1
|
Nascimento EMF, Klitzke Borszcz F, Ventura TP, Caputo F, Guglielmo LGA, de Lucas RD. Reliability and Validity of Cycling Sprint Performance at Isolinear Mode Without Torque Factor: A Preliminary Study in Well-Trained Male Cyclists. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:722-729. [PMID: 38319597 DOI: 10.1080/02701367.2023.2298752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Purpose: This study aimed to compare the performance-derived parameters utilizing isolinear (ISOLIN) and isovelocity (ISOVEL) sprint cycling modes. Method: For that, 20 male trained cyclists performed 2 sprints of 7 s on an electromagnetically braked cycle ergometer in ISOLIN and six sprints in ISOVEL mode with cadences between 90 and 180 rpm, each separated by 3-min. A linear function modeled the sprints within each mode to extrapolate maximal cadence (CMAX) and torque (TMAX), and a quadratic function was used to extrapolate the apex defined as optimal cadence power (OPTCAD) and peak power output (PMAX). Fifteen subjects performed another 4 sprints at ISOLIN mode on different days to verify the reliability. Results: The measures from the power-cadence relationship were not different between the ISOLIN and ISOVEL modes. Although significant differences were detected in the T-C relationship, TMAX was greater at ISOLIN than ISOVEL (p = .006). On the other hand, CMAX was higher at ISOVEL than ISOLIN (p < .001). The correlation between parameters was large to very large (r = 0.51 to 0.89). However, high limits of agreement were verified. The ISOLIN presented consistency during the trials, and the random errors were acceptable (CV = 5.3% to 11.5%). Conclusion: Using the power-cadence relationship, PMAX and OPTCAD could be detected similarly between the two sprint modes (ISOLIN and ISOVEL). Thus, the findings demonstrated that a single ISOLIN sprint test could be a suitable tool for quantifying the time course of muscle fatigue during and after cycling exercises in well-trained male cyclists.
Collapse
|
2
|
Marinari G, Iannetta D, Holash RJ, Zagatto AM, Keir DA, Murias JM. Heavy-intensity priming exercise extends the V̇o 2max plateau and increases peak-power output during ramp-incremental exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R164-R172. [PMID: 38842514 DOI: 10.1152/ajpregu.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
This study investigated whether a heavy-intensity priming exercise precisely prescribed within the heavy-intensity domain would lead to a greater peak-power output (POpeak) and a longer maximal oxygen uptake (V̇o2max) plateau. Twelve recreationally active adults participated in this study. Two visits were required: 1) a step-ramp-step test [ramp-incremental (RI) control], and 2) an RI test preceded by a priming exercise within the heavy-intensity domain (RI primed). A piecewise equation was used to quantify the V̇o2 plateau duration (V̇o2plateau-time). The mean response time (MRT) was computed during the RI control condition. The delta (Δ) V̇o2 slope (S; mL·min-1·W-1) and V̇o2-Y intercept (Y; mL·min-1) within the moderate-intensity domain between conditions (RI primed minus RI control) were also assessed using a novel graphical analysis. V̇o2plateau-time (P = 0.001; d = 1.27) and POpeak (P = 0.003; d = 1.08) were all greater in the RI primed. MRT (P < 0.001; d = 2.45) was shorter in the RI primed compared with the RI control. A larger ΔV̇o2plateau-time was correlated with a larger ΔMRT between conditions (r = -0.79; P = 0.002). This study demonstrated that heavy-intensity priming exercise lengthened the V̇o2plateau-time and increased POpeak. The overall faster RI-V̇o2 responses seem to be responsible for the longer V̇o2plateau-time. Specifically, a shorter MRT, but not changes in RI-V̇o2-slopes, was associated with a longer V̇o2plateau-time following priming exercise.NEW & NOTEWORTHY It remains unclear whether priming exercise extends the maximal oxygen uptake (V̇o2max) plateau and increases peak-power output (POpeak) during ramp-incremental (RI) tests. This study demonstrates that a priming exercise, precisely prescribed within the heavy-intensity domain, extends the plateau at V̇o2max and leads to a greater POpeak. Specifically, the extended V̇o2max plateau was associated with accelerated RI-V̇o2 responses.
Collapse
Affiliation(s)
- Gabriele Marinari
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Alessandro M Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University-UNESP, Bauru, Brazil
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Marinari G, Iannetta D, Holash RJ, Trama R, Faricier R, Zagatto AM, Keir DA, Murias JM. A Ramp versus Step Transition to Constant Work Rate Exercise Decreases Steady-State Oxygen Uptake. Med Sci Sports Exerc 2024; 56:972-981. [PMID: 38181214 DOI: 10.1249/mss.0000000000003372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
PURPOSE This study aimed to investigate whether a ramp-to-constant WR (rCWR) transition compared with a square-wave-to-constant WR (CWR) transition within the heavy-intensity domain can reduce metabolic instability and decrease the oxygen cost of exercise. METHODS Fourteen individuals performed (i) a ramp-incremental test to task failure, (ii) a 21-min CWR within the heavy-intensity domain, and (iii) an rCWR to the same WR. Oxygen uptake (V̇O 2 ), lactate concentration ([La - ]), and muscle oxygen saturation (SmO 2 ) were measured. V̇O 2 and V̇O 2 gain (V̇O 2 -G) during the first 10-min steady-state V̇O 2 were analyzed. [La - ] before, at, and after steady-state V̇O 2 and SmO 2 during the entire 21-min steady-state exercise were also examined. RESULTS V̇O 2 and V̇O 2 -G during rCWR (2.49 ± 0.58 L·min -1 and 10.7 ± 0.2 mL·min -1 ·W -1 , respectively) were lower ( P < 0.001) than CWR (2.57 ± 0.60 L·min -1 and 11.3 ± 0.2 mL·min -1 ·W -1 , respectively). [La - ] before and at steady-state V̇O 2 during the rCWR condition (1.94 ± 0.60 and 3.52 ± 1.19 mM, respectively) was lower than the CWR condition (3.05 ± 0.82 and 4.15 ± 1.25 mM, respectively) ( P < 0.001). [La - ] dynamics after steady-state V̇O 2 were unstable for the rCWR ( P = 0.011). SmO 2 was unstable within the CWR condition from minutes 4 to 13 ( P < 0.05). CONCLUSIONS The metabolic disruption caused by the initial minutes of square-wave exercise transitions is a primary contributor to metabolic instability, leading to an increased V̇O 2 -G compared with the rCWR condition approach. The reduced early reliance on anaerobic energy sources during the rCWR condition may be responsible for the lower V̇O 2 -G.
Collapse
Affiliation(s)
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, CANADA
| | | | - Robin Trama
- Faculty of Kinesiology, University of Calgary, Calgary, CANADA
| | | | - Alessandro M Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University-UNESP, Bauru, BRAZIL
| | | | | |
Collapse
|
4
|
do Nascimento Salvador PC, Nascimento EMF, Antunes D, Guglielmo LGA, Denadai BS. Energy metabolism and muscle activation heterogeneity explain V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slow component and muscle fatigue of cycling at different intensities. Exp Physiol 2023; 108:503-517. [PMID: 36648072 PMCID: PMC10103881 DOI: 10.1113/ep090444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the physiological mechanisms underlying muscle fatigue and the increase in the O2 cost per unit of work during high-intensity exercise? What is the main finding and its importance? Muscle fatigue happens before, and does not explain, theV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slow component (V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ ), but they share the same origin. Muscle activation heterogeneity is associated with muscle fatigue andV ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ . Knowing this may improve training prescriptions for healthy people leading to improved public health outcomes. ABSTRACT This study aimed to explain theV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ slow component (V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ ) and muscle fatigue during cycling at different intensities. The muscle fatigue of 16 participants was determined through maximal isokinetic effort lasting 3 s during constant work rate bouts of moderate (MOD), heavy (HVY) and very heavy intensity (VHI) exercise. Breath-by-breathV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ , near-infrared spectroscopy signals and EMG activity were analysed (thigh muscles).V ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ was higher during VHI exercise (∼70% vs. ∼28% ofV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ reserve in HVY). The deoxygenated haemoglobin final value during VHI exercise was higher than during HVY and MOD exercise (∼90% of HHb physiological normalization, vs. ∼82% HVY and ∼45% MOD). The muscle fatigue was greater after VHI exercise (∼22% vs. HVY ∼5%). There was no muscle fatigue after MOD exercise. The greatest magnitude of muscle fatigue occurred within 2 min (VHI ∼17%; HVY ∼9%), after which it stabilized. No significant relationship betweenV ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ and muscle force production was observed. The τ of muscleV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ was significantly related (R2 = 0.47) with torque decrease for VHI. Type I and II muscle fibre recruitment mainly in the rectus femoris moderately explained the muscle fatigue (R2 = 0.30 and 0.31, respectively) and theV ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ (R2 = 0.39 and 0.27, respectively). TheV ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ is also partially explained by blood lactate accumulation (R2 = 0.42). In conclusion muscle fatigue and O2 cost seem to share the same physiological cause linked with a decrease in the muscleV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ and a change in lactate accumulation. Muscle fatigue andV ̇ O 2 sc ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{sc}}}$ are associated with muscle activation heterogeneity and metabolism of different muscles activated during cycling.
Collapse
Affiliation(s)
- Paulo Cesar do Nascimento Salvador
- Physical effort LaboratorySports CentreFederal University of Santa CatarinaFlorianopolisBrazil
- Leonardo da Vinci University – Uniasselvi/VITRU EducationIndaialBrazil
| | | | - Diego Antunes
- Physical effort LaboratorySports CentreFederal University of Santa CatarinaFlorianopolisBrazil
| | | | - Benedito Sérgio Denadai
- Physical effort LaboratorySports CentreFederal University of Santa CatarinaFlorianopolisBrazil
- Human Performance LaboratorySão Paulo State UniversityRio ClaroBrazil
| |
Collapse
|
5
|
ARIMITSU T, YAMANAKA R, YUNOKI T, YANO T. Effects of exercise-induced muscle fatigue on V̇O2 slow component during heavy constant load exercise. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.20.04469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Besson T, Parent A, Brownstein CG, Espeit L, Lapole T, Martin V, Royer N, Rimaud D, Sabater Pastor F, Singh B, Varesco G, Rossi J, Temesi J, Millet GY. Sex Differences in Neuromuscular Fatigue and Changes in Cost of Running after Mountain Trail Races of Various Distances. Med Sci Sports Exerc 2021; 53:2374-2387. [PMID: 34107510 DOI: 10.1249/mss.0000000000002719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Women have been shown to experience less neuromuscular fatigue than men in knee extensors (KE) and less peripheral fatigue in plantar flexors (PF) after ultratrail running, but it is unknown if these differences exist for shorter trail running races and whether this may impact running economy. The purpose of this study was to characterize sex differences in fatigability over a range of running distances and to examine possible differences in the postrace alteration of the cost of running (Cr). METHODS Eighteen pairs of men and women were matched by performance after completing different races ranging from 40 to 171 km, divided into SHORT versus LONG races (<60 and >100 km, respectively). Neuromuscular function and Cr were tested before and after each race. Neuromuscular function was evaluated on both KE and PF with voluntary and evoked contractions using electrical nerve (KE and PF) and transcranial magnetic (KE) stimulation. Oxygen uptake, respiratory exchange ratio, and ventilation were measured on a treadmill and used to calculate Cr. RESULTS Compared with men, women displayed a smaller decrease in maximal strength in KE (-36% vs -27%, respectively, P < 0.01), independent of race distance. In SHORT only, women displayed less peripheral fatigue in PF compared with men (Δ peak twitch: -10% vs -24%, respectively, P < 0.05). Cr increased similarly in men and women. CONCLUSIONS Women experience less neuromuscular fatigue than men after both "classic" and "extreme" prolonged running exercises but this does not impact the degradation of the energy Cr.
Collapse
Affiliation(s)
- Thibault Besson
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Audrey Parent
- Department of Biological Sciences, Université du Québec à Montréal (UQÀM), Montreal, Quebec, CANADA
| | - Callum G Brownstein
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Loïc Espeit
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Thomas Lapole
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | | | - Nicolas Royer
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Diana Rimaud
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Frederic Sabater Pastor
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Benjamin Singh
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Giorgio Varesco
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - Jeremy Rossi
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, FRANCE
| | - John Temesi
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UNITED KINGDOM
| | | |
Collapse
|
7
|
Physiological responses and cycle characteristics during double-poling versus diagonal-stride roller-skiing in junior cross-country skiers. Eur J Appl Physiol 2021; 121:2229-2241. [PMID: 33893836 PMCID: PMC8260529 DOI: 10.1007/s00421-021-04689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak values when using DS compared to DP.
Collapse
|
8
|
de Lima LAP, Achiche S, de Lucas RD, Raison M. Second-order simultaneous components model for the overshoot and "slow component" in V̇O 2 kinetics. Respir Physiol Neurobiol 2020; 280:103479. [PMID: 32593589 DOI: 10.1016/j.resp.2020.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
The human oxygen uptake responses to exercise step on-transients present different shapes depending on the overshoot and/or the "slow component" manifestations. The conventional First-Order Multi-Exponential (FOME) model incorporates delayed add-on terms to comprise these phenomena, increasing parameter quantity, requiring a delayed recruitment of type II fibers to explain the "slow component," and not offering a unified structure for different individuals and intensity domains. We hypothesized that a model composed of two Second-Order Simultaneous Components (SOSC) would present a better overall fitting performance than the FOME. Fourteen well-trained male cyclists performed repeated step on-transitions to moderate, heavy, and severe cycling intensities, whose responses were fitted with FOME and SOSC models. The SOSC presented significantly smaller (p < 0.05) root mean squared errors for moderate, supra-moderate, and all intensities combined. Along with conceptual analyses, these findings suggest the SOSC as a comprehensive alternative to the FOME model, explaining all oxygen uptake step responses with as many parameters and without delayed add-on components.
Collapse
Affiliation(s)
- Luis Antonio Pereira de Lima
- Mechanical Engineering Department of Polytechnique Montréal, 2500, Chemin de Polytechnique, H3T1J4, Montréal, QC, Canada.
| | - Sofiane Achiche
- Mechanical Engineering Department of Polytechnique Montréal, 2500, Chemin de Polytechnique, H3T1J4, Montréal, QC, Canada.
| | - Ricardo Dantas de Lucas
- Sports Centre, Federal University of Santa Catarina, Brazil Campus Universitário, 88040900, Florianópolis, SC, Brazil.
| | - Maxime Raison
- Mechanical Engineering Department of Polytechnique Montréal, 2500, Chemin de Polytechnique, H3T1J4, Montréal, QC, Canada.
| |
Collapse
|
9
|
Ktenidis CK, Margaritelis NV, Cherouveim ED, Stergiopoulos DC, Malliou VJ, Geladas ND, Nikolaidis MG, Paschalis V. Priming exercise increases Wingate cycling peak power output. Eur J Sport Sci 2020; 21:705-713. [PMID: 32449458 DOI: 10.1080/17461391.2020.1765026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the present study was to investigate the effect of priming exercise on Wingate performance and fatigue. METHODS Twelve recreationally active young male volunteers participated in the study (age: 25 ± 5 years; weight: 75.0 ± 7.5 kg; height: 177 ± 6 cm; BMI: 24.0 ± 1.7). During a first visit, participants performed a typical V˙O2max test and a supramaximal assessment of V˙O2max on a cycle ergometer, while during the next three visits, the participants performed in a random order a Wingate test (i) with no priming exercise, (ii) after priming exercise followed by a 15-min recovery (Priming15) and (iii) after priming exercise followed by a 30-min recovery (Priming30). Priming exercise lasted 6 min, at work rate corresponding to the gas exchange threshold (GET) plus 70% of the difference between the GET and V˙O2max. RESULTS The Priming 30 condition exhibited greater peak power output (595 ± 84 W) compared to the control (567 ± 85 W) and the Priming15 condition (569 ± 95 W) (P < .05). Regarding fatigue index, a tendency towards increased resistance to fatigue was observed in the Priming30 condition compared to the control and the Priming15 conditions (P = .072). Pre-Wingate lactate levels were found to be significantly different between the Priming15 (7.18 ± 3.09 mmol/L) and the Priming30 (4.87 ± 2.11 mmol/L) conditions (P < .05). CONCLUSIONS Priming exercise of high intensity followed by a prolonged recovery leads to increased peak power in a subsequent Wingate test. Moreover, our data are consistent with the idea that a priming exercise-induced modest increase in blood lactate concentration at the onset of the following criterion bout is a key factor of performance.
Collapse
Affiliation(s)
- Charalabos K Ktenidis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Evgenia D Cherouveim
- Sports Excellence, 1st Orthopaedic Dept, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris C Stergiopoulos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki J Malliou
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos D Geladas
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Gajanand T, Conde Alonso S, Ramos JS, Antonietti JP, Borrani F. Alterations to neuromuscular properties of skeletal muscle are temporally dissociated from the oxygen uptake slow component. Sci Rep 2020; 10:7728. [PMID: 32382067 PMCID: PMC7206089 DOI: 10.1038/s41598-020-64395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
To assess if the alteration of neuromuscular properties of knee extensors muscles during heavy exercise co-vary with the SCV ([Formula: see text] slow component), eleven healthy male participants completed an incremental ramp test to exhaustion and five constant heavy intensity cycling bouts of 2, 6, 10, 20 and 30 minutes. Neuromuscular testing of the knee extensor muscles were completed before and after exercise. Results showed a significant decline in maximal voluntary contraction (MVC) torque only after 30 minutes of exercise (-17.01% ± 13.09%; p < 0.05) while single twitch (PT), 10 Hz (P10), and 100 Hz (P100) doublet peak torque amplitudes were reduced after 20 and 30 minutes (p < 0.05). Voluntary activation (VA) and M-wave were not affected by exercise, but significant correlation was found between the SCV and PT, MVC, VA, P10, P100, and P10/P100 ratio, respectively (p < 0.015). Therefore, because the development of the SCV occurred mainly between 2-10 minutes, during which neuromuscular properties were relatively stable, and because PT, P10 and P100 were significantly reduced only after 20-30 minutes of exercise while SCV is stable, a temporal relationship between them does not appear to exist. These results suggest that the development of fatigue due to alterations of neuromuscular properties is not an essential requirement to elicit the SCV.
Collapse
Affiliation(s)
- Trishan Gajanand
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sonia Conde Alonso
- Institute of Sport Sciences of University of Lausanne (ISSUL), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Joyce S Ramos
- SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | | | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
do Nascimento Salvador PC, Schäfer L, Grassi B, Guglielmo LGA, Denadai BS. Changes in VO 2 Kinetics After Elevated Baseline Do Not Necessarily Reflect Alterations in Muscle Force Production in Both Sexes. Front Physiol 2019; 10:471. [PMID: 31073291 PMCID: PMC6495266 DOI: 10.3389/fphys.2019.00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A link between muscle fatigue, decreased efficiency and the slow component of oxygen uptake (VO2sc) has been suggested. However, a cause-effect relationship remains to be elucidated. Although alterations in VO2 kinetics after elevated baseline work rate have previously been reported, to date no study has observed the effect on muscle force production (MFP) behavior considering physiological differences between male and female subjects. This study investigated the effect of elevated baseline work rate on the VO2 kinetics and MFP in 10 male and 10 female healthy subjects. Subjects performed 4 transitions of very-heavy (VH) intensity cycling in a randomized order after unloaded (U-VH) or moderate (M-VH) exercise. Maximal isokinetic efforts (MIE) were performed before and after each condition at two different cadences (60 or 120 rpm). Whereas baseline VO2 and time constant (τ) were significantly higher in M-VH compared to U-VH, the fundamental amplitude and the VO2 slow component (VO2sc) were significantly lower in M-VH (p < 0.05) in both sexes. Blood lactate concentration ([La]) and rate of perceived exertion (RPE) were not influenced by condition or sex (p > 0.05). The MFP post-exercise was not significantly influenced by condition in both sexes and cadences (Δtorque for males: at 60 rpm in U-VH = 13 ± 10 Nm, in M-VH = 13 ± 9 Nm; at 120 rpm in U-VH = 22 ± 14 Nm, in M-VH = 21 ± 12 Nm; for females: at 120 rpm in U-VH = 10 ± 9 Nm, in M-VH = 12 ± 8 Nm; p > 0.05), with the exception that female subjects presented smaller decreases in M-UH at 60 rpm compared to U-VH (11 ± 13 vs. 18 ± 14 Nm, respectively, p < 0.05). There was no correlation between the decrease in torque production and VO2 kinetics parameters (p > 0.05). The alterations in VO2 kinetics which have been suggested to be linked to changes in motor unit recruitment after elevated baseline work rate did not reflect alterations in MFP and fatigue in both sexes.
Collapse
Affiliation(s)
- Paulo Cesar do Nascimento Salvador
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, Brazil.,Leonardo da Vinci University/Uniasselvi, Indaial, Brazil
| | - Lisa Schäfer
- School of Sport and Service Management, University of Brighton, Eastbourne, United Kingdom
| | - Bruno Grassi
- Exercise Physiology Laboratory, Department of Medicine, Università Degli Studi di Udine, Udine, Italy
| | | | | |
Collapse
|