1
|
Basu T, Upadhyay AK. In silico study of novel alpha tocopheroids as effective inhibitors of aldo-keto reductase 1c3 (AKR1C3) enzyme. J Biomol Struct Dyn 2024; 42:7715-7729. [PMID: 37534497 DOI: 10.1080/07391102.2023.2241543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is a monomeric enzyme expressed in steroidogenic tissues such as the testis, prostate, uterus, and breast. Overexpression of this AKR1C3 is associated with vast cancers such as breast, colon, colorectal, endometrial, prostate, and acute myeloid leukaemia. Regarding the treatment of castration-resistant prostate cancer, breast cancer, and acute myeloid leukaemia, AKR1C3 inhibitors may offer clear advantages over currently available therapies. Thus, discovering novel and specific AKR1C3 inhibitors is a promising way to obstruct drug resistance in cancer. Derivatives of alpha-tocopherol and alpha-tocopheroids were selected as possible therapeutics to act as AKR1C3 inhibitors. The precise targets of several ligands were determined using computational screening methods. The molecular structure of AKR1C3 and its ligands were used as the foundation for in silico predictions, modelling, and dynamic simulations. Compounds were selected based on their biological properties and filtered according to their ADMET and drug-likeness properties. Additionally, simulations of all-atom molecular dynamics on AKR1C3 with the cleared compounds revealed stability over the simulated trajectories of 100 ns. When seen collectively, alpha-tocospiro A may be considered prospective AKR1C3 inhibitors for creating anticancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanmayee Basu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
2
|
Li M, Zhang L, Yu J, Wang X, Cheng L, Ma Z, Chen X, Wang L, Goh BC. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies. Front Pharmacol 2024; 15:1378292. [PMID: 38523637 PMCID: PMC10957692 DOI: 10.3389/fphar.2024.1378292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17β-estradiol (a potent estrogen), and 11β-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.
Collapse
Affiliation(s)
- Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
- The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Lee YJ, Choi YS, Kim S, Heo JY, Kim DS, Cho MK. Upregulation of AKR1C3 in Sodium Butyrate Treated G361 Cell. Ann Dermatol 2023; 35:468-471. [PMID: 38086362 PMCID: PMC10733077 DOI: 10.5021/ad.22.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 01/02/2023] [Indexed: 12/22/2023] Open
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
4
|
Taravella Oill AM, Buetow KH, Wilson MA. The role of Neanderthal introgression in liver cancer. BMC Med Genomics 2022; 15:255. [PMID: 36503519 PMCID: PMC9743633 DOI: 10.1186/s12920-022-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neanderthal introgressed DNA has been linked to different normal and disease traits including immunity and metabolism-two important functions that are altered in liver cancer. However, there is limited understanding of the relationship between Neanderthal introgression and liver cancer risk. The aim of this study was to investigate the relationship between Neanderthal introgression and liver cancer risk. METHODS Using germline and somatic DNA and tumor RNA from liver cancer patients from The Cancer Genome Atlas, along with ancestry-match germline DNA from unaffected individuals from the 1000 Genomes Resource, and allele specific expression data from normal liver tissue from The Genotype-Tissue Expression project we investigated whether Neanderthal introgression impacts cancer etiology. Using a previously generated set of Neanderthal alleles, we identified Neanderthal introgressed haplotypes. We then tested whether somatic mutations are enriched or depleted on Neanderthal introgressed haplotypes compared to modern haplotypes. We also computationally assessed whether somatic mutations have a functional effect or show evidence of regulating expression of Neanderthal haplotypes. Finally, we compared patterns of Neanderthal introgression in liver cancer patients and the general population. RESULTS We find Neanderthal introgressed haplotypes exhibit an excess of somatic mutations compared to modern haplotypes. Variant Effect Predictor analysis revealed that most of the somatic mutations on these Neanderthal introgressed haplotypes are not functional. We did observe expression differences of Neanderthal alleles between tumor and normal for four genes that also showed a pattern of enrichment of somatic mutations on Neanderthal haplotypes. However, gene expression was similar between liver cancer patients with modern ancestry and liver cancer patients with Neanderthal ancestry at these genes. Provocatively, when analyzing all genes, we find evidence of Neanderthal introgression regulating expression in tumor from liver cancer patients in two genes, ARK1C4 and OAS1. Finally, we find that most genes do not show a difference in the proportion of Neanderthal introgression between liver cancer patients and the general population. CONCLUSION Our results suggest that Neanderthal introgression provides opportunity for somatic mutations to accumulate, and that some Neanderthal introgression may impact liver cancer risk.
Collapse
Affiliation(s)
- Angela M Taravella Oill
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Kenneth H Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Möller G, Temml V, Cala Peralta A, Gruet O, Richomme P, Séraphin D, Viault G, Kraus L, Huber-Cantonati P, Schopfhauser E, Pachmayr J, Tokarz J, Schuster D, Helesbeux JJ, Dyar KA. Analogues of Natural Chalcones as Efficient Inhibitors of AKR1C3. Metabolites 2022; 12:99. [PMID: 35208174 PMCID: PMC8876231 DOI: 10.3390/metabo12020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Naturally occurring substances are valuable resources for drug development. In this respect, chalcones are known to be antiproliferative agents against prostate cancer cell lines through various mechanisms or targets. Based on the literature and preliminary results, we aimed to study and optimise the efficiency of a series of chalcones to inhibit androgen-converting AKR1C3, known to promote prostate cancer. A total of 12 chalcones with different substitution patterns were synthesised. Structure-activity relationships associated with these modifications on AKR1C3 inhibition were analysed by performing enzymatic assays and docking simulations. In addition, the selectivity and cytotoxicity of the compounds were assessed. In enzymatic assays, C-6' hydroxylated derivatives were more active than C-6' methoxylated derivatives. In contrast, C-4 methylation increased activity over C-4 hydroxylation. Docking results supported these findings with the most active compounds fitting nicely in the binding site and exhibiting strong interactions with key amino acid residues. The most effective inhibitors were not cytotoxic for HEK293T cells and selective for 17β-hydroxysteroid dehydrogenases not primarily involved in steroid hormone metabolism. Nevertheless, they inhibited several enzymes of the steroid metabolism pathways. Favourable substitutions that enhanced AKR1C3 inhibition of chalcones were identified. This study paves the way to further develop compounds from this series or related flavonoids with improved inhibitory activity against AKR1C3.
Collapse
Affiliation(s)
- Gabriele Möller
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (K.A.D.)
| | - Veronika Temml
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (E.S.); (D.S.)
| | - Antonio Cala Peralta
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Océane Gruet
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Pascal Richomme
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Denis Séraphin
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Guillaume Viault
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Luisa Kraus
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (L.K.); (P.H.-C.); (J.P.)
| | - Petra Huber-Cantonati
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (L.K.); (P.H.-C.); (J.P.)
| | - Elisabeth Schopfhauser
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (E.S.); (D.S.)
| | - Johanna Pachmayr
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (L.K.); (P.H.-C.); (J.P.)
| | - Janina Tokarz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (K.A.D.)
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (E.S.); (D.S.)
| | - Jean-Jacques Helesbeux
- University of Angers, SONAS, SFR QUASAV, F-49000 Angers, France; (A.C.P.); (O.G.); (P.R.); (D.S.); (G.V.); (J.-J.H.)
| | - Kenneth Allen Dyar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (K.A.D.)
| |
Collapse
|
6
|
Bellamy J, Szemes M, Melegh Z, Dallosso A, Kollareddy M, Catchpoole D, Malik K. Increased Efficacy of Histone Methyltransferase G9a Inhibitors Against MYCN-Amplified Neuroblastoma. Front Oncol 2020; 10:818. [PMID: 32537432 PMCID: PMC7269128 DOI: 10.3389/fonc.2020.00818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Targeted inhibition of proteins modulating epigenetic changes is an increasingly important priority in cancer therapeutics, and many small molecule inhibitors are currently being developed. In the case of neuroblastoma (NB), a pediatric solid tumor with a paucity of intragenic mutations, epigenetic deregulation may be especially important. In this study we validate the histone methyltransferase G9a/EHMT2 as being associated with indicators of poor prognosis in NB. Immunological analysis of G9a protein shows it to be more highly expressed in NB cell-lines with MYCN amplification, which is a primary determinant of dismal outcome in NB patients. Furthermore, G9a protein in primary tumors is expressed at higher levels in poorly differentiated/undifferentiated NB, and correlates with high EZH2 expression, a known co-operative oncoprotein in NB. Our functional analyses demonstrate that siRNA-mediated G9a depletion inhibits cell growth in all NB cell lines, but, strikingly, only triggers apoptosis in NB cells with MYCN amplification, suggesting a synthetic lethal relationship between G9a and MYCN. This pattern of sensitivity is also evident when using small molecule inhibitors of G9a, UNC0638, and UNC0642. The increased efficacy of G9a inhibition in the presence of MYCN-overexpression is also demonstrated in the SHEP-21N isogenic model with tet-regulatable MYCN. Finally, using RNA sequencing, we identify several potential tumor suppressor genes that are reactivated by G9a inhibition in NB, including the CLU, FLCN, AMHR2, and AKR1C1-3. Together, our study underlines the under-appreciated role of G9a in NB, especially in MYCN-amplified tumors.
Collapse
Affiliation(s)
- Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Zsombor Melegh
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Anthony Dallosso
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Zhao SF, Wang SG, Zhao ZY, Li WL. AKR1C1-3, notably AKR1C3, are distinct biomarkers for liver cancer diagnosis and prognosis: Database mining in malignancies. Oncol Lett 2019; 18:4515-4522. [PMID: 31611960 PMCID: PMC6781771 DOI: 10.3892/ol.2019.10802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Aldo-keto reductases, known as AKR1C1-AKR1C4 enzymes, are pivotal to NADPH-dependent reduction, and their expression is highly associated with the progression of malignant cancers. However, the expression and distinct prognostic value of the AKR1C family members in liver cancer are not well established. In the current study, the expression of AKR1C isoforms was studied using the Oncomine online databases. In addition, their expression profiles were analyzed in cancer cell lines using data from the Cancer Cell lines Encyclopedia (CCLE) database. Furthermore, the mRNA expression levels of AKR1C family members between liver cancer and normal liver samples were assessed by the Gene Expression Profiling Interactive Analysis (GEPIA) database. The AKR1C1-3 prognostic value was further investigated by the Kaplan-Meier plotter database in liver cancer patients. It was found that the expression levels of AKR1C3 were elevated significantly in liver cancer tissues and cells as demonstrated by the Oncomine, CCLE and GEPIA databases. The expression levels of AKR1C1 and AKR1C2 in liver cancer tissues did not increase significantly in the Oncomine database while expression was significantly high in CCLE and GEPIA databases. However, the expression levels of the AKR1C4 gene as determined by the CCLE, GEPIA and Oncomine databases were not consistent. Therefore, the Kaplan-Meier survival curves of liver cancer patients with the expression of AKR1C1-3 genes were next analyzed. The data indicated that high expression levels of AKR1C1-3 were correlated with lower overall survival in liver cancer patients. Using the co-expression and PPI network, AKR1C1-3 genes were identified that were involved in the same pathway displaying 44 total unique interactors. These results suggested that the increased AKR1C1-3, notably AKR1C3 expression levels served as possible diagnostic biomarkers and essential prognostic factors for liver cancer patients. The roles of AKR1C4 in liver cancer require further examination.
Collapse
Affiliation(s)
- Shou-Feng Zhao
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Shu-Guo Wang
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zi-Yun Zhao
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, Shandong 266044, P.R. China
| | - Wen-Li Li
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
8
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
9
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M, Jagodziński PP. mRNA expression of steroidogenic enzymes, steroid hormone receptors and their coregulators in gastric cancer. Oncol Lett 2017; 13:3369-3378. [PMID: 28521442 PMCID: PMC5431337 DOI: 10.3892/ol.2017.5881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Epidemiological and experimental findings suggest that the development of gastric cancer (GC) is regulated by steroid hormones. In postmenopausal women and older men, the majority of steroid hormones are produced locally in peripheral tissue through the enzymatic conversion of steroid precursors. Therefore, using reverse transcription-quantitative polymerase chain reaction analysis, the mRNA expression of genes encoding steroidogenic enzymes, including steroid sulfatase (STS), hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1), 17β-hydroxysteroid dehydrogenase type 7 and aromatase (CYP19A1), was investigated in primary tumoral and adjacent healthy gastric mucosa from 60 patients with GC. Furthermore, the mRNA levels for estrogen receptor α, estrogen receptor β (ESR2) and androgen receptor (AR), along with their coregulators, including proline, glutamate and leucine rich protein 1, CREB binding protein, nuclear receptor coactivator 1 (NCOA1), nuclear receptor corepressor 1 (NCOR1) and nuclear receptor subfamily 2 group F member 1 (NR2F1), were investigated. Additionally, the association between the mRNA expression of these genes and the clinicopathological features of patients with GC was examined. Significantly decreased levels of STS, HSD3B1, ESR2, AR, NCOA1 and NCOR1 mRNA, in addition to significantly increased levels of CYP19A1 mRNA were demonstrated in tumoral tissue samples compared with adjacent healthy gastric tissue samples. Deregulated expression of these genes in the analyzed tissue samples was associated with certain clinicopathological features of GC, such as age and localization of the tumor. The results of the current study suggest that all of the genes analyzed are expressed in tumoral and adjacent healthy gastric mucosa. In addition, the results indicate that abnormal expression of STS, ESR2, AR, NCOA1 and NCOR1 may serve a role in the development and progression of GC, and may be associated with specific clinicopathological features in patients with GC.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 60-781 Poznań, Poland
| | - Dawid Murawa
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland.,Research and Development Centre, Regional Specialist Hospital of Wrocław, 51-124 Wrocław, Poland
| | - Maciej Borejsza-Wysocki
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Mateusz Wichtowski
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Arkadiusz Spychała
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Ryszard Marciniak
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Paweł Murawa
- First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Michał Drews
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 60-781 Poznań, Poland
| |
Collapse
|