1
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
2
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
3
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
4
|
Thakuri LS, Park CM, Park JW, Rhyu DY. Gracilaria chorda subcritical-water extracts as ameliorant of insulin resistance induced by high-glucose in zebrafish and dexamethasone in L6 myotubes. J Tradit Complement Med 2024; 14:82-90. [PMID: 38223809 PMCID: PMC10785150 DOI: 10.1016/j.jtcme.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to insulin. Loss of insulin sensitivity disrupts glucose homeostasis and elevates the risk of developing the metabolic syndrome that includes Type 2 diabetes. This study assesses the effect on subcritical-water extract of Gracilaria chorda (GC) at 210 °C (GCSW210) in IR induction models of high glucose (HG)-induced zebrafish larvae and dexamethasone (DEX)-induced L6 myotubes. Experimental procedure The dose of HG and DEX for IR induction in zebrafish larvae and L6 myotubes was 130 mM or 0.5 μM. The capacity of glucose uptake was quantified by fluorescence staining or intensity. In addition, the activation of protein and mRNA expressions for insulin signaling (insulin-dependent or independent pathways) was measured. Results and conclusion Exposure of zebrafish larvae to HG significantly reduced the intracellular glucose uptake with dose-dependnet manner compared to control. However, the group treated with GCSW210 significantly averted HG levels like the insulin-treated group, and significantly up- or down-regulated the mRNA expressions related to insulin production (insα) and insulin signaling pathways. Moreover, the treatment with GCSW210 effectively regulated the protein expression of PI3K/AKT, AMPK, and GLUT4 involved in the action of insulin in IR models of L6 myotubes compared to DEX-treated control. Our data indicate that GCSW210 stimulates activation of PI3K/AKT and AMPK pathways to attenuate the development of IR induced by HG in zebrafish and DEX in L6 myotubes. In conclusion, GCSW210 is a potential agent for alleviating various diseases associated with the insulin resistance.
Collapse
Affiliation(s)
- Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Chul Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeonbuk, 56212, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
5
|
Zhang LH, Wang J, Tan BH, Yin YB, Kang YM. Roux-en-Y Gastric Bypass Improves Insulin Sensitivity in Obese Rats with Type 2 Diabetes Mellitus by Regulating the Grin3a/AMPK Signal Axis in Hypothalamic Arcuate Nucleus. Diabetes Metab Syndr Obes 2023; 16:3617-3629. [PMID: 38028990 PMCID: PMC10644885 DOI: 10.2147/dmso.s430445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The objective of this study was to explore the effects and related mechanisms of Roux-en-Y gastric bypass (RYGB) on insulin sensitivity in obese rats with type 2 diabetes mellitus (T2DM). Methods The obese T2DM rat model was constructed by feeding a high-fat diet and injecting streptozotocin (STZ), and treated with RYGB. Grin3a shRNA was injected into the bilateral hypothalamic arcuate nucleus (ARC) to knockdown the Grin3a expression on T2DM rats. Eight weeks after operation, the body weight, fasting blood glucose (FBG), fasting serum insulin (FSI), homeostatic model assessment of insulin resistance (HOMA-IR), and plasma triglyceride (TG) levels were assessed. Hematoxylin & eosin (H&E) staining was adopted to observe the white adipose tissue (WAT) of rats. Western blot and qRT-PCR were used to detect the expression of Grin3a, adenosine 5' monophosphate-activated protein kinase (AMPK) and p-AMPK in ARC of rats. Later, the plasmid over-expressing or knocking down Grin3a was transfected into differentiated 3T3-L1 adipocytes, and the TG level and the formation of lipid droplets in adipocyte were assessed by TG kit and oil red O staining. The expression of lipogenic transcription factors in cells was detected by qRT-PCR. Results RYGB reduced FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats while increasing Grin3a expression and p-AMPK/AMPK ratio in ARC. Knockdown of Grin3a not only reversed the decrease of FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats induced by RYGB, but also reversed the up-regulation of p-AMPK/AMPK ratio in ARC affected by RYGB. Moreover, knocking down Grin3a significantly increased the TG level, promoted the formation of lipid droplets and up-regulated the expressions of lipogenic transcription factors in adipocytes. Conclusion RYGB improved the insulin sensitivity, reduced the plasma TG level and lessens the fat accumulation in obese T2DM rats by regulating the Grin3a/AMPK signal in ARC.
Collapse
Affiliation(s)
- Li-Hai Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, People’s Republic of China
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Jiao Wang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, People’s Republic of China
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Bai-Hong Tan
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Yan-Bin Yin
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, People’s Republic of China
| |
Collapse
|
6
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
7
|
Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants (Basel) 2023; 12:antiox12010123. [PMID: 36670985 PMCID: PMC9855127 DOI: 10.3390/antiox12010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The global prevalence of diabetes continues to increase partly due to rapid urbanization and an increase in the aging population. Consequently, this is associated with a parallel increase in the prevalence of diabetic vascular complications which significantly worsen the burden of diabetes. For these diabetic vascular complications, there is still an unmet need for safe and effective alternative/adjuvant therapeutic interventions. There is also an increasing urge for therapeutic options to come from natural products such as plants. Hyperglycemia-induced oxidative stress is central to the development of diabetes and diabetic complications. Furthermore, oxidative stress-induced inflammation and insulin resistance are central to endothelial damage and the progression of diabetic complications. Human and animal studies have shown that polyphenols could reduce oxidative stress, hyperglycemia, and prevent diabetic complications including diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy. Part of the therapeutic effects of polyphenols is attributed to their modulatory effect on endogenous antioxidant systems. This review attempts to summarize the established effects of polyphenols on endogenous antioxidant systems from the literature. Moreover, potential therapeutic strategies for harnessing the potential benefits of polyphenols for diabetic vascular complications are also discussed.
Collapse
|
8
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|