1
|
Otaegui L, Urgin T, Zaiter T, Zussy C, Vitalis M, Pellequer Y, Acar N, Vigor C, Galano JM, Durand T, Givalois L, Béduneau A, Desrumaux C. Nose-to-brain delivery of DHA-loaded nanoemulsions: A promising approach against Alzheimer's disease. Int J Pharm 2025; 670:125125. [PMID: 39788398 DOI: 10.1016/j.ijpharm.2024.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Reduced docosahexaenoic acid (DHA) concentrations seem to be associated with an increased risk of Alzheimer's disease (AD), and DHA accretion to the brain across the blood-brain-barrier (BBB) can be modulated by various factors. Therefore, there is an urgent need to identify an efficient and non-invasive method to ensure brain DHA enrichment. In the present study, a safe and stable DHA-enriched nanoemulsion, designed to protect DHA against oxidation, was designed and administered intranasally in a transgenic mouse model of AD, the J20 mice. Intranasal treatment with nanoformulated DHA significantly improved well-being and working spatial memory in six-months-old J20 mice. These behavioral effects were associated with a reduction of amyloid deposition, oxidative stress, and neuroinflammation in brain tissues, which may be partially due to DHA-induced inactivation of the pleiotropic kinase GSK3β. In conclusion, intranasal DHA administration exhibited strong therapeutic effects and disease-modifying benefits in the J20 AD model. Given that DHA has already shown safety and tolerability in healthy human subjects, our results further support the need for clinical trials to assess the potential of this approach in Alzheimer's patients.
Collapse
Affiliation(s)
- Léa Otaegui
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Théo Urgin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Taghrid Zaiter
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Charleine Zussy
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Marie Galano
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Laurent Givalois
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; Laval University, Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Québec City (QC), Canada
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Catherine Desrumaux
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France.
| |
Collapse
|
2
|
Su S, Huang K, Cai H, Wei D, Ding H, Lin L, Wang Y, Gu J, Wang Q. Exploring the mechanism by which Zexie Tang regulates Alzheimer's disease: Insights from multi-omics analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156453. [PMID: 39955825 DOI: 10.1016/j.phymed.2025.156453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Neurodegenerative disorders, such as Alzheimer's disease (AD), are characterized by a progressive decline in cognitive function. Modulating microglial metabolic reprogramming presents a promising therapeutic avenue for AD. Previous studies have shown that Zexie Tang (ZXT) possesses neuroprotective properties and can ameliorate cognitive impairment, but the underlying mechanisms remain unclear. PURPOSE This study aimed to investigate the efficacy of ZXT in improving cognitive function in AD mice using a multi-omics approach and to explore its potential role in modulating microglial metabolic reprogramming. METHODS Behavioral assessments were conducted to evaluate the effects of ZXT on cognitive function in APP/PS1 mice. H&E, Nissl, and Thioflavin S staining were performed to assess the impact of ZXT on brain pathology. A multi-omics approach, including transcriptomics, gut microbiota analysis, and metabolomics, was employed to elucidate the mechanisms of action of ZXT. RT-qPCR, immunoblotting, and immunofluorescence were used to validate the effects of ZXT on glycolipid metabolism, neuroinflammation, and the AMPK-mTOR-HIF1α pathway. RESULTS ZXT effectively protected against cognitive deficits, reduced hippocampal neuronal apoptosis, and decreased Aβ plaque deposition. Transcriptomics analysis revealed that ZXT was involved in immune system processes and metabolic processes and had a specific cellular response with microglia. Additionally, ZXT regulated the composition and functions of brain metabolites and gut microbiota. Our study demonstrated that ZXT positively influenced glucolipid metabolism and attenuated neuroinflammation, which were linked to the AMPK-mTOR-HIF1α pathway in the brain. CONCLUSION Our findings suggested that ZXT may mitigate cognitive deficits in APP/PS1 mice by modulating gut microbiota and enhancing brain energy metabolism. ZXT regulated glucolipid metabolism and neuroinflammation by modulating microglial metabolic reprogramming involving the AMPK-mTOR-HIF1α pathway.
Collapse
Affiliation(s)
- Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, PR China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Han Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Dongyun Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Haixia Ding
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liejie Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yuting Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jihong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
3
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
4
|
Zinkow A, Grodzicki W, Czerwińska M, Dziendzikowska K. Molecular Mechanisms Linking Omega-3 Fatty Acids and the Gut-Brain Axis. Molecules 2024; 30:71. [PMID: 39795128 PMCID: PMC11721018 DOI: 10.3390/molecules30010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The gut-brain axis (GBA) is a complex communication network connecting the gastrointestinal tract (GIT) and the central nervous system (CNS) through neuronal, endocrine, metabolic, and immune pathways. Omega-3 (n-3) fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are crucial food components that may modulate the function of this axis through molecular mechanisms. Derived mainly from marine sources, these long-chain polyunsaturated fatty acids are integral to cell membrane structure, enhancing fluidity and influencing neurotransmitter function and signal transduction. Additionally, n-3 fatty acids modulate inflammation by altering eicosanoid production, reducing proinflammatory cytokines, and promoting anti-inflammatory mediators. These actions help preserve the integrity of cellular barriers like the intestinal and blood-brain barriers. In the CNS, EPA and DHA support neurogenesis, synaptic plasticity, and neurotransmission, improving cognitive functions. They also regulate the hypothalamic-pituitary-adrenal (HPA) axis by reducing excessive cortisol production, associated with stress responses and mental health disorders. Furthermore, n-3 fatty acids influence the composition and function of the gut microbiota, promoting beneficial bacterial populations abundance that contribute to gut health and improve systemic immunity. Their multifaceted roles within the GBA underscore their significance in maintaining homeostasis and supporting mental well-being.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.Z.); (W.G.); (M.C.)
| |
Collapse
|
5
|
Wang Y, Zhang H, Ding F, Li J, Li L, Xu Z, Zhao Y. N-3 polyunsaturated fatty acids attenuate amyloid-beta-induced toxicity in AD transgenic Caenorhabditis elegans via promotion of proteasomal activity and activation of PPAR-gamma. J Nutr Biochem 2024; 127:109603. [PMID: 38373507 DOI: 10.1016/j.jnutbio.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that causes progressive cognitive decline. A major pathological characteristic of AD brain is the presence of senile plaques composed of β-amyloid (Aβ), the accumulation of which induces toxic cascades leading to synaptic dysfunction, neuronal apoptosis, and eventually cognitive decline. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for patients with early-stage AD; however, the mechanisms are not completely understood. In this study, we investigated the effects of n-3 PUFAs on Aβ-induced toxicity in a transgenic AD Caenorhabditis elegans (C. elegans) model. The results showed that EPA and DHA significantly inhibited Aβ-induced paralytic phenotype and decreased the production of reactive oxygen species while reducing the levels of Aβ in the AD worms. Further studies revealed that EPA and DHA might reduce the accumulation of Aβ by restoring the activity of proteasome. Moreover, treating worms with peroxisome proliferator-activated receptor (PPAR)-γ inhibitor GW9662 prevented the inhibitory effects of n-3 PUFAs on Aβ-induced paralytic phenotype and diminished the elevation of proteasomal activity by n-3 PUFAs, suggesting that PPARγ-mediated signals play important role in the protective effects of n-3 PUFAs against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Huanying Zhang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Feng Ding
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Jianhua Li
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Lianyu Li
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Zhong Xu
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China.
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China.
| |
Collapse
|
6
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
7
|
Wen J, Satyanarayanan SK, Li A, Yan L, Zhao Z, Yuan Q, Su KP, Su H. Unraveling the impact of Omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain Behav Immun 2024; 115:335-355. [PMID: 37914102 DOI: 10.1016/j.bbi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aβ) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Ziai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
8
|
Li R, Xiong W, Li B, Li Y, Fang B, Wang X, Ren F. Plasmalogen Improves Memory Function by Regulating Neurogenesis in a Mouse Model of Alzheimer's Diseases. Int J Mol Sci 2023; 24:12234. [PMID: 37569610 PMCID: PMC10418626 DOI: 10.3390/ijms241512234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN) is associated with hippocampus-dependent cognitive function, and its initiation is attributed to neural stem cells (NSCs). Dysregulated AHN has been identified in Alzheimer's disease (AD) and may underlie impaired cognitive function in AD. Modulating the function of NSCs and stimulating AHN are potential ways to manipulate AD. Plasmalogen (PLA) are a class of cell membrane glycerophospholipids which exhibit neuroprotective properties. However, the effect of PLA on altered AHN in AD has not been investigated. In our study, PLA(10μg/mL) -attenuated Aβ (1-42) (5μM) induced a decrease in NSC viability and neuronal differentiation of NSCs, partially through regulating the Wnt/β-catenin pathway. Additionally, AD mice were supplemented with PLA (67mg/kg/day) for 6 weeks. PLA treatment improved the impaired AHN in AD mice, including increasing the number of neural stem cells (NSCs) and newly generated neurons. The memory function of AD mice was also enhanced after PLA administration. Therefore, it was summarized that PLA could regulate NSC differentiation by activating the Wnt/β-catenin pathway and ameliorate AD-related memory impairment through up-regulating AHN.
Collapse
Affiliation(s)
- Rongzi Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Boying Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
9
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Xu J, Ni B, Ma C, Rong S, Gao H, Zhang L, Xiang X, Huang Q, Deng Q, Huang F. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. J Adv Res 2023; 45:31-42. [PMID: 35618634 PMCID: PMC10006543 DOI: 10.1016/j.jare.2022.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Diminished brain insulin sensitivity is associated with reduced cognitive function. Docosahexaenoic acid (DHA) is known to maintain normal brain function. OBJECTIVES This study aimed to determine whether DHA impacts hippocampal insulin sensitivity and cognitive function in aged rats fed a high-fat diet (HFD). METHODS Eight-month-old female Sprague-Dawley rats were randomly divided into three groups (n = 50 each). Rats in the aged group, HFD group, and DHA treatment group received standard diet (10 kcal% fat), HFD (45 kcal% fat), and DHA-enriched HFD (45 kcal% fat, 1% DHA, W/W) for 10 months, respectively. Four-month-old female rats (n = 40) that received a standard diet served as young controls. Neuroinflammation, oxidative stress, amyloid formation, and tau phosphorylation in the hippocampus, as well as systemic glucose homeostasis and cognitive function, were tested. RESULTS DHA treatment relieved a block in the insulin signaling pathway and consequently protected aged rats against HFD-induced hippocampal insulin resistance. The beneficial effects were explained by a DHA-induced decrease in systemic glucose homeostasis dysregulation, hippocampal neuroinflammation and oxidative stress. In addition, DHA treatment broke the reciprocal cycle of hippocampal insulin resistance, Aβ burden, and tau hyperphosphorylation. Importantly, treatment of model rats with DHA significantly increased their cognitive capacity, as evidenced by their increased hippocampal-dependent learning and memory, restored neuron morphology, enhanced cholinergic activity, and activated cyclic AMP-response element-binding protein. CONCLUSION DHA improves cognitive function by enhancing hippocampal insulin sensitivity.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Ben Ni
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P.R. China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, P.R. China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, P.R. China
| | - Xia Xiang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
| |
Collapse
|
11
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
12
|
Ablinger I, Dressel K, Rott T, Lauer AA, Tiemann M, Batista JP, Taddey T, Grimm HS, Grimm MOW. Interdisciplinary Approaches to Deal with Alzheimer's Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022; 10:2922. [PMID: 36428494 PMCID: PMC9687885 DOI: 10.3390/biomedicines10112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Ablinger
- Speech and Language Therapy, Campus Bonn, SRH University of Applied Health Sciences, 53111 Bonn, Germany
| | - Katharina Dressel
- Speech and Language Therapy, Campus Düsseldorf, SRH University of Applied Health Sciences, 40210 Düsseldorf, Germany
| | - Thea Rott
- Interdisciplinary Periodontology and Prevention, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Anna Andrea Lauer
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Michael Tiemann
- Sport Science, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - João Pedro Batista
- Sport Science and Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tim Taddey
- Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Heike Sabine Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
13
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
14
|
Janitschke D, Lauer AA, Bachmann CM, Winkler J, Griebsch LV, Pilz SM, Theiss EL, Grimm HS, Hartmann T, Grimm MOW. Methylxanthines Induce a Change in the AD/Neurodegeneration-Linked Lipid Profile in Neuroblastoma Cells. Int J Mol Sci 2022; 23:2295. [PMID: 35216410 PMCID: PMC8875332 DOI: 10.3390/ijms23042295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Cornel Manuel Bachmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
15
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
16
|
The Impact of Medium Chain and Polyunsaturated ω-3-Fatty Acids on Amyloid-β Deposition, Oxidative Stress and Metabolic Dysfunction Associated with Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10121991. [PMID: 34943094 PMCID: PMC8698946 DOI: 10.3390/antiox10121991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.
Collapse
|
17
|
Bie N, Li J, Li C, Lian R, Qin L, Wang C. Protective effect and mechanism of docosahexaenoic acid on the cognitive function in female APP/PS1 mice. Food Funct 2021; 12:11435-11448. [PMID: 34676845 DOI: 10.1039/d1fo01922h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Docosahexaenoic acid (DHA) has been studied for many years owing to its protective effect on the decline in brain function. DHA intake reduces the risk of Alzheimer's disease (AD) and decreases amyloid deposition; however, the underlying molecular mechanism has not been completed elucidated. In this study, the effect of DHA on the cognitive function of amyloid precursor protein (APP)/PS1 in wild-type mice and its related mechanism were investigated. Results from the Morris water maze test showed that DHA improved learning and memory function in mice. Moreover, DHA reduced neuronal damage in mice brains, as determined using Nissl staining. Unsaturated fatty acid levels in the brain of mice increased (p < 0.01) after DHA administration and saturated fatty acid levels decreased (p < 0.01). The deposition of amyloid-beta (Aβ) plaques and tau protein neurofibrillary tangles was significantly inhibited. The mechanism of action of DHA was attributed to the upregulation of the expression of β-secretase (BACE)2, which competed with BACE1 to cleave APP, thus decreasing the production of extracellular Aβ fragments (p < 0.01). The expression level of insulin-degrading enzyme was not significantly different. The expression of N-methyl-D-aspartate receptors was further downregulated and the phosphorylation of glycogen synthase kinase-3β and tau protein was inhibited (p < 0.01). These data indicated that DHA could protect cognitive function in mice by reducing Aβ plaque formation and decreasing tau phosphorylation levels.
Collapse
Affiliation(s)
- Nana Bie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300457, People Republic of China.
| | - Jingyao Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300457, People Republic of China.
| | - Chenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300457, People Republic of China.
| | - Rui Lian
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300457, People Republic of China.
| | - Liehao Qin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300457, People Republic of China.
| | - Chunling Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300457, People Republic of China.
| |
Collapse
|
18
|
Lauer AA, Griebsch LV, Pilz SM, Janitschke D, Theiss EL, Reichrath J, Herr C, Beisswenger C, Bals R, Valencak TG, Portius D, Grimm HS, Hartmann T, Grimm MOW. Impact of Vitamin D 3 Deficiency on Phosphatidylcholine-/Ethanolamine, Plasmalogen-, Lyso-Phosphatidylcholine-/Ethanolamine, Carnitine- and Triacyl Glyceride-Homeostasis in Neuroblastoma Cells and Murine Brain. Biomolecules 2021; 11:1699. [PMID: 34827697 PMCID: PMC8615687 DOI: 10.3390/biom11111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Jörg Reichrath
- Department of Dermatology, Saarland University Hospital, 66421 Homburg, Germany;
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Teresa Giovanna Valencak
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Germany;
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
19
|
Dhapola R, Sarma P, Medhi B, Prakash A, Reddy DH. Recent Advances in Molecular Pathways and Therapeutic Implications Targeting Mitochondrial Dysfunction for Alzheimer's Disease. Mol Neurobiol 2021; 59:535-555. [PMID: 34725778 DOI: 10.1007/s12035-021-02612-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which leads to mental deterioration due to aberrant accretion of misfolded proteins in the brain. According to mitochondrial cascade hypothesis, mitochondrial dysfunction is majorly involved in the pathogenesis of AD. Many drugs targeting mitochondria to treat and prevent AD are in different phases of clinical trials for the evaluation of safety and efficacy as mitochondria are involved in various cellular and neuronal functions. Mitochondrial dynamics is regulated by fission and fusion processes mediated by dynamin-related protein (Drp1). Inner membrane fusion takes place by OPA1 and outer membrane fusion is facilitated by mitofusin1 and mitofusin2 (Mfn1/2). Excessive calcium release also impairs mitochondrial functions; to overcome this, calcium channel blockers like nilvadipine are used. Another process acting as a regulator of mitochondrial function is mitophagy which is involved in the removal of damaged and non-functional mitochondria however this process is also altered in AD due to mutations in Presenilin1 (PS1) and Amyloid Precursor Protein (APP) gene. Mitochondrial dynamics is altered in AD which led to the discovery of various fission protein (like Drp1) inhibitors and drugs that promote fusion. Modulations in AMPK, SIRT1 and Akt pathways can also come out to be better therapeutic strategies as these pathways regulate functions of mitochondria. Oxidative phosphorylation is major generator of Reactive Oxygen Species (ROS) leading to mitochondrial damage; therefore reduction in production of ROS by using antioxidants like MitoQ, Curcumin and Vitamin Eis quiteeffective.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, Central University of Punjab, 151401, Bathinda, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | |
Collapse
|
20
|
Mett J, Lauer AA, Janitschke D, Griebsch LV, Theiss EL, Grimm HS, Koivisto H, Tanila H, Hartmann T, Grimm MOW. Medium-Chain Length Fatty Acids Enhance Aβ Degradation by Affecting Insulin-Degrading Enzyme. Cells 2021; 10:2941. [PMID: 34831163 PMCID: PMC8616162 DOI: 10.3390/cells10112941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The accumulation of amyloid β-protein (Aβ) is one of the major pathological hallmarks of Alzheimer's disease. Insulin-degrading enzyme (IDE), a zinc-metalloprotease, is a key enzyme involved in Aβ degradation, which, in addition to Aβ production, is critical for Aβ homeostasis. Here, we demonstrate that saturated medium-chain fatty acids (MCFAs) increase total Aβ degradation whereas longer saturated fatty acids result in an inhibition of its degradation, an effect which could not be detected in IDE knock-down cells. Further analysis of the underlying molecular mechanism revealed that MCFAs result in an increased exosomal IDE secretion, leading to an elevated extracellular and a decreased intracellular IDE level whereas gene expression of IDE was unaffected in dependence of the chain length. Additionally, MCFAs directly elevated the enzyme activity of recombinant IDE, while longer-chain length fatty acids resulted in an inhibited IDE activity. The effect of MCFAs on IDE activity could be confirmed in mice fed with a MCFA-enriched diet, revealing an increased IDE activity in serum. Our data underline that not only polyunsaturated fatty acids such as docosahexaenoic acid (DHA), but also short-chain fatty acids, highly enriched, for example in coconut oil, might be beneficial in preventing or treating Alzheimer's disease.
Collapse
Affiliation(s)
- Janine Mett
- Biosciences Zoology/Physiology-Neurobiology, Faculty NT-Natural Science and Technology, Saarland University, 66123 Saarbrücken, Germany;
| | - Anna A. Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
| | - Lea V. Griebsch
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
| | - Elena L. Theiss
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
| | - Heike S. Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
| | - Hennariikka Koivisto
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland; (H.K.); (H.T.)
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland; (H.K.); (H.T.)
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66424 Homburg, Germany
| | - Marcus O. W. Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (D.J.); (L.V.G.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| |
Collapse
|
21
|
Kurokin I, Lauer AA, Janitschke D, Winkler J, Theiss EL, Griebsch LV, Pilz SM, Matschke V, van der Laan M, Grimm HS, Hartmann T, Grimm MOW. Targeted Lipidomics of Mitochondria in a Cellular Alzheimer's Disease Model. Biomedicines 2021; 9:1062. [PMID: 34440266 PMCID: PMC8393816 DOI: 10.3390/biomedicines9081062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the accumulation of Amyloid-β (Aβ) in senile plaques derived from amyloidogenic processing of a precursor protein (APP). Recently, changes in mitochondrial function have become in the focus of the disease. Whereas a link between AD and lipid-homeostasis exists, little is known about potential alterations in the lipid composition of mitochondria. Here, we investigate potential changes in the main mitochondrial phospholipid classes phosphatidylcholine, phosphatidylethanolamine and the corresponding plasmalogens and lyso-phospholipids of a cellular AD-model (SH-SY5Y APPswedish transfected cells), comparing these results with changes in cell-homogenates. Targeted shotgun-lipidomics revealed lipid alterations to be specific for mitochondria and cannot be predicted from total cell analysis. In particular, lipids containing three and four times unsaturated fatty acids (FA X:4), such as arachidonic-acid, are increased, whereas FA X:6 or X:5, such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), are decreased. Additionally, PE plasmalogens are increased in contrast to homogenates. Results were confirmed in another cellular AD model, having a lower affinity to amyloidogenic APP processing. Besides several similarities, differences in particular in PE species exist, demonstrating that differences in APP processing might lead to specific changes in lipid homeostasis in mitochondria. Importantly, the observed lipid alterations are accompanied by changes in the carnitine carrier system, also suggesting an altered mitochondrial functionality.
Collapse
Affiliation(s)
- Irina Kurokin
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, D-44801 Bochum, Germany;
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling PZMS, Saarland University Medical School, 66421 Homburg, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| |
Collapse
|
22
|
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente Miranda H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 2021; 255:346-361. [PMID: 34396529 DOI: 10.1002/path.5777] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-β peptide, glucagon, islet amyloid polypeptide (IAPP) and insulin-like growth factors, that have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytical functions such as a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-β and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luís Sousa
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Mariana Guarda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Meneses
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - M Paula Macedo
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal.,Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Vicente Miranda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
23
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
24
|
Mett J, Müller U. The medium-chain fatty acid decanoic acid reduces oxidative stress levels in neuroblastoma cells. Sci Rep 2021; 11:6135. [PMID: 33731759 PMCID: PMC7971073 DOI: 10.1038/s41598-021-85523-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Enhanced oxidative stress is a contributing factor in the pathogenesis of several neurodegenerative disorders such as Alzheimer´s disease. Beneficial effects have been demonstrated for medium-chain fatty acids (MCFAs) nutritionally administered as medium-chain triglycerides (MCTs) or coconut oil (CO). The observed effects on cognitive impairment are generally attributed to the hepatic metabolism of MCFAs, where resulting ketone bodies serve as an alternate energy source to compensate for the impaired glucose utilisation in the human brain. Here we show that the saturated MCFA decanoic acid (10:0) reduces the oxidative stress level in two different neuroblastoma cell lines. Phosphatidylcholine (PC) containing decanoic acid (10:0) (PC10:0/10:0) reduced the cellular H2O2 release in comparison to solvent, L-α-Glycerophosphorylcholine and PC containing the long-chain fatty acid (LCFA) arachidic acid (20:0). This effect seems to be at least partially based on an upregulation of catalase activity, independent of alterations in catalase gene expression. Further, PC10:0/10:0 decreased the intracellular oxidative stress level and attenuated the H2O2-induced cell death. It did not affect the level of the ketone body β-hydroxybutyrate (βHB). These results indicate that decanoic acid (10:0) and possibly MCFAs in general directly reduce oxidative stress levels independent of ketone levels and thus may promote neuronal health.
Collapse
Affiliation(s)
- Janine Mett
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT-Natural Science and Technology, Saarland University, 66123, Saarbrücken, Germany.
| | - Uli Müller
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT-Natural Science and Technology, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
25
|
Lauer AA, Mett J, Janitschke D, Thiel A, Stahlmann CP, Bachmann CM, Ritzmann F, Schrul B, Müller UC, Stein R, Riemenschneider M, Grimm HS, Hartmann T, Grimm MOW. Regulatory feedback cycle of the insulin-degrading enzyme and the amyloid precursor protein intracellular domain: Implications for Alzheimer's disease. Aging Cell 2020; 19:e13264. [PMID: 33128835 PMCID: PMC7681056 DOI: 10.1111/acel.13264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 12/04/2022] Open
Abstract
One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid‐β (Aβ) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aβ‐production and ‐degradation is necessary to prevent pathological Aβ‐accumulation. Here, we investigate the molecular mechanism how insulin‐degrading enzyme (IDE), one of the major Aβ‐degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aβ‐degradation is linked in a regulatory cycle to achieve this balance. In absence of Aβ‐production caused by APP or Presenilin deficiency, IDE‐mediated Aβ‐degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ‐secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH‐SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aβ‐production and Aβ‐degradation forming a regulatory cycle in which AICD promotes Aβ‐degradation via IDE and IDE itself limits its own production by degrading AICD.
Collapse
Affiliation(s)
- Anna A. Lauer
- Experimental Neurology Saarland University Homburg/Saar Germany
| | - Janine Mett
- Experimental Neurology Saarland University Homburg/Saar Germany
- Biosciences Zoology/Physiology‐Neurobiology Faculty NT‐Natural Science and Technology Saarland University Saarbrücken Germany
| | | | - Andrea Thiel
- Experimental Neurology Saarland University Homburg/Saar Germany
| | | | | | - Felix Ritzmann
- Department of Internal Medicine V – Pulmonology Allergology, Respiratory Intensive Care Medicine Saarland University Hospital Homburg/Saar Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology Center for Molecular Signaling (PZMS) Faculty of Medicine Saarland University Homburg/Saar Germany
| | - Ulrike C. Müller
- Department of Functional Genomics Institute of Pharmacy and Molecular Biotechnology Heidelberg University Germany
| | - Reuven Stein
- Department of Neurology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
| | | | - Heike S. Grimm
- Experimental Neurology Saarland University Homburg/Saar Germany
| | - Tobias Hartmann
- Experimental Neurology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
| | - Marcus O. W. Grimm
- Experimental Neurology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
| |
Collapse
|
26
|
He MT, Kim JH, Kim JH, Park CH, Cho EJ. Combination of Carthamus tinctorius L. seed and Taraxacum coreanum exerts synergistic effects on learning and memory function by regulating metabolism of amyloid beta in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Improvement of Blood Plasmalogens and Clinical Symptoms in Parkinson's Disease by Oral Administration of Ether Phospholipids: A Preliminary Report. PARKINSONS DISEASE 2020; 2020:2671070. [PMID: 32148751 PMCID: PMC7049862 DOI: 10.1155/2020/2671070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Introduction. Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). With the ageing of population, the frequency of PD is expected to increase dramatically in the coming decades. L-DOPA (1,3,4-dihydroxyalanine) is the most effective drug in the symptomatic treatment of PD. Nonmotor symptoms in PD include sleep problems, depression, and dementia, which are not adequately controlled with dopaminergic therapy. Here, we report the efficacy of oral administration of scallop-derived ether phospholipids to some nonmotor symptoms of PD.
Collapse
|
29
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
30
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
31
|
Abstract
Growing evidence suggests that ethanolamine plasmalogens (PlsEtns), a subtype of phospholipids, have a close association with Alzheimer’s disease (AD). Decreased levels of PlsEtns have been commonly found in AD patients, and were correlated with cognition deficit and severity of disease. Limited studies showed positive therapeutic outcomes with plasmalogens interventions in AD subjects and in rodents. The potential mechanisms underlying the beneficial effects of PlsEtns on AD may be related to the reduction of γ–secretase activity, an enzyme that catalyzes the synthesis of β-amyloid (Aβ), a hallmark of AD. Emerging in vitro evidence also showed that PlsEtns prevented neuronal cell death by enhancing phosphorylation of AKT and ERK signaling through the activation of orphan G-protein coupled receptor (GPCR) proteins. In addition, PlsEtns have been found to suppress the death of primary mouse hippocampal neuronal cells through the inhibition of caspase-9 and caspase-3 cleavages. Further in-depth investigations are required to determine the signature molecular species of PlsEtns associated with AD, hence their potential role as biomarkers. Clinical intervention with plasmalogens is still in its infancy but may have the potential to be explored for a novel therapeutic approach to correct AD pathology and neural function.
Collapse
|
32
|
Park HJ, Jung IH, Kwon H, Yu J, Jo E, Kim H, Park SJ, Lee YC, Kim DH, Ryu JH. The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer's disease model mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:73-79. [PMID: 30605739 DOI: 10.1016/j.jep.2018.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) have long been treated as hypnotic agent for sleep disturbances in traditional Chinese and Korean medicine and many previous studies have focused on its effect in central nervous system. AIMS OF STUDY The present study aimed to provide evidence showing that the ethanol extract of Zizyphus jujuba var. spinosa seeds (EEZS), which may regulate plasmin activity, has the potential to serve as a therapeutic agent for AD. MATERIALS AND METHODS Synaptic function was determined by measuring long-term potentiation (LTP) in Shaffer-collateral pathway of the hippocampus. Protein levels of plasmin or plasminogen were examined using western blotting. Plasmin activity was measured using ELISA. Cognitive functions were measured using passive avoidance and object recognition tests in the 5XFAD mice. RESULTS Our in vitro analysis revealed that EEZS-treated hippocampal slices from 5XFAD mice, a mouse model of AD, showed significantly higher long-term potentiation levels than did vehicle-treated hippocampal slices from 5XFAD mice (P < 0.05). Additionally, EEZS significantly elevated the plasmin level and activity in the hippocampal slices from 5XFAD mice (P < 0.05). Co-treating the slices with EEZS and 6-aminocaproic acid, a plasmin inhibitor, blocked the ameliorating effects of EEZS on the synaptic deficits that were present in 5XFAD mice. Compatible with the in vitro study, the results of our in vivo investigation showed that administering EEZS orally to 5XFAD mice ameliorated their memory impairments. Orally administered EEZS also elevated the plasmin level and activity in the hippocampus of 5XFAD mice. CONCLUSIONS Collectively, our findings suggest that EEZS alleviates the AD-like symptoms in 5XFAD mice by regulating of plasmin activity and EEZS may be a suitable treatment for AD.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul, Republic of Korea.
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Jimin Yu
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Eunbi Jo
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Haneul Kim
- Daehwa Pharmaceutical Co., Ltd., Seongnam 13488, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Science, Kangwon National University, ChoonCheon, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
33
|
El Shatshat A, Pham AT, Rao PP. Interactions of polyunsaturated fatty acids with amyloid peptides Aβ40 and Aβ42. Arch Biochem Biophys 2019; 663:34-43. [DOI: 10.1016/j.abb.2018.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
|
34
|
Amen DG, Harris WS, Kidd PM, Meysami S, Raji CA. Quantitative Erythrocyte Omega-3 EPA Plus DHA Levels are Related to Higher Regional Cerebral Blood Flow on Brain SPECT. J Alzheimers Dis 2018; 58:1189-1199. [PMID: 28527220 DOI: 10.3233/jad-170281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The interrelationships between omega-3 fatty acids status, brain perfusion, and cognition are not well understood. OBJECTIVE To evaluate if SPECT brain imaging of cerebral perfusion and cognition varies as a function of omega-3 fatty acid levels. METHODS A random sample of 166 study participants was drawn from a psychiatric referral clinical for which erythrocyte quantification of omega-3 eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) (the Omega-3 Index) was available. Quantitative brain SPECT was done on 128 regions based on a standard anatomical Atlas. Persons with erythrocyte EPA+DHA concentrations were dichotomized based on membership in top 50th percentile versus bottom 50th percentile categories. Two-sample t-tests were done to identify statistically significant differences in perfusion between the percentile groups. Partial correlations were modeled between EPA+DHA concentration and SPECT regions. Neurocognitive status was assessed using computerized testing (WebNeuro) and was separately correlated to cerebral perfusion on brain SPECT imaging and omega-3 EPA+DHA levels. RESULTS Partial correlation analyses showed statistically significant relationships between higher omega-3 levels and cerebral perfusion were in the right parahippocampal gyrus (r = 0.20, p = 0.03), right precuneus (r = 0.20, p = 0.03), and vermis subregion 6 (p = 0.21, p = 0.03). Omega-3 Index levels separately correlated to the feeling subsection of the WebNeuro (r = 0.25, p = 0.01). CONCLUSION Quantitative omega-3 EPA+DHA erythrocyte concentrations are independently correlated with brain perfusion on SPECT imaging and neurocognitive tests. These results have implications for the role of omega-3 fatty acids toward contributing to cognitive reserve.
Collapse
Affiliation(s)
| | - William S Harris
- University of South Dakota School of Medicine, Vermillion, SD, USA
| | | | | | | |
Collapse
|
35
|
Xin SH, Tan L, Cao X, Yu JT, Tan L. Clearance of Amyloid Beta and Tau in Alzheimer's Disease: from Mechanisms to Therapy. Neurotox Res 2018; 34:733-748. [PMID: 29626319 DOI: 10.1007/s12640-018-9895-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Pathological proteins of AD mainly contain amyloid-beta (Aβ) and tau. Their deposition will lead to neuron damage by a series of pathways, and then induce memory and cognitive impairment. Thus, it is pivotal to understand the clearance pathways of Aβ and tau in order to delay or even halt AD. Aβ clearance mechanisms include ubiquitin-proteasome system, autophagy-lysosome, proteases, microglial phagocytosis, and transport from the brain to the blood via the blood-brain barrier (BBB), arachnoid villi and blood-CSF barrier, which can be named blood circulatory clearance. Recently, lymphatic clearance has been demonstrated to play a key role in transport of Aβ into cervical lymph nodes. The discovery of meningeal lymphatic vessels is another direct evidence for lymphatic clearance in the brain. Furthermore, periphery clearance also contributes to Aβ clearance. Tau clearance is almost the same as Aβ clearance. In this review, we will mainly introduce the clearance mechanisms of Aβ and tau proteins, and summarize corresponding targeted drug therapies for AD.
Collapse
Affiliation(s)
- Shu-Hui Xin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Xipeng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
36
|
Zhou MM, Che HX, Huang JQ, Zhang TT, Xu J, Xue CH, Wang YM. Comparative Study of Different Polar Groups of EPA-Enriched Phospholipids on Ameliorating Memory Loss and Cognitive Deficiency in Aged SAMP8 Mice. Mol Nutr Food Res 2018; 62:e1700637. [DOI: 10.1002/mnfr.201700637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Miao-miao Zhou
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Hong-xia Che
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Jia-qi Huang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Tian-tian Zhang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Jie Xu
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Chang-hu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Yu-ming Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| |
Collapse
|
37
|
Insulin-degrading enzyme is not secreted from cultured cells. Sci Rep 2018; 8:2335. [PMID: 29402917 PMCID: PMC5799172 DOI: 10.1038/s41598-018-20597-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
Insulin-degrading enzyme (IDE) functions in the catabolism of bioactive peptides. Established roles include degrading insulin and the amyloid beta peptide (Aβ), linking it to diabetes and Alzheimer’s disease. IDE is primarily located in the cytosol, and a longstanding question is how it gains access to its peptide substrates. Reports suggest that IDE secreted by an unconventional pathway participates in extracellular hydrolysis of insulin and Aβ. We find that IDE release from cultured HEK-293 or BV-2 cells represents only ~1% of total cellular IDE, far less than has been reported previously. Importantly, lactate dehydrogenase (LDH) and other cytosolic enzymes are released at the same relative level, indicating that extracellular IDE results from a loss of cell integrity, not secretion. Lovastatin increases IDE release from BV-2 cells as reported, but this release is mirrored by LDH release. Cell viability assays indicate lovastatin causes a loss of cell integrity, explaining its effect on IDE release. IDE is present in an exosome-enriched fraction from BV-2 cell conditioned media, however it represents only ~0.01% of the total cellular enzyme and is unlikely to be a significant source of IDE. These results call into question the secretion of IDE and its importance in extracellular peptide degradation.
Collapse
|
38
|
Che H, Zhou M, Zhang T, Zhang L, Ding L, Yanagita T, Xu J, Xue C, Wang Y. EPA enriched ethanolamine plasmalogens significantly improve cognition of Alzheimer’s disease mouse model by suppressing β-amyloid generation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Li Q, Wu F, Wen M, Yanagita T, Xue C, Zhang T, Wang Y. The Protective Effect of Antarctic Krill Oil on Cognitive Function by Inhibiting Oxidative Stress in the Brain of Senescence-Accelerated Prone Mouse Strain 8 (SAMP8) Mice. J Food Sci 2018; 83:543-551. [PMID: 29350764 DOI: 10.1111/1750-3841.14044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a vital role in its progression. Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids, which has various biological activities, such as improving insulin sensitivity, alleviating inflammation and ameliorating oxidative stress. In this study, the protective effect of AKO against AD were investigated in senescence-accelerated prone mouse strain 8 (SAMP8) mice. Results showed that treatment with AKO could effectively ameliorate learning and memory deficits and ease the anxiety in SAMP8 mice by Morris water maze, Barnes maze test and open-field test. Further analysis indicated that AKO might reduce β-amyloid (Aβ) accumulation in hippocampus through decreasing the contents of malondialdehyde (MDA) and 7,8-dihydro-8-oxoguanine (8-oxo-G), increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain of SAMP8 mice. PRACTICAL APPLICATION The results of Morris water maze, Barnes maze test and open-field test indicated that Antarctic krill oil (AKO) improved the cognitive function and anxiety of SAMP8 mice. AKO reduced the Aβ42 level in hippocampus of SAMP8 mice. AKO ameliorated oxidative stress in brain rather than in serum and liver of SAMP8 mice.
Collapse
Affiliation(s)
- Qian Li
- Coll. of Food Science and Engineering, Ocean Univ. of China, No.5 Yushan Road, Qingdao 266003, P. R. China
| | - Fengjuan Wu
- Coll. of Food Science and Engineering, Ocean Univ. of China, No.5 Yushan Road, Qingdao 266003, P. R. China
| | - Min Wen
- Coll. of Food Science and Engineering, Ocean Univ. of China, No.5 Yushan Road, Qingdao 266003, P. R. China.,Inst. of BioPharmaceutical Research, Liaocheng Univ., Liaocheng 252059, China
| | - Teruyoshi Yanagita
- Dept. of Health and Nutrition Science, Nishikyushu Univ., Kanzaki, Japan
| | - Changhu Xue
- Coll. of Food Science and Engineering, Ocean Univ. of China, No.5 Yushan Road, Qingdao 266003, P. R. China.,Qingdao National Lab. for Marine Science and Technology, Lab. of Marine Drugs & Biological products, Qingdao, Shandong Province 266237, China
| | - Tiantian Zhang
- Coll. of Food Science and Engineering, Ocean Univ. of China, No.5 Yushan Road, Qingdao 266003, P. R. China
| | - Yuming Wang
- Coll. of Food Science and Engineering, Ocean Univ. of China, No.5 Yushan Road, Qingdao 266003, P. R. China.,Qingdao National Lab. for Marine Science and Technology, Lab. of Marine Drugs & Biological products, Qingdao, Shandong Province 266237, China
| |
Collapse
|
40
|
Abstract
The functions of n-3 fatty acids are known to be diverse, and they play roles in cardiovascular and neuronal systems and in lipid metabolism. Docosahexaenoic acid (DHA), which is the most abundant n-3 fatty acid in the brain, is essential for the maintenance of brain functions throughout the human lifespan. Epidemiological studies have demonstrated that reduced n-3 fatty acid intake is closely associated with the onset of mental and neurological diseases such as brain developmental disorders, depression, and Alzheimer's disease. DHA is primarily involved in neurogenesis, synapse formation, neuronal differentiation, neurite outgrowth, maintenance of membrane fluidity, anti-inflammatory action, and antioxidant action. Its mechanism of action include: 1) the effects on ion channels and membrane bound receptors/enzymes achieved by changing membrane fluidity, as a cell membrane constituent, and 2) free DHA molecules, derived from the cell membrane that directly or metabolically, by conversion to protectin D1 and other molecules, indirectly regulates the gene expression and the activity of intracellular proteins. Although future studies are required, the supplementation of n-3 fatty acids such as DHA may suppress the deterioration of brain functions, delay the onset and progression of various mental/neurological diseases, and further improve the outcome of the neuronal diseases.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine
| |
Collapse
|
41
|
Grimm MOW, Thiel A, Lauer AA, Winkler J, Lehmann J, Regner L, Nelke C, Janitschke D, Benoist C, Streidenberger O, Stötzel H, Endres K, Herr C, Beisswenger C, Grimm HS, Bals R, Lammert F, Hartmann T. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation. Int J Mol Sci 2017; 18:E2764. [PMID: 29257109 PMCID: PMC5751363 DOI: 10.3390/ijms18122764] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D₂ and D₃ analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
- Neurodegeneration and Neurobiology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Andrea Thiel
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Anna A Lauer
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Jakob Winkler
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Johannes Lehmann
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
- Department of Internal Medicine II-Gastroenterology, Saarland University Hospital, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany.
| | - Liesa Regner
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Christopher Nelke
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Céline Benoist
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Olga Streidenberger
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Hannah Stötzel
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, Clinical Research Group, University Medical Centre Johannes Gutenberg, University of Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany.
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Heike S Grimm
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| | - Frank Lammert
- Department of Internal Medicine II-Gastroenterology, Saarland University Hospital, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
- Neurodegeneration and Neurobiology, Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Kirrberger Str. 1, 66421 Homburg/Saar, Germany.
| |
Collapse
|
42
|
Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med 2017; 6:25. [PMID: 28752333 PMCID: PMC5532176 DOI: 10.1186/s40169-017-0153-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the "return to homeostasis" process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2-4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
Collapse
Affiliation(s)
- Rafael Zárate
- Canary Islands Cancer Research Institute (ICIC), Ave. La Trinidad 61, Torre A. Arévalo, 7th floor, 38204 La Laguna, Tenerife Spain
| | - Nabil el Jaber-Vazdekis
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ UK
| | - José A. Pérez
- Department of Animal Biology, Soil Science and Geology (Animal Physiology Unit), Faculty of Sciences, Universidad de La Laguna, Ave. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife Spain
| | - Covadonga Rodríguez
- Department of Animal Biology, Soil Science and Geology (Animal Physiology Unit), Faculty of Sciences, Universidad de La Laguna, Ave. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, Campus de Ofra, 38071 La Laguna, Tenerife Spain
| |
Collapse
|
43
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
44
|
Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer's disease and epigenetic. Crit Rev Food Sci Nutr 2017; 59:102-113. [PMID: 28799782 DOI: 10.1080/10408398.2017.1359488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and is a chronic neurodegenerative disease that is becoming widespread. For this reason, in recent years factors affecting the development, progression and cognitive function of the AD have been emphasized. Nutrients and other bioactive nutrients are among the factors that are effective in AD. In particular, vitamins A, C and E, vitamins B1, B6 and B12, folate, magnesium, choline, inositol, anthocyanins, isoflavones etc. nutrients and bioactive nutrients are known to be effective in the development of AD. Nutrients and nutrient components may also have an epigenetic effect on AD. At the same time, nutrients and bioactive food components slow down the progression of the disease. For this reason, the effect of nutrients and food components on AD was examined in this review.
Collapse
Affiliation(s)
- Elif Celik
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| | - Nevin Sanlier
- a Gazi University , Faculty of Health Sciences, Nutrition and Dietetics Department , Ankara , Turkey
| |
Collapse
|
45
|
Pardeshi R, Bolshette N, Gadhave K, Ahire A, Ahmed S, Cassano T, Gupta VB, Lahkar M. Insulin signaling: An opportunistic target to minify the risk of Alzheimer's disease. Psychoneuroendocrinology 2017. [PMID: 28624654 DOI: 10.1016/j.psyneuen.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by accumulation of senile plaques, neurofibrillary tangles (NFT) and neurodegeneration. The diabetes mellitus (DM) is one of the risk factors for AD pathogenesis by impairment in insulin signaling and glucose metabolism in central as well as peripheral system. Insulin resistance, impaired glucose and lipid metabolism are leading to the Aβ (Aβ) aggregation, Tau phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, memory impairment and also mark over Aβ transport through central to peripheral and vice versa. Several pathways, like enzymatic degradation of Aβ, forkhead box protein O1 (FOXO) signaling, insulin signaling shared common pathological mechanism for both AD and DM. Recent evidence showed that hyperinsulinemia and hyperglycemia affect the onset and progression of AD differently. Some researchers have suggested that hyperglycemia influences vascular tone, while hyperinsulinemia may underlie mitochondrial deficit. The objective of this review is to determine whether existing evidence supports the concept that impairment in insulin signaling and glucose metabolism play an important role in pathogenesis of AD. In the first part of this review, we tried to explain the interconnecting link between AD and DM, whereas the second part includes more information on insulin resistance and its involvement in AD pathogenesis. In the final part of this review, we have focused more toward the AD treatment by targeting insulin signaling like anti-diabetic, antioxidant, nutraceuticals and dietary supplements. To date, more researches should be done in this field in order to explore the pathways in insulin signaling, which might ameliorate the treatment options and reduce the risk of AD due to DM.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Kundlik Gadhave
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Ashutosh Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Veer Bala Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith-Cowan University, Joondalup, WA 6027, Australia
| | - Mangala Lahkar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India.
| |
Collapse
|
46
|
Grimm MOW, Mett J, Grimm HS, Hartmann T. APP Function and Lipids: A Bidirectional Link. Front Mol Neurosci 2017; 10:63. [PMID: 28344547 PMCID: PMC5344993 DOI: 10.3389/fnmol.2017.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| | - Janine Mett
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Heike S. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
47
|
Efficacy and Blood Plasmalogen Changes by Oral Administration of Plasmalogen in Patients with Mild Alzheimer's Disease and Mild Cognitive Impairment: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial. EBioMedicine 2017; 17:199-205. [PMID: 28259590 PMCID: PMC5360580 DOI: 10.1016/j.ebiom.2017.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Background Plasmalogens (Pls) reportedly decreased in postmortem brain and in the blood of patients with Alzheimer's disease (AD). Recently we showed that intraperitoneal administration of Pls improved cognitive function in experimental animals. In the present trial, we tested the efficacy of oral administration of scallop-derived purified Pls with respect to cognitive function and blood Pls changes in patients with mild AD and mild cognitive impairment (MCI). Methods The study was a multicenter, randomized, double-blind, placebo-controlled trial of 24 weeks. Participants were 328 patients aged 60 to 85 years who had 20 to 27 points in Mini Mental State Examination-Japanese (MMSE-J) score and five or less points in Geriatric Depression Scale-Short Version-Japanese (GDS-S-J). They were randomized to receive either 1 mg/day of Pls purified from scallop or placebo. The patients and study physicians were masked to the assignment. The primary outcome was MMSE-J. The secondary outcomes included Wechsler Memory Scale-Revised (WMS-R), GDS-S-J and concentration of phosphatidyl ethanolamine plasmalogens (PlsPE) in erythrocyte membrane and plasma. This trial is registered with the University Hospital Medical Information Network, number UMIN000014945. Findings Of 328 patients enrolled, 276 patients completed the trial (140 in the treatment group and 136 in the placebo group). In an intention-to-treat analysis including both mild AD (20 ≤ MMSE-J ≤ 23) and MCI (24 ≤ MMSE-J ≤ 27), no significant difference was shown between the treatment and placebo groups in the primary and secondary outcomes, with no severe adverse events in either group. In mild AD patients, WMS-R improved significantly in the treatment group, and the between group difference was nearly significant (P = 0.067). In a subgroup analysis of mild AD patients, WMS-R significantly improved among females and those aged below 77 years in the treatment group, and the between-group differences were statistically significant in females (P = 0.017) and in those aged below 77 years (P = 0.029). Patients with mild AD showed a significantly greater decrease in plasma PlsPE in the placebo group than in the treatment group. Interpretation Oral administration of scallop-derived purified Pls may improve cognitive functions of mild AD. Funding The Japanese Plasmalogen Society. Plasmalogens (Pls), a kind of phospholipid, are reduced in the brain and blood of patients with Alzheimer’s disease (AD). Scallop-derived purified Pls were orally administered to patients with mild AD and mild cognitive impairment by RCT. Oral administration of scallop-derived purified Pls may improve cognitive functions of mild AD.
It is well known that Plasmalogens (Pls), a special class of glycerophospholipid, are decreased in the brain and blood of patients with Alzheimer’s disease (AD), and inhibit γ-secretase activity. Our recent studies showed that intraperitoneal administration of purified Pls improved cognitive function in the animal model of AD. We tested the efficacy of Pls for Alzheimer’s disease by a multicenter, randomized, double-blind, placebo-controlled trial and showed that oral administration of scallop-derived purified Pls may improve cognitive functions of patients with mild AD.
Collapse
|