1
|
Mohammadi S, Asbaghi O, Dolatshahi S, Omran HS, Amirani N, Koozehkanani FJ, Garmjani HB, Goudarzi K, Ashtary-Larky D. Effects of supplementation with milk protein on glycemic parameters: a GRADE-assessed systematic review and dose-response meta-analysis. Nutr J 2023; 22:49. [PMID: 37798798 PMCID: PMC10557355 DOI: 10.1186/s12937-023-00878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND It is suggested that supplementation with milk protein (MP) has the potential to ameliorate the glycemic profile; however, the exact impact and certainty of the findings have yet to be evaluated. This systematic review and dose-response meta-analysis of randomized controlled trials (RCTs) assessed the impact of MP supplementation on the glycemic parameters in adults. METHODS A systematic search was carried out among online databases to determine eligible RCTs published up to November 2022. A random-effects model was performed for the meta-analysis. RESULTS A total of 36 RCTs with 1851 participants were included in the pooled analysis. It was displayed that supplementation with MP effectively reduced levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -1.83 mg/dL, 95% CI: -3.28, -0.38; P = 0.013), fasting insulin (WMD: -1.06 uU/mL, 95% CI: -1.76, -0.36; P = 0.003), and homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.27, 95% CI: -0.40, -0.14; P < 0.001) while making no remarkable changes in serum hemoglobin A1c (HbA1c) values (WMD: 0.01%, 95% CI: -0.14, 0.16; P = 0.891). However, there was a significant decline in serum levels of HbA1c among participants with normal baseline body mass index (BMI) based on sub-group analyses. In addition, HOMA-IR values were significantly lower in the MP supplement-treated group than their untreated counterparts in short- and long-term supplementation (≤ 8 and > 8 weeks) with high or moderate doses (≥ 60 or 30-60 g/d) of MP or whey protein (WP). Serum FBG levels were considerably reduced upon short-term administration of a low daily dose of WP (< 30 g). Furthermore, the levels of serum fasting insulin were remarkably decreased during long-term supplementation with high or moderate daily doses of WP. CONCLUSION The findings of this study suggest that supplementation with MP may improve glycemic control in adults by reducing the values of fasting insulin, FBG, and HOMA-IR. Additional trials with longer durations are required to confirm these findings.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dolatshahi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahangir Koozehkanani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Adedeji TG, Jeje SO, Omayone TP, Dareowolabi BO. Soda intake influences phenotype, antioxidants and inflammatory status in high protein-fed wistar rats. Heliyon 2023; 9:e15781. [PMID: 37180936 PMCID: PMC10172790 DOI: 10.1016/j.heliyon.2023.e15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
An increasing population of people, especially young adults who exercise, consume high protein diets along with carbonated drinks. While there are numerous studies on the effect of high protein diets, there is a need to understand how protein diets in combination with carbonated drinks impact physiology. In order to assess these effects on wistar rats' phenotype, antioxidants and inflammatory profiles, 64 wistar rats were divided into dietary groups of 8 male and 8 female animals each. The animals were fed standard diet as control (chow), chow and carbonated soda, a high protein diet (48.1% energy from protein) and a high protein diet with carbonated soda according to their groups. Body measurements, blood glucose levels, serum insulin levels, lipid peroxidation, antioxidant activity, adipokines and inflammatory markers concentrations were all determined. At the end of the study, body measurements, inflammatory markers and adipokine concentration were increased in animals fed the high protein diet and high protein-soda diet. There was a decrease in antioxidant and lipid peroxidation levels in protein fed male and female animals but those fed protein in combination with soda had increased lipid peroxidation levels. In conclusion, high protein diet in combination with carbonated soda impacts physiology differently from a high protein diet alone, and may stimulate weight gain, oxidative stress and HPD-related inflammation in Wistar rats.
Collapse
|
3
|
Li H, Cai M, Li H, Qian ZM, Stamatakis K, McMillin SE, Zhang Z, Hu Q, Lin H. Is dietary intake of antioxidant vitamins associated with reduced adverse effects of air pollution on diabetes? Findings from a large cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114182. [PMID: 36270037 PMCID: PMC9626446 DOI: 10.1016/j.ecoenv.2022.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 05/12/2023]
Abstract
INTRODUCTION It remains unknown whether higher dietary intake of antioxidant vitamins could reduce the harmful effects of air pollution on incident diabetes mellitus. METHODS A total of 156,490 participants free of diabetes mellitus in the UK Biobank data were included in this analysis. Antioxidant vitamin intake was measured using a 24-h food intake questionnaire, and results were categorized as sufficient or insufficient according to the British Recommended Nutrient Intake. Exposure to fine particles (PM2.5), thoracic particles (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) was estimated using land use regression models at participants' residences. Incident diabetes mellitus was identified using health administrative datasets. Cox regression models were used to assess the associations. RESULTS A total of 4271 incident diabetes mellitus cases were identified during a median follow-up of 11.7 years. Compared with participants with insufficient intake of antioxidant vitamins, those with sufficient consumption had a weaker association between air pollution (PM2.5, PM10 and NO2) and diabetes mellitus [sufficient vs. insufficient: HR = 1.12 (95 % CI: 0.87, 1.45) vs. 1.69 (95 % CI: 1.42, 2.02) for PM2.5, 1.00 (95 % CI: 0.88, 1.14) vs. 1.21 (95 % CI: 1.10, 1.34) for PM10, and 1.01 (95 % CI: 0.98, 1.04) vs. 1.05 (95 % CI: 1.03, 1.07) for NO2 (all p for comparison < 0.05)]. Among different antioxidant vitamins, we observed stronger effects for vitamin C and E. CONCLUSION Our study suggests that ambient air pollution is one important risk factor of diabetes mellitus, and sufficient intake of antioxidant vitamins may reduce such adverse effects of air pollution on diabetes mellitus.
Collapse
Affiliation(s)
- Haopeng Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Miao Cai
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Katie Stamatakis
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63104, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Zilong Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
4
|
Lotfi K, Mohammadi S, Mirzaei S, Asadi A, Akhlaghi M, Saneei P. Dietary total, plant and animal protein intake in relation to metabolic health status in overweight and obese adolescents. Sci Rep 2022; 12:10055. [PMID: 35710856 PMCID: PMC9203557 DOI: 10.1038/s41598-022-14433-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Few studies have investigated dietary total protein intake and its subtypes in relation to metabolic health status. We explored the relation between dietary total, plant and animal protein intake with metabolic health status in Iranian overweight/obese adolescents. Overweight/obese adolescents (n = 203) were selected for this cross-sectional study by multistage cluster random-sampling method. A validated food frequency questionnaire was used to evaluate dietary intakes. Total, plant and animal protein intake were considered as percentage of energy intake. Anthropometric indices, blood pressure, lipid and glycemic profiles were collected. Participants were classified as metabolically healthy obese (MHO) or unhealthy obese (MUO) based on International Diabetes Federation (IDF) and IDF/Homeostasis Model Assessment Insulin Resistance (HOMA-IR) definitions. Subjects had a mean age of 13.98 years, and 50.2% of them were girls. Based on IDF criteria, adolescents in the top tertile of total (OR = 0.32; 95% CI 0.13–0.77), plant (OR = 0.30; 95% CI 0.10–0.91), and animal (OR = 0.20; 95% CI 0.08–0.54) protein intake had lower odds of being MUO compared to the reference category. Considering IDF/HOMA-IR criteria, subjects in the highest tertile of total (OR = 0.31; 95% CI 0.12–0.79) and animal (OR = 0.17; 95% CI 0.06–0.49) protein intake were less likely to be MUO. However, no substantial association was observed with plant protein intake. Also, an inverse association was observed between each SD increase in total and animal protein with MUO odds. We found inverse association between total, plant and animal protein intake and chance of being MUO in adolescents. Further prospective studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Mohammadi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeideh Mirzaei
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Asadi
- Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran.
| |
Collapse
|
5
|
Medeiros CS, de Sousa Neto IV, Silva KKS, Cantuária APC, Rezende TMB, Franco OL, de Cassia Marqueti R, Freitas-Lima LC, Araujo RC, Yildirim A, Mackenzie R, Alves Almeida J. The Effects of High-Protein Diet and Resistance Training on Glucose Control and Inflammatory Profile of Visceral Adipose Tissue in Rats. Nutrients 2021; 13:1969. [PMID: 34201185 PMCID: PMC8227719 DOI: 10.3390/nu13061969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
High-protein diets (HPDs) are widely accepted as a way to stimulate muscle protein synthesis when combined with resistance training (RT). However, the effects of HPDs on adipose tissue plasticity and local inflammation are yet to be determined. This study investigated the impact of HPDs on glucose control, adipocyte size, and epididymal adipose inflammatory biomarkers in resistance-trained rats. Eighteen Wistar rats were randomly assigned to four groups: normal-protein (NPD; 17% protein total dietary intake) and HPD (26.1% protein) without RT and NPD and HPD with RT. Trained groups received RT for 12 weeks with weights secured to their tails. Glucose and insulin tolerance tests, adipocyte size, and an array of cytokines were determined. While HPD without RT induced glucose intolerance, enlarged adipocytes, and increased TNF-α, MCP-1, and IL1-β levels in epididymal adipose tissue (p < 0.05), RT diminished these deleterious effects, with the HPD + RT group displaying improved blood glucose control without inflammatory cytokine increases in epididymal adipose tissue (p < 0.05). Furthermore, RT increased glutathione expression independent of diet (p < 0.05). RT may offer protection against adipocyte hypertrophy, pro-inflammatory states, and glucose intolerance during HPDs. The results highlight the potential protective effects of RT to mitigate the maladaptive effects of HPDs.
Collapse
Affiliation(s)
- Claudia Stela Medeiros
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ivo Vieira de Sousa Neto
- Laboratório de Análises Moleculares, Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Distrito Federal 72220-275, Brazil; (I.V.d.S.N.); (R.d.C.M.)
| | - Keemilyn Karla Santos Silva
- Research in Exercise and Nutrition in Health and Sports Performance—PENSARE, Graduate Program in Movement Sciences, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ana Paula Castro Cantuária
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal 70910-900, Brazil
| | - Taia Maria Berto Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal 70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- S-Inova Biotech, Porgrama de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Rita de Cassia Marqueti
- Laboratório de Análises Moleculares, Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Distrito Federal 72220-275, Brazil; (I.V.d.S.N.); (R.d.C.M.)
| | - Leandro Ceotto Freitas-Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.C.F.-L.); (R.C.A.)
| | - Ronaldo Carvalho Araujo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.C.F.-L.); (R.C.A.)
| | - Azize Yildirim
- Department of Life Science, Whitelands College, University of Roehampton, London SW15 4DJ, UK; (A.Y.); (R.M.)
| | - Richard Mackenzie
- Department of Life Science, Whitelands College, University of Roehampton, London SW15 4DJ, UK; (A.Y.); (R.M.)
| | - Jeeser Alves Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Research in Exercise and Nutrition in Health and Sports Performance—PENSARE, Graduate Program in Movement Sciences, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|