antioxidants. Exposure to DZN and Pb led to increased levels of thiobarbituric acid reactive substance (TBARS) and nitric oxide (NO) in the testes, along with a decrease in the total antioxidant capacity (TAC). Furthermore, the mRNA expression of antioxidant enzymes such as superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4) was altered. However, when FAE was administered concurrently, it restored the biochemical parameters to normal levels, reduced the toxic effects of DZN and Pb, and provided protection against testicular histopathological injury. These findings suggest that FAE has the potential to serve as a protective agent against oxidative damage caused by contaminants in reproductive organs, specifically in the testes.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Manouchehr Souri
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Naser Nazem
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Jamshidian-Ghalehsefidi N, Rabiee F, Tavalaee M, Kiani S, Pouriayevali F, Razi M, Dattilo M, Nasr-Esfahani MH. The role of the transsulfuration pathway in spermatogenesis of vitamin D deficient mice. Sci Rep 2023; 13:19173. [PMID: 37932339 PMCID: PMC10628119 DOI: 10.1038/s41598-023-45986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Vitamin D deficiency is a global health problem and has been linked to defective spermatogenesis and male infertility. In this study, we aimed to investigate the main enzymes involved in the transsulfuration pathway of 1-carbon metabolism, and spermatogenesis function. Therefore, sixteen male C57 mice were addressed to a control (standard diet) or vitamin D deficient (VDD) diet for 14 weeks. The results show that compared to the standard diet, VDD increased final body weight and reduced sperm quality, caused damage to the testicular structure, and decreased the serum levels of testosterone. In addition, serum concentrations of homocysteine, vitamin B12, and sperm oxidative stress markers increased. In testicular tissues, the CBS and CSE protein levels were down-regulated whereas HO-1 was up-regulated at both mRNA and protein expression levels. Within a mice deprivation model, VDD deeply suppressed testosterone and impaired spermatogenesis with oxidative stress-mediated mechanisms. The effects of the deprivation appeared to be at least in part independent of genomic and receptor-mediated vitamin D actions and suggest a specific impairment of the alternative transsulfuration pathway.
Collapse
Affiliation(s)
- Narges Jamshidian-Ghalehsefidi
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Shaghayegh Kiani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnaz Pouriayevali
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mazdak Razi
- Division of Histology and Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
5
|
Martínez-Fernández L, Burgos M, Sáinz N, Laiglesia LM, Arbones-Mainar JM, González-Muniesa P, Moreno-Aliaga MJ. Maresin 1 Exerts a Tissue-Specific Regulation of Adipo-Hepato-Myokines in Diet-Induced Obese Mice and Modulates Adipokine Expression in Cultured Human Adipocytes in Basal and Inflammatory Conditions. Biomolecules 2023; 13:919. [PMID: 37371501 DOI: 10.3390/biom13060919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study analyses the effects of Maresin 1 (MaR1), a docosahexaenoic acid (DHA)-derived specialized proresolving lipid mediator with anti-inflammatory and insulin-sensitizing actions, on the expression of adipokines, including adiponectin, leptin, dipeptidyl peptidase 4 (DPP-4), cardiotrophin-1 (CT-1), and irisin (FNDC5), both in vitro and in in vivo models of obesity. The in vivo effects of MaR1 (50 μg/kg, 10 days, oral gavage) were evaluated in epididymal adipose tissue (eWAT), liver and muscle of diet-induced obese (DIO) mice. Moreover, two models of human differentiated primary adipocytes were incubated with MaR1 (1 and 10 nM, 24 h) or with a combination of tumor necrosis factor-α (TNF-α, 100 ng/mL) and MaR1 (1-200 nM, 24 h) and the expression and secretion of adipokines were measured in both models. MaR1-treated DIO mice exhibited an increased expression of adiponectin and Ct-1 in eWAT, increased expression of Fndc5 and Ct-1 in muscle and a decreased expression of hepatic Dpp-4. In human differentiated adipocytes, MaR1 increased the expression of ADIPONECTIN, LEPTIN, DPP4, CT-1 and FNDC5. Moreover, MaR1 counteracted the downregulation of ADIPONECTIN and the upregulation of DPP-4 and LEPTIN observed in adipocytes treated with TNF-α. Differential effects for TNF-α and MaR1 on the expression of CT-1 and FNDC5 were observed between both models of human adipocytes. In conclusion, MaR1 reverses the expression of specific adipomyokines and hepatokines altered in obese mice in a tissue-dependent manner. Moreover, MaR1 regulates the basal expression of adipokines in human adipocytes and counteracts the alterations of adipokines expression induced by TNF-α in vitro. These actions could contribute to the metabolic benefits of this lipid mediator.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Miguel Burgos
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- IDISNA-Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - José Miguel Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- IDISNA-Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- IDISNA-Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
6
|
Lai E, Unniappan S. Irisin in domestic animals. Domest Anim Endocrinol 2023; 83:106787. [PMID: 36863302 DOI: 10.1016/j.domaniend.2023.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Irisin is a 112 amino acid peptide hormone cleaved from the fibronectin type III domain-containing protein. Irisin is highly conserved across vertebrates, suggesting evolutionarily conserved common functions among domestic animals. These functions include the browning of white adipose tissue and increased energy expenditure. Irisin has been detected and studied primarily in plasma, serum, and skeletal muscle, but has also been found in adipose tissue, liver, kidney, lungs, cerebrospinal fluid, breast milk, and saliva. This wider tissue presence of irisin suggests additional functions beyond its role as a myokine in regulating energy use. We are beginning to understand irisin in domestic animals. The goal of this review is to provide an up-to-date commentary on irisin structure, tissue distribution, and functions across vertebrates, especially mammals of importance in veterinary medicine. Irisin could be explored as a potential candidate for developing therapeutic agents and biomarkers in domestic animal endocrinology.
Collapse
Affiliation(s)
- E Lai
- Department of Veterinary Biomedical Sciences, Laboratory of Integrative Neuroendocrinology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - S Unniappan
- Department of Veterinary Biomedical Sciences, Laboratory of Integrative Neuroendocrinology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
7
|
Guo Q, Zhang B, Du H, Zhu R, Sun X, Fan X, Wei X, Yang D, Oh Y, Fan L, Wang C, Gu N. High-fat diet and palmitate inhibits FNDC5 expression via AMPK-Zfp57 pathway in mouse muscle cells. Chem Biol Interact 2023; 369:110265. [PMID: 36375515 DOI: 10.1016/j.cbi.2022.110265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Irisin, a muscle-secreted cytokine involved in maintaining glucose homeostasis and improving insulin resistance, is generated from the precursor fibronectin type Ⅲ domain-containing protein 5 (FNDC5) by specific proteases. Zinc-finger protein Zfp57, a transcription factor that maintains the methylation during early embryonic development, is also reported to be associated with diabetes mellitus. However, the association between Zfp57 and FNDC5 is still unclear. In our study, we explored the detailed regulatory effect of Zfp57 on FNDC5 expression. In this study, we found that high-fat diet or saturated fatty acid palmitate increased the Zfp57 expression and decreased FNDC5 expression in muscle tissue or C2C12 myotubes. RNA sequencing analysis disclosed effects of the high-fat diet on genes associated with insulin resistance and the AMP-activated protein kinase (AMPK) signaling pathway in muscle tissue of mice. Chromatin immunoprecipitation experiments revealed that Zfp57 binds the FNDC5 gene promoter at positions -308 to -188. Moreover, Zfp57 overexpression inhibited FNDC5 expression, and Zfp57 knockdown alleviated the inhibitory effect of palmitate on FNDC5 expression in C2C12 myotubes. In addition, in vivo and in vitro studies demonstrated that activation of the AMPK pathway by 5-Aminoimidazole-4-carboxamide riboside (AICAR) or metformin mitigated the inhibitory effect of Zfp57 on FNDC5 expression and improved insulin resistance. These findings collectively suggest that high-fat diet and palmitate inhibit the AMPK pathway to increase Zfp57 expression, which in turn induces FNDC5 inhibition, to further aggravate insulin resistance.
Collapse
Affiliation(s)
- Qian Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaotong Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - DaQian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Lei Fan
- Department of Endocrinology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Changlin Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Karevanpour F, Tavalaee M, Kazeminasab F, Abdollahi M, Shirkhani S, Rahmani M, Ghaedi K, Marandi SM, Nasr‐Esfahani MH. The effect of green coffee and/or endurance exercise on sperm function in pre‐diabetic mice. Andrologia 2022; 54:e14560. [DOI: 10.1111/and.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fatemeh Karevanpour
- ACECR Institute of Higher Education, Isfahan Branch Isfahan Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Marziyeh Tavalaee
- ACECR Institute of Higher Education, Isfahan Branch Isfahan Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Human Sciences University of Kashan Kashan Iran
| | - Milad Abdollahi
- Department of Exercise Physiology, Faculty of Sport Sciences University of Isfahan Isfahan Iran
| | - Samaneh Shirkhani
- Department of Exercise Physiology, Faculty of Sport Sciences University of Isfahan Isfahan Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology University of Isfahan Isfahan Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences University of Isfahan Isfahan Iran
| | - Mohammad Hossein Nasr‐Esfahani
- ACECR Institute of Higher Education, Isfahan Branch Isfahan Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| |
Collapse
|
9
|
Qin S, Tian Z, Boidin M, Buckley BJR, Thijssen DHJ, Lip GYH. Irisin is an Effector Molecule in Exercise Rehabilitation Following Myocardial Infarction (Review). Front Physiol 2022; 13:935772. [PMID: 35845994 PMCID: PMC9276959 DOI: 10.3389/fphys.2022.935772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Regular exercise is an effective non-pharmacological therapy for treatment and prevention of cardiovascular disease (CVD). The therapeutic benefits of exercise are mediated partly through improved vascular and increase in metabolic health. Release of exercise-responsive myokines, including irisin, is associated with beneficial effects of exercise in CVD patients. Observations: The present review provides an overview of the role of exercise in cardiac rehabilitation of patients with myocardial infarction (MI). Further, the role of irisin as a motion-responsive molecule in improving vascular and metabolic health is explored. Possible mechanism of cardioprotective effect of irisin-mediated exercise on myocardial infarction are also summarized in this review. Conclusion and significance of the review: Irisin is associated with reduced inflammation, antioxidant properties, and anti-apoptotic effect, implying that it is a potential key mediator of the beneficial effects of exercise on vascular and metabolic health. The findings show that irisin is a promising therapeutic target for treatment of patients with cardiovascular disease, particularly post-MI. Further research should be conducted to elucidate the potential mechanisms of cardioprotective effects of irisin and explored whether irisin induced by exercise exerts rehabilitation effects post-MI.
Collapse
Affiliation(s)
- Shuguang Qin
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi’an, China
- *Correspondence: Zhenjun Tian,
| | - Maxime Boidin
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
- Cardiovascular Prevention and Rehabilitation (EPIC) Center, Montreal Heart Institute, Montreal, QC, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Benjamin J. R. Buckley
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dick H. J. Thijssen
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Abdi A, Mehrabani J, Nordvall M, Wong A, Fallah A, Bagheri R. Effects of concurrent training on irisin and fibronectin type-III domain containing 5 (FNDC5) expression in visceral adipose tissue in type-2 diabetic rats. Arch Physiol Biochem 2022; 128:651-656. [PMID: 31979994 DOI: 10.1080/13813455.2020.1716018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Evidence suggests that myokines could have clinical implications for metabolic diseases such as type-2 diabetes. OBJECTIVE We investigated the effects of concurrent training (CT) on irisin and fibronectin type-III domain containing five (FNDC5) expressions in visceral adipose tissue (VAT) in type-2 diabetic rats. MATERIALS AND METHODS Eighteen male Wistar rats (ages four to eight weeks) became diabetic using nicotinamide and streptozotocin and were assigned to either a control (CON) or a CT group using a randomised block design. The CT group exercised on a motor-driven treadmill at 60 to 75 per cent of VO2max (0% grade) for 10-40 min/day (aerobic training) and performed 10 climbs on a 1-meter ladder utilising weighted resistance of 30-100% of body mass (resistance exercise) for 5 days/week over 8 weeks. Forty-eight hours after the last training session, the VAT of rats was removed and washed. FNDC5-relative gene expression and irisin were measured by the reverse transcription polymerase chain reaction (RT-PCR) method and enzyme-linked immunosorbent assay (ELISA) kit. Additionally, insulin resistance and plasma insulin and glucose levels were determined. RESULTS Our findings revealed that CT significantly increased FNDC5-relative gene expression in the VAT of type-2 diabetic rats compared to controls. Furthermore, eight weeks of CT improved insulin resistance and insulin and glucose levels but did not significantly alter irisin levels in type-2 diabetic rats. DISCUSSION AND CONCLUSION The results of this study demonstrated that CT increased FNDC5 mRNA and improved insulin resistance, insulin, and glucose levels. Also observed were increased trends (non-significant, p = .051) in irisin levels. Hence, CT may play a role in attenuating metabolic disorders such as obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Ahmad Abdi
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Javad Mehrabani
- Department of Exercise Physiology, University of Guilan, Rasht, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Abbas Fallah
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
11
|
Insulin-Related Liver Pathways and the Therapeutic Effects of Aerobic Training, Green Coffee, and Chlorogenic Acid Supplementation in Prediabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5318245. [PMID: 35663196 PMCID: PMC9162863 DOI: 10.1155/2022/5318245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022]
Abstract
Background The liver controls blood glucose levels via regulation of anabolic (glycogen synthesis and gluconeogenesis) and catabolic (glycolysis and glycogenolysis) processes through activation of the PI3K-AKT signalling pathway. The aim of this study was to assess the effect of aerobic training, green coffee, and chlorogenic acid supplementation on glucose metabolism-regulating pathways in prediabetic mice. Methods C57BL/6 mice were exposed to a high-fat diet and physical activity limitation to induce a state of prediabetes. After 12 weeks, mice were fed a high-fat diet compared to the control mice. The prediabetic mice were further treated with either green coffee, chlorogenic acid, or training or combinations of the same for 10 weeks. At the end of the experimental period, metabolic data (FBG, GTT, HOMA for IR, plasma level of insulinfrom systematic, AST, and ALT assessed into blood), histopathologic, and analysis of gene and protein expressions were obtained for target tissues. Results Training along with green coffee and chlorogenic acid supplementation improved complications of prediabetes including weight gain and elevated fasting blood glucose and plasma insulin levels. These effects were associated with the changes in mRNA levels of genes important in hepatic glycogen synthesis (GYS2), glucogenesis (PCK and G6PC2), and glycolysis (GK, PK, and PFKL). Conclusion The training in conjunction with green coffee or chlorogenic acid is effective in the prevention of prediabetes in mice. As these interventions are relatively inexpensive and safe application to individuals with prediabetes appears warranted.
Collapse
|
12
|
Yang X, Ni L, Sun J, Yuan X, Li D. Associations between rs3480 and rs16835198 gene polymorphisms of FNDC5 with type 2 diabetes mellitus susceptibility: a meta-analysis. Front Endocrinol (Lausanne) 2022; 13:946982. [PMID: 36004352 PMCID: PMC9393395 DOI: 10.3389/fendo.2022.946982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND FNDC5 is a novel and important player in energy regulation related to glucose metabolism and insulin levels. Thus, it may affect the incidence of type 2 diabetes mellitus (T2DM). Nevertheless, the association between FNDC5 single nucleotide polymorphisms (SNPs) and susceptibility to T2DM remains unclear. The aim of this meta-analysis was to explore whether the SNPs, rs3480 and rs16835198, are associated with the risk of T2DM. METHODS Studies published before February 1st, 2022 were screened to identify the included studies. R software was also applied for calculation of odds ratio (OR), 95% confidence interval (95% CI), heterogeneity, and sensitivity analysis. RESULTS Seven studies for rs3480 (involving 5475 patients with T2DM and 4855 healthy controls) and five studies for rs16835198 (involving 4217 patients with T2DM and 4019 healthy controls) were included in this meta-analysis. The results revealed a statistically significant association of rs3480 with T2DM under homozygote (GG vs AA: OR = 1.76, 95% CI = 1.31-2.37, P = 0.0002, I2 = 59%) genetic model. However, there was no statistically significant correlation between rs16835198 and susceptibility to T2DM under allelic (G vs T: OR = 1.33, 95% CI = 0.94-1.89, P = 0.11, I2 = 84%), heterozygote (GT vs TT: OR = 1.17, 95% CI = 0.80-1.69, P = 0.42, I2 = 71%), homozygote (GG vs TT: OR = 1.35, 95% CI = 0.95-1.94, P = 0.10, I2 = 62%), recessive (GG+GT vs TT: OR = 1.25, 95% CI = 0.88-1.79, P = 0.22, I2 = 72%), and dominant (GG vs GT+GG: OR = 1.20, 95% CI = 0.96-1.50, P = 0.11, I2 = 46%) genetic models. CONCLUSIONS The present meta-analysis revealed that rs3480 in FNDC5 is significantly associated with susceptibility to T2DM, while rs16835198 does not show such an association.
Collapse
Affiliation(s)
- Xianqin Yang
- Department of Emergency, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Li Ni
- Heart Function Examination Room, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China
| | - Junyu Sun
- College of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Xiaolu Yuan
- Department of Pathology, Maoming People’ s Hospital, Maoming, China
| | - Dezhong Li
- Department of Emergency, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- *Correspondence: Dezhong Li,
| |
Collapse
|
13
|
Spontaneous Physical Activity in Obese Condition Favours Antitumour Immunity Leading to Decreased Tumour Growth in a Syngeneic Mouse Model of Carcinogenesis. Cancers (Basel) 2021; 14:cancers14010059. [PMID: 35008220 PMCID: PMC8750291 DOI: 10.3390/cancers14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary With aging, a deterioration of the immune system, termed immunosenescence, leads to a loss of innate and adaptive immunity in terms of number of cells and functionality. This results in an imbalance between pro- and anti-tumour immune response. The aim of the study was to explore the impact of physical activity on the tissue environment in a murine model of breast carcinogenesis. In this model, spontaneous physical activity slows tumour growth by decreasing low-grade inflammation and promotes antitumour immunity. Abstract Our goal was to evaluate the effect of spontaneous physical activity on tumour immunity during aging. Elderly (n = 10/group, 33 weeks) ovariectomized C57BL/6J mice fed a hyperlipidic diet were housed in standard (SE) or enriched (EE) environments. After 4 weeks, orthotopic implantation of syngeneic mammary cancer EO771 cells was performed to explore the immune phenotyping in the immune organs and the tumours, as well as the cytokines in the tumour and the plasma. EE lowered circulating myostatin, IL-6 and slowed down tumour growth. Spleen and inguinal lymph node weights reduced in relation to SE. Within the tumours, EE induced a lower content of lymphoid cells with a decrease in Th2, Treg and MDCS; and, conversely, a greater quantity of Tc and TAMs. While no change in tumour NKs cells occurred, granzyme A and B expression increased as did that of perforin 1. Spontaneous physical activity in obese conditions slowed tumour growth by decreasing low-grade inflammation, modulating immune recruitment and efficacy within the tumour.
Collapse
|
14
|
Furino VDO, Alves JM, Marine DA, Sene-Fiorese M, Rodrigues CNDS, Arrais-Lima C, Mattiello SM, de Castro CA, Borra RC, Rocha MC, Malavazi I, Duarte ACGDO. Dietary Intervention, When Not Associated With Exercise, Upregulates Irisin/FNDC5 While Reducing Visceral Adiposity Markers in Obese Rats. Front Physiol 2021; 12:564963. [PMID: 34483949 PMCID: PMC8414258 DOI: 10.3389/fphys.2021.564963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/01/2021] [Indexed: 12/21/2022] Open
Abstract
Obesity is an epidemic disease and the expansion of adipose tissue, especially visceral fat, promotes the secretion of factors that lead to comorbidities such as diabetes and cardiovascular diseases. Thus, diet and exercise have been proposed as an intervention to reverse these complications. An adipocytokine, known as irisin, mediates the beneficial effects of exercise. It has been proposed as a therapeutic potential in controlling obesity. In view of the above, this paper attempts to determine the modulation of irisin, visceral adiposity and biochemical markers in response to dietary intervention and aerobic exercise. To do this, 52 diet-induced obese male Wistar rats were divided into the following four groups: high-fat diet and exercise (HFD-Ex); HFD-Sedentary (HFD-Sed); chow-diet and exercise (CD-Exercise); and CD-Sed. The exercise-trained group performed a treadmill protocol for 60 min/day, 3 days/week for 8 weeks. Body mass (BM), body fat (BF), fat mass (FM), and fat-free mass (FFM) were analyzed. Mesenteric (MES), epididymal (EPI), and retroperitoneal (RET) adipose tissue was collected and histological analysis was performed. Biochemical irisin, triglycerides, glucose, insulin and inflammatory markers were determined and, FNDC5 protein expression was analyzed. In this study, the diet was the most important factor in reducing visceral adiposity in the short and long term. Exercise was an important factor in preserving muscle mass and reducing visceral depots after a long term. Moreover, the combination of diet and exercise can enhance these effects. Diet and exercise exclusively were the factors capable of increasing the values of irisin/FNDC5, however it did not bring cumulative effects of both interventions. Prescriptions to enhance the obesity treatments should involve reducing visceral adiposity by reducing the fat content in the diet associated with aerobic exercise.
Collapse
Affiliation(s)
- Vanessa de Oliveira Furino
- Department of Physical Education and Human Motricity - DEFMH, Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - João Manoel Alves
- Department of Physical Education and Human Motricity - DEFMH, Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Diego Adorna Marine
- Department of Physical Education and Human Motricity - DEFMH, Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Marcela Sene-Fiorese
- Department of Physical Education and Human Motricity - DEFMH, Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Carla Nascimento Dos Santos Rodrigues
- Department of Physical Education and Human Motricity - DEFMH, Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cristina Arrais-Lima
- Department of Physiotherapy - DFisio-Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Stela Márcia Mattiello
- Department of Physiotherapy - DFisio-Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Department of Morphology and Pathology-Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Ricardo Carneiro Borra
- Department of Genetics and Evolution-Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Marina Campos Rocha
- Department of Genetics and Evolution-Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution-Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Ana Cláudia Garcia de Oliveira Duarte
- Department of Physical Education and Human Motricity - DEFMH, Biological and Health Sciences Center - CCBS, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| |
Collapse
|
15
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
16
|
Kazeminasab F, Marandi SM, Baharlooie M, Safaeinejad Z, Nasr-Esfahani MH, Ghaedi K. Aerobic exercise modulates noncoding RNA network upstream of FNDC5 in the Gastrocnemius muscle of high-fat-diet-induced obese mice. J Physiol Biochem 2021; 77:589-600. [PMID: 34405363 DOI: 10.1007/s13105-021-00825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
The purpose of the study was to determine the influence of aerobic exercise with a fat-rich diet on ncRNAs expression associated with FNDC5 in the Gastrocnemius muscle of the obese mice. Twenty-five male mice were grouped into two categories of normal diet (ND) and high-fat diet (HF) treatments for three months. For the subsequent treatment, HF-fed animals (obese) were proceeded in four groups: HF-Trained (n = 5), HF-Untrained (n = 5), ND-Trained (n = 5), and ND-Untrained (n = 5). Simultaneously, ND fed mice (n = 5) continued receiving normal diet and being untrained. In the training group, exercise was applied using a treadmill for 2 months. The Gastrocnemius muscle was excised for the assessment of FNDC5 mRNA, protein levels, and ncRNAs. Using bioinformatics tools, two potential miRNAs, miR-129-5p and miR-140-5p, and four lncRNAs constructing a network with FNDC5 were identified. Significant decrease was observed in both miR-129-5p and miR-140-5p in the HF-fed mice vs. ND-fed mice (p < 0.01). Significant increase of lncRNAs Meg3, Malat1, Neat1, and Kcnq1ot1 correlating in the network was also detected (p < 0.001 for all lncRNAs) in HF-fed mice and trained mice (p < 0.001 for Neat1, Meg3, and Kcnq1ot1). The present study suggests that an increase in the muscle FNDC5 of the high-fat diet mice is governed by an expression regulation of suggested ncRNAs, which were revealed by bioinformatics study to be involved in the insulin resistance and glucose homeostasis pathways.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Human Sciences, University of Kashan, Kashan, Iran , University of Kashan , Kashan , Iran.
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran , University of Isfahan , Isfahan , Iran.
| | - Maryam Baharlooie
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Animal Biotechnology, Cell Sciences Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Sciences Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
17
|
MicroRNA-128 inhibits mitochondrial biogenesis and function via targeting PGC1α and NDUFS4. Mitochondrion 2021; 60:160-169. [PMID: 34384932 DOI: 10.1016/j.mito.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
The size and morphology of mitochondria are very heterogeneous and correlates well with their healthy functioning. In many pathological conditions, mitochondrial morphology is altered due to impaired mitochondrial dynamics (a collective term for mitochondrial fusion and fission) and dysfunction. The current study aimed at identifying the role of microRNA-128 (miR-128) in regulating mitochondrial biogenesis. Previously, peroxisome proliferator activator receptor γ coactivator 1α (PGC1α) has been shown to co-activate key intermediates of mitochondrial biogenesis, function, and dynamics; however, the upstream regulatory network remains largely unknown. We, herein using in silico analysis followed by in vitro experiments in C2C12 myoblasts, showed that miR-128 reduces mitochondrial biogenesis by directly targeting PGC1α. The expression of downstream genes, nuclear respiratory factors 1 and 2 (NRF1 and NRF2, respectively), and mitochondrial transcription factor A (TFAM) were decreased in C2C12 myoblasts upon overexpression of miR-128. Also, miR-128 is shown to promote mitochondrial dysfunction by directly targeting NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (NDUFS4). The mitochondrial dynamics and morphology were impaired post miR-128 overexpression, as revealed by downregulation of fusion proteins (mitofusin1 and 2, i.e., MFN1 and MFN2, respectively) and upregulation of fission protein (dynamin-related protein 1, i.e., DRP1). Conversely, inhibition of miR-128 expression improved mitochondrial biogenesis, function, and dynamics, as evidenced by increased mitochondrial mass and ATP production after antimiR-128 treatment. Our findings reveal that inhibition of miR-128 can be a new potential target for reversing the effects of metabolic disorders of skeletal muscle as observed during many pathophysiological conditions such as obesity and type II diabetes.
Collapse
|
18
|
Kazeminasab F, Marandi SM, Baharlooie M, Nasr-Esfahani MH, Ghaedi K. Modulation and bioinformatics screening of hepatic mRNA-lncRNAs (HML) network associated with insulin resistance in prediabetic and exercised mice. Nutr Metab (Lond) 2021; 18:75. [PMID: 34284789 PMCID: PMC8290563 DOI: 10.1186/s12986-021-00600-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Insulin resistance is associated with prediabetes and further progression to type 2 diabetes mellitus (T2DM). This study aims to investigate novel hepatic lncRNAs associated with key genes in insulin resistance in prediabetes.
Methods In the bioinformatics phase, we have collected screened a pool of lncRNAs and mRNAs according to their potential association to prediabetic condition. We performed pathway analysis of mRNAs, using DAVID tool based on KEGG repository data. Then, we used Python programming language to get a subset of lncRNAs located in 50 kb proximity with high-fat (HF)-responsive mRNAs. In the experimental phase, prediabetic mice model was established by the treatment of HF diets for 12 weeks. After this treatment, HF-fed animals were divided into two groups of endurance exercised or sedentary, both continuing on the HF diet for 8 weeks. Besides, a group of diabetic mice was treated using a HF diet for 8 weeks followed by injection with STZ solution and then a HF diet for another 4 weeks. Results We found three genes having paired lncRNAs annotated in insulin resistance pathway. Their hepatic expression levels were altered in prediabetic condition as upregulation of Srebf1 was associated with GM38501, upregulation of Pck1 was associated with Ctcflos and GM36691, downregulation of Cpt1b was associated with GM44502. All of these expression patterns were replicated in diabetic mice, correlated positively with their predicted lncRNAs. Interestingly, exercise reversed their expression patterns. Conclusions We suggest that the expression pattern of the hepatic mRNA-lncRNA (HML) network in prediabetic state undergoes similar modification to that of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00600-0.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran. .,Department of Physical Education and Sport Sciences, Faculty of Human Sciences, University of Kashan, Ravand Street, Kashan, 87317-35153, Iran.
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran.
| | - Maryam Baharlooie
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan Street, Salman Ave, Khorasgan Square, Jey Ave, Isfahan, 81593-58686, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran.
| |
Collapse
|
19
|
Liu Y, Guo C, Liu S, Zhang S, Mao Y, Fang L. Eight Weeks of High-Intensity Interval Static Strength Training Improves Skeletal Muscle Atrophy and Motor Function in Aged Rats via the PGC-1α/FNDC5/UCP1 Pathway. Clin Interv Aging 2021; 16:811-821. [PMID: 34040358 PMCID: PMC8139720 DOI: 10.2147/cia.s308893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Background Sarcopenia is a syndrome characterized by the loss of skeletal muscle mass and strength. Most studies have focused on dynamic resistance exercises for preventing muscular decline and maintaining the muscle strength of older individuals. However, this training mode is impractical for older people with osteoarthritis and a limited range of motion. The static strength training mode is more suitable for older people. Therefore, a determination of the effect and mechanism of static strength training on sarcopenia is critical. Methods In this study, we developed a training device designed to collect training data and evaluate the effects of static training on the upper limbs of rats. The expression of PGC-1α was locally blocked by injecting a siRNA at the midpoint of the biceps to determine whether PGC-1α signal transduction participates in the effects of high-intensity interval static training on muscle strength. Then, the rat’s motor capacity was measured after static strength training. Immunohistochemistry and Western blotting were applied to determine PGC-1α/FNDC5/UCP1 expression levels in the muscle and adipose tissue. The serum irisin level was also detected using an enzyme-linked immunosorbent assay (ELISA). Results Increased levels of serum irisin and local expression of FNDC5, PGC-1α, and UCP1 were observed in the biceps brachii and surrounding fatty tissue after static strength training. Static strength training showed an advantage in reducing body weight and white fat accumulation while increasing the muscle fiber volume, which resulted in a longer training time and shorter rest time. Conclusion Overall, these results indicated that high-intensity interval static training prevents skeletal muscle atrophy and improves the motor function of aged rats through the PGC-1α/FNDC5/UCP1 signaling pathway.
Collapse
Affiliation(s)
- Yijie Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Chaoyang Guo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuting Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuai Zhang
- Department of Orthopaedics, Shanghai Pudong New District Hospital of Traditional Chinese Medicine, Shanghai, 201200, People's Republic of China
| | - Yun Mao
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201803, People's Republic of China
| | - Lei Fang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
20
|
Testai L, De Leo M, Flori L, Polini B, Braca A, Nieri P, Pistelli L, Calderone V. Contribution of irisin pathway in protective effects of mandarin juice (Citrus reticulata Blanco) on metabolic syndrome in rats fed with high fat diet. Phytother Res 2021; 35:4324-4333. [PMID: 33942395 PMCID: PMC8453895 DOI: 10.1002/ptr.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
de Moura E Dias M, Dos Reis SA, da Conceição LL, Sediyama CMNDO, Pereira SS, de Oliveira LL, Gouveia Peluzio MDC, Martinez JA, Milagro FI. Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetol Metab Syndr 2021; 13:32. [PMID: 33736684 PMCID: PMC7976703 DOI: 10.1186/s13098-021-00647-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Overweight and obesity are a worldwide public health problem. Obesity prevalence has increased considerably, which indicates the need for more studies to better understand these diseases and related complications. Diet induced-obesity (DIO) animal models can reproduce human overweight and obesity, and there are many protocols used to lead to excess fat deposition. So, the purpose of this review was to identify the key points for the induction of obesity through diet, as well as identifying which are the necessary endpoints to be achieved when inducing fat gain. For this, we reviewed the literature in the last 6 years, looking for original articles that aimed to induce obesity through the diet. All articles evaluated should have a control group, in order to verify the results found, and had worked with Sprague-Dawley and Wistar rats, or with C57BL-/-6 mice strain. Articles that induced obesity by other methods, such as genetic manipulation, surgery, or drugs were excluded, since our main objective was to identify key points for the induction of obesity through diet. Articles in humans, in cell culture, in non-rodent animals, as well as review articles, articles that did not have obesity induction and book chapters were also excluded. Body weight and fat gain, as well as determinants related to inflammation, hormonal concentration, blood glycemia, lipid profile, and liver health, must be evaluated together to better determination of the development of obesity. In addition, to select the best model in each circumstance, it should be considered that each breed and sex respond differently to diet-induced obesity. The composition of the diet and calorie overconsumption are also relevant to the development of obesity. Finally, it is important that a non-obese control group is included in the experimental design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Madrid Institute of Advanced Studies (IMDEA Food), Food Institute, Madrid, Spain
| | - Fermín Ignacio Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
22
|
Li H, Wang F, Yang M, Sun J, Zhao Y, Tang D. The Effect of Irisin as a Metabolic Regulator and Its Therapeutic Potential for Obesity. Int J Endocrinol 2021; 2021:6572342. [PMID: 33790964 PMCID: PMC7997758 DOI: 10.1155/2021/6572342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a worldwide health problem due to the imbalance of energy intake and energy expenditure. Irisin, a newly identified exercise-responsive myokine, which is produced by the proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5), has emerged as a promising therapeutic strategy to combat obesity and obesity-related complications. Various studies in mice have shown that irisin could respond to systematic exercise training and promote white-to-brown fat transdifferentiation, but the role and function of irisin in humans are controversial. In this review, we systematically introduced and analyzed the factors that may contribute to these inconsistent results. Furthermore, we also described the potential anti-inflammatory properties of irisin under a variety of inflammatory conditions. Finally, the review discussed the existing unresolved issues and controversies about irisin, including the transcription of the irisin precursor FNDC5 gene in humans, the cleavage site of the yet unknown proteolytic enzyme that cleaves irisin from FNDC5, and the reliability of irisin levels measured with available detection methods.
Collapse
Affiliation(s)
- Hui Li
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Mu Yang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Jiao Sun
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yi Zhao
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| |
Collapse
|
23
|
Associations of Circulating Irisin with FNDC5 Expression in Fat and Muscle in Type 1 and Type 2 Diabetic Mice. Biomolecules 2021; 11:biom11020322. [PMID: 33672565 PMCID: PMC7924053 DOI: 10.3390/biom11020322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Irisin is an exercise-induced myokine, suggested to exert beneficial effects on metabolism. However, the studies on the regulation of irisin secretion and the expression of its precursor FNDC5 have shown conflicting data. The discrepancies among previous correlation studies in humans are related to the heterogeneity of the study population. The fact that irisin is not only a myokine but also an adipokine leads to the further complexity of the role of irisin in metabolic regulation. In this study, we examined the regulation of FNDC5 expression and irisin in circulation in both type 1 and type 2 diabetic mice, and their potential relationships with metabolic parameters. In streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet (HFD)-induced obese mice and db/db mice, the circulating irisin as well as FNDC5 gene expression in subcutaneous fat was downregulated. Muscle FNDC5 expression was only significantly lower in STZ mice, and epididymal fat FNDC5 expression was unaltered. It is interesting to note that plasma irisin levels correlated positively with subcutaneous fat FNDC5 expression, but not epididymal fat or muscle. Moreover, both irisin levels and subcutaneous fat FNDC5 correlated negatively with markers of insulin resistance. These results suggest a regulatory role for subcutaneous fat-derived FNDC5/irisin in metabolic disease.
Collapse
|
24
|
Zarei R, Aboutorabi R, Rashidi B, Eskandari N, Nikpour P. Evaluation of vascular endothelial growth factor A and leukemia inhibitory factor expressions at the time of implantation in diabetic rats following treatment with Metformin and Pioglitazone. Int J Reprod Biomed 2020; 18:713-722. [PMID: 33062917 PMCID: PMC7521161 DOI: 10.18502/ijrm.v13i9.7666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/19/2019] [Accepted: 12/22/2019] [Indexed: 12/01/2022] Open
Abstract
Background Implantation requires intimate crosstalk between the embryo and uterus for a successful establishment of pregnancy. Type 2 diabetes mellitus may lead to implantation failure. The effect of diabetes and its therapeutic drugs on implantation is still largely unclear. Objective To assess the endometrial expression changes of vascular endothelial growth factor A (VEGFA) and leukemia inhibitory factor (LIF), at the time of implantation in diabetic rats following treatment with Metformin and Pioglitazone. Materials and Methods Twenty-eight 6-8-wk-old Wistar female rats weighing 200-250 gr were divided into four groups (n = 7/each). Type 2 diabetes was induced and Metformin and Pioglitazone were applied for 4 wk. The expression of VEGFA and LIF was measured by real-time reverse transcription-polymerase chain reaction and Western blot. Results The relative expression of VEGFA transcript was higher in the diabetic (p = 0.02) and Metformin-treated (p = 0.04) rats compared to the control group. Furthermore, the VEGFA transcript level significantly reduced in Pioglitazone-treated diabetic rats (p = 0.03). LIF expression was elevated in the Metformin- and the Pioglitazone-treated rats and reduced in the diabetic group in comparison with the control group. Compared to the diabetic rats, the expression of LIF was significantly elevated in the Metformin- (p = 0.01) and Pioglitazone-treated (p = 0.03) groups. Conclusion The expressions of LIF and VEGFA were altered in diabetic rats during implantation which may be associated with diabetic-related infertility. Pioglitazone is able to restore the VEGFA and LIF expressions to their baseline levels more efficiently than Metformin.
Collapse
Affiliation(s)
- Ronak Zarei
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Aboutorabi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Modulation of inter-organ signalling in obese mice by spontaneous physical activity during mammary cancer development. Sci Rep 2020; 10:8794. [PMID: 32472095 PMCID: PMC7260359 DOI: 10.1038/s41598-020-65131-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulative evidence links breast cancer development to excess weight and obesity. During obesity, dysregulations of adipose tissue induce an increase in pro-inflammatory adipokine secretions, such as leptin and oestrogen secretions. Furthermore, a raise in oxidative stress, along with a decrease in antioxidant capacity, induces and maintains chronic inflammation, which creates a permissive environment for cancer development. Physical activity is recommended as a non-pharmacological therapy in both obese and cancer situations. Physical activity is associated with a moderation of acute inflammation, higher antioxidant defences and adipokine regulation, linked to a decrease of tumour-cell proliferation. However, the biological mechanisms underlying the relationship between oxidative stress, low-grade inflammation, carcinogenesis, obesity and physical activity are poorly understood. Our study is based on old, ovariectomised mice (C57BL/6J mice, 33 weeks old), fed with a high fat diet which increases adipose tissue favouring overweight and obesity, and housed in either an enriched environment, promoting physical activity and social interactions, or a standard environment constituting close to sedentary conditions. Our model of mammary carcinogenesis allowed for the exploration of tissue secretions and signalling pathway activation as well as the oxidative status in tumours to clarify the mechanisms involved in a multiple factorial analysis of the data set. The multiple factorial analysis demonstrated that the most important variables linked to moderate, spontaneous physical activity were the increase in growth factor (epithelial growth factor (EGF), hepatocyte growth factor (HGF)) and the activation of the signalling pathways (STAT3, c-jun n-terminal kinases (JNK), EKR1/2, nuclear factor-kappa B (NF-κB)) in the gastrocnemius (G). In inguinal adipose tissue, the NF-κB inflammation pathway was activated, increasing the IL-6 content. The adiponectin plasma (P) level increased and presented an inverse correlation with tumour oxidative status. Altogether, these results demonstrated that spontaneous physical activity in obesity conditions could slow down tumour growth through crosstalk between muscle, adipose tissue and tumour. A spontaneous moderate physical activity was able to modify the inter-organ exchange in a paracrine manner. The different tissues changed their signalling pathways and adipokine/cytokine secretions, such as adiponectin and leptin, resulting in a decrease in anti-oxidative response and inflammation in the tumour environment. This model showed that moderate, spontaneous physical activity suppresses tumour growth via a dialogue between the organs close to the tumour.
Collapse
|
26
|
Tu T, Peng J, Jiang Y. FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev 2020; 29:533-543. [PMID: 31914844 DOI: 10.1089/scd.2019.0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
28
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
29
|
Nematollahi A, Kazeminasab F, Tavalaee M, Marandi SM, Ghaedi K, Nazem MN, Nasr-Esfahani MH. Effect of aerobic exercise, low-fat and high-fat diet on the testis tissue and sperm parameters in obese and nonobese mice model. Andrologia 2019; 51:e13273. [PMID: 30920027 DOI: 10.1111/and.13273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Semen quality and male fertility depend on numerous factors such as age, environment, lifestyle, physical activity, genetic background and occupation. We aimed to access the effect of aerobic exercise, low- and high-fat diet on mice testis tissue, and sperm function. Obese and nonobese male mice C57BL/6 were exposed to high fat (Hf) or low fat (Lf) and/or activity (Exe: exercise or Sed: sedentary). Finally, testicular morphometric characteristics, sperm concentration and motility (light microscopy), sperm morphology (eosin/nigrosin dye), lipid peroxidation (BODIPY C11 Probe), chromatin (acridine orange and chromomycin A3 staining) were compared within obese groups (Hf/Exe, Lf/Exe, Lf/Sed, Hf/Sed) and nonobese groups (Hf/Exe, Lf/Exe, Lf/Sed, Hf/Sed). Both exercise and diet interventions did not show any alteration in testicular morphological characteristics, sperm morphology and DNA fragmentation within both obese and nonobese groups (p > 0.05). Exercise and/or diet resulted in a significant increase in sperm concentration and motility within both groups (p < 0.05). Exercise in both groups leads to high percentage of lipid peroxidation (p < 0.05). Exercise intervention significantly improved sperm protamine deficiency within obese group (p < 0.05). We concluded that exercise intervention was more effective than diet in improvement of sperm function within obese groups.
Collapse
Affiliation(s)
- Arezou Nematollahi
- ACECR Institute of Higher Education, Isfahan, Iran.,Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Kazeminasab
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sayed M Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Mohammad N Nazem
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
30
|
Cao RY, Zheng H, Redfearn D, Yang J. FNDC5: A novel player in metabolism and metabolic syndrome. Biochimie 2019; 158:111-116. [PMID: 30611879 DOI: 10.1016/j.biochi.2019.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Half a decade ago, transmembrane protein fibronectin type III domain-containing protein 5 (FNDC5) was found to be cleaved as a novel myokine irisin, which burst into prominence for browning of white adipose tissue during exercise. However, FNDC5, the precursor of irisin, has been paid relatively little attention compared with irisin despite evidence that FNDC5 is associated with the metabolic syndrome, which accounts for one-fourth of the world's adult population and contributes to diabetes, cardiovascular disease and all-cause mortality. Besides N-terminal and C-terminal sequences, the FNDC5 protein contains an irisin domain and a short transmembrane region. FNDC5 has shown to be widely distribute in different tissues and is highly expressed in heart, brain, liver, and skeletal muscle. Clinical studies have demonstrated that FNDC5 is essential for maintaining metabolic homeostasis and dysregulation of FNDC5 will lead to systemic metabolism imbalance and the onset of metabolic disorders. Growing evidence has suggested that FNDC5 gene polymorphisms are related to health and disease in different human populations. Additionally, FNDC5 has been found relevant to the regulation of metabolism and metabolic syndrome through diverse upstream and downstream signaling pathways in experimental studies. The present review summarizes the characteristics, clinical significance, and molecular mechanisms of FNDC5 in metabolic syndrome and proposes a novel concept that FNDC5 is activated by forming a putative ligand-receptor complex. Knowledge about the role of FNDC5 may be translated into drug development and clinical applications for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Richard Y Cao
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China.
| | - Hongchao Zheng
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | - Damian Redfearn
- Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada
| | - Jian Yang
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China.
| |
Collapse
|
31
|
Dehghani M, Kargarfard M, Rabiee F, Nasr-Esfahani MH, Ghaedi K. A comparative study on the effects of acute and chronic downhill running vs uphill running exercise on the RNA levels of the skeletal muscles PGC1-α, FNDC5 and the adipose UCP1 in BALB/c mice. Gene 2018; 679:369-376. [PMID: 30218749 DOI: 10.1016/j.gene.2018.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate the effect of a single bout and 8 weeks of downhill running versus uphill running exercise on expression of PGC1-α, FNDC5 and UCP1 in mice. Forty-eight BALB/c male mice weighing 25-30 g were randomly assigned into 8 groups: 1) acute downhill running (ADR) on a -15° slope; 2) acute uphill running (AUR) on a +15° slope; 3) acute running without inclination (AWI), 4) acute without exercise as control (ACtrl), 5) chronic downhill running (CDR) on a -15° slope; 6) chronic uphill running (CUR) on a +15°slope; 7) chronic running without inclination (CWI), 8) chronic without exercise as control (CCtrl). Twenty four hours after the last training session, the mice were sacrificed and Calf muscles (including soleus and gastrocnemius) and quadriceps muscles (including Rectus femoris and vastus intermedius) were obtained and expression levels of PGC1-α and FNDC5 in crus and quadriceps muscles and UCP1 in visceral and subcutaneous adipose tissues were measured and compared between the groups. PGC-1α and FNDC5 mRNA levels increased after treadmill exercise training in all acute and chronic exercise groups in both skeletal muscle groups. Furthermore mRNA level of UCP1 in subcutaneous adipose tissue but not in visceral adipose tissue increased both after acute and chronic exercise. Collectively, data showed that downhill running exercise to be more effective than other exercises, as downhill running has led to a greater improvement in metabolism may be considered more effective for browning of fat tissue.
Collapse
Affiliation(s)
- Mehdi Dehghani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Farzaneh Rabiee
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|