1
|
Huckestein BR, Zeng K, Westcott R, Alder JK, Antos D, Kolls JK, Alcorn JF. Mammalian Target of Rapamycin Complex 1 Activation in Macrophages Contributes to Persistent Lung Inflammation following Respiratory Tract Viral Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:384-401. [PMID: 38159723 PMCID: PMC10913760 DOI: 10.1016/j.ajpath.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.
Collapse
Affiliation(s)
- Brydie R Huckestein
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly Zeng
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rosemary Westcott
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan K Alder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Danielle Antos
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, Louisiana
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Kesherwani R, Bhoumik S, Kumar R, Rizvi SI. Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats. Indian J Clin Biochem 2024; 39:101-109. [PMID: 38223009 PMCID: PMC10784434 DOI: 10.1007/s12291-022-01077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000-4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.
Collapse
Affiliation(s)
- Rashmi Kesherwani
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Sukanya Bhoumik
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
3
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
4
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. 3-Bromopyruvate elevates ROS and induces hormesis to exert a caloric restriction mimetic effect in young and old rats. Arch Physiol Biochem 2023; 129:416-423. [PMID: 33026905 DOI: 10.1080/13813455.2020.1828485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT 3-Bromopyruvate (3-BP) is a glycolytic inhibitor and a putative caloric restriction mimetic. OBJECTIVE We have examined the effect of low-dose administration of 3-BP to rats and assess the CRM effect by measuring an array of biomarkers of oxidative stress. MATERIALS AND METHODS Male Wistar young and old rats were administered with a low-dose 3-BP for four weeks. RESULTS A significant increase in ROS was observed in 3-BP-treated rats (both young and old), an increase in erythrocyte PMRS (plasma membrane redox system), FRAP (Ferric reducing ability of plasma), catalase and superoxide dismutase activities were also observed. Treatment with 3-BP also reduced protein carbonyl, advanced oxidation protein products, plasma sialic acid, and advanced glycation end products. CONCLUSION Short-term 3-BP treatment can provide protection against oxidant stress. We suggest that 3-BP triggers a hormetic response subsequent to an increase in ROS leading to the induction of a protective defense mechanism.
Collapse
Affiliation(s)
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | | | |
Collapse
|
5
|
Arya JK, Kumar R, Singh A, Srivastava P, Yadawa AK, Rizvi SI. Acarbose, an α-Glucosidase Inhibitor, Maintains Altered Redox Homeostasis During Aging by Targeting Glucose Metabolism in Rat Erythrocytes. Rejuvenation Res 2023; 26:21-31. [PMID: 36524249 DOI: 10.1089/rej.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing age is the single largest risk factor for a variety of chronic illnesses. As a result, improving the capability to target the aging process leads to an increased health span. A lack of appropriate glucoregulatory control is a recurring issue associated with aging and chronic illness, even though many longevity therapies result in the preservation of glucoregulatory control. In this study, we suggest that targeting glucose metabolism to improve regulatory control can help slow the aging process. Male Wistar rats, both young (age 4 months) and old (age 24 months), were given acarbose (ACA) (30 mg/kg b.w.) for 6 weeks. An array of oxidative stress indicators was assessed after the treatment period, including plasma antioxidant capacity as determined by the ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (malondialdehyde [MDA]), reduced glutathione (GSH), total plasma thiol (sulfhydryl [SH]), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and sialic acid (SA) in control and treated groups. When compared with controls, ACA administration increased FRAP, GSH, SH, and PMRS activities in both age groups. The treated groups, on the contrary, showed substantial decreases in ROS, MDA, PCO, AOPP, AGE, and SA levels. The effect of ACA on almost all parameters was more evident in old-age rats. ACA significantly increased PMRS activity in young rats; here the effect was less prominent in old rats. Our data support the restoration of antioxidant levels in older rats after short-term ACA treatment. The findings corroborate the potential role of ACA as a putative calorie restriction mimetic.
Collapse
Affiliation(s)
- Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Parisha Srivastava
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Tripathi SS, Kumar R, Bissoyi A, Rizvi SI. Baicalein maintains redox balance in experimental hyperlipidemic rats. Arch Physiol Biochem 2022; 128:1156-1164. [PMID: 32393069 DOI: 10.1080/13813455.2020.1760890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: An altered lipid profile may lead to the development of CVD.Objective: We evaluated the protective role of baicalein (BAC) against lipidemic and oxidative stress in hyperlipidemic challenged Wistar rats.Materials and methods: Male Wistar rats were given a high-fat diet (HFD) (suspension (w/v) of 0.5% cholesterol, 3% coconut oil and 0.25% cholic acid for 30 days) to create a hyperlipidemic model. BAC was supplemented to experimental rats (80 mg/kg body weight). Biomarkers of oxidative stress including ROS, FRAP, GSH, PMRS, AGE, MDA, PCO, AOPP, and other parameters (Paraoxonase-1, SGOT, SGPT) including TNF-α and IL-6, were estimated in blood.Results: Oxidative stress and inflammatory markers were significantly increased in the HFD treated group. BAC treatment protected rats from HFD mediated alterations.Discussion & conclusion: Our results indicate that baicalein provides protection against hyperlipidemic stress and redox imbalance induced by HFD in rats.
Collapse
Affiliation(s)
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Akalabya Bissoyi
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
7
|
Venkatappa MM, Udagani C, Hanumegowda SM, Pramod SN, Venkataramaiah S, Rangappa R, Achur R, Alataway A, Dewidar AZ, Al-Yafrsi M, A. Mahmoud E, Elansary HO, Sannaningaiah D. Effect of Biofunctional Green Synthesized MgO-Nanoparticles on Oxidative-Stress-Induced Tissue Damage and Thrombosis. Molecules 2022; 27:molecules27165162. [PMID: 36014400 PMCID: PMC9413574 DOI: 10.3390/molecules27165162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 μg/μL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Manjula M. Venkatappa
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| | - Chikkappa Udagani
- Department of Physics, University College of Science, Tumkur University, Tumkur 572103, India
| | | | | | - Shivakumar Venkataramaiah
- Centre for Bioscience and Innovation, Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, India
| | | | - Rajeshwara Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z. Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Al-Yafrsi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (H.O.E.); (D.S.); Tel.: +966-581216322 (H.O.E.); +91-9902838928 (D.S.)
| | - Devaraja Sannaningaiah
- Centre for Bioscience and Innovation, Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, India
- Correspondence: (H.O.E.); (D.S.); Tel.: +966-581216322 (H.O.E.); +91-9902838928 (D.S.)
| |
Collapse
|
8
|
Kuo WW, Baskaran R, Lin JY, Day CH, Lin YM, Ho TJ, Chen RJ, Lin MY, Padma VV, Huang CY. Low-dose rapamycin prevents Ang-II-induced toxicity in Leydig cells and testicular dysfunction in hypertensive SHR model. J Biochem Mol Toxicol 2022; 36:e23128. [PMID: 35698875 DOI: 10.1002/jbt.23128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/16/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022]
Abstract
Hypertension is a common chronic cardiovascular disease reported among both men and women. Hypertension in males affects the testis and reproduction function; however, the pathogenesis is poorly understood. Rapamycin has been reported to have a variety of beneficial pharmacological effects; however, high-doses rapamycin does have side effects such as immunosuppression. The present study investigates whether low-dose rapamycin can reduce the damage caused by hypertension to the testis of spontaneously hypertensive rats (SHRs) and further examines molecular mechanism of low-dose rapamycin in preventing testicular toxicity induced by angiotensin II (Ang II). Low rapamycin dose restores the testicle size, histological alterations, 3β-hydroxysteroid dehydrogenase (3β-HSD) expression, and prevents apoptosis in SHR rats. Ang II downregulates angiotensin-converting enzyme-2 (ACE2) expression through AT1R, p-ERK, and MAS receptor in LC-540 Leydig cells in a dose-dependent manner. Low doses of rapamycin effectively upregulate steroidogenic enzymes, steroidogenic acute regulatory protein and 3β-HSD expression in Leydig cells. Rapamycin upregulates ACE2 expression through p-PKAc and p-PI3k in Ang II-treated cells. Further, rapamycin curbs mitochondrial superoxide generation and depleted mitochondrial membrane potential induced by Ang II through activation of Nrf2-mediated Gpx4 and superoxide dismutase 2 expression. Our results revealed the involvement of ACE2, AT1R, AT2R, PKAc, and oxidative stress in Ang-II-induced testicular toxicity, suggesting low-dose rapamycin could be a potential therapeutic candidate to attenuate testicular toxicity.
Collapse
Affiliation(s)
- Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Mei-Yi Lin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
9
|
Sharma S, Rana AK, Sharma A, Singh D. Inhibition of Mammalian Target of Rapamycin Attenuates Recurrent Seizures Associated Cardiac Damage in a Zebrafish Kindling Model of Chronic Epilepsy. J Neuroimmune Pharmacol 2022; 17:334-349. [PMID: 34537895 DOI: 10.1007/s11481-021-10021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is primarily linked with the cardiac irregularities that occur due to recurrent seizures. Our previous studies found a role of mTOR pathway activation in seizures-linked cardiac damage in a rat model. In continuation to the earlier work, the present study was devised to explore the role of rapamycin (mTOR inhibitor and clinically used immunosuppressive agent) in a zebrafish kindling model and associated cardiac damage. Adult zebrafish were incubated with increasing concentrations of rapamycin (1, 2 and, 4 μM), followed by pentylenetetrazole (PTZ) exposure to record seizure latency and severity. In another experiment, zebrafish were subjected to a standardized PTZ kindling protocol. The kindled fish were treated daily with rapamycin for up to 25 days, along with PTZ to record seizure severity. At the end, zebrafish heart was excised for carbonylation assay, gene expression, and protein quantification studies. In the acute PTZ convulsion test, treatment with rapamycin showed a significant increase in seizure latency and decreased seizure severity without any change in seizure incidence. Treatment with rapamycin also reduced the severity of seizures in kindled fish. The cardiac expressions of gpx, nppb, kcnh2, scn5a, mapk8, stat3, rps6 and ddit were decreased, whereas the levels of trxr2 and beclin 1 were increased following rapamycin treatment in kindled fish. Furthermore, rapamycin treatment also decreased p-mTOR expression and protein carbonyls level in the fish cardiac tissue. The present study concluded that rapamycin reduces seizures and associated cardiac damage by inhibiting mTOR activation in the zebrafish kindling model.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditi Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. Hormetic effect of 3-Bromopyruvate on age-induced alterations in erythrocyte membrane transporters and oxidative biomarkers in rats. Rejuvenation Res 2022; 25:122-128. [DOI: 10.1089/rej.2021.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jitendra Kumar Arya
- University of Allahabad, Department of Biochemistry, allahabad, ALLAHABAD, UTTAR PRADESH, India, 211002
| | - Raushan Kumar
- University of Allahabad, Department of Biochemistry, Allahabad, Uttar Pradesh, India
| | - Shambhoo Sharan Tripathi
- University of Allahabad, Department of Biochemistry, Fauclty of Science, UNIVERSITY OF ALLAHABAD, PRYAGRAJ, Uttar Pradesh, India, 211002
| | - Syed Ibrahim Rizvi
- University of Allahabad, Department of Biochemistry, faculty of Science, Allahabad, Uttar Pradesh, India, 211002
- India
| |
Collapse
|
11
|
Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel G, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: A proposed process and prioritization. Aging Cell 2022; 21:e13596. [PMID: 35343051 PMCID: PMC9009114 DOI: 10.1111/acel.13596] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
Common chronic diseases represent the greatest driver of rising healthcare costs, as well as declining function, independence, and quality of life. Geroscience-guided approaches seek to delay the onset and progression of multiple chronic conditions by targeting fundamental biological pathways of aging. This approach is more likely to improve overall health and function in old age than treating individual diseases, by addressing aging the largest and mostly ignored risk factor for the leading causes of morbidity in older adults. Nevertheless, challenges in repurposing existing and moving newly discovered interventions from the bench to clinical care have impeded the progress of this potentially transformational paradigm shift. In this article, we propose the creation of a standardized process for evaluating FDA-approved medications for their geroscience potential. Criteria for systematically evaluating the existing literature that spans from animal models to human studies will permit the prioritization of efforts and financial investments for translating geroscience and allow immediate progress on the design of the next Targeting Aging with MEtformin (TAME)-like study involving such candidate gerotherapeutics.
Collapse
Affiliation(s)
- Ameya S. Kulkarni
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
AbbVie Inc.North ChicagoIL60064USA.
| | - Sandra Aleksic
- Department of Medicine (Endocrinology and Geriatrics)Albert Einstein College of MedicineBronxNew YorkUSA
| | - David M. Berger
- Department of Medicine (Hospital Medicine)Montefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Felipe Sierra
- Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - George A. Kuchel
- UConn Center on AgingUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
12
|
Singh S, Garg G, Singh AK, Tripathi SS, Rizvi SI. Fisetin, a potential caloric restriction mimetic, modulates ionic homeostasis in senescence induced and naturally aged rats. Arch Physiol Biochem 2022; 128:51-58. [PMID: 31496286 DOI: 10.1080/13813455.2019.1662452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Fisetin as a caloric restriction mimetic (CRM) exerts numerous beneficial effects on different aging model systems. The effect of fisetin on erythrocyte membrane functions against induced aging is not very clear. OBJECTIVES The potential role of fisetin in the modulation of erythrocytes membrane-bound transporters during natural and induced aging in rats was assessed. MATERIALS AND METHODS Male Wistar rats were used for natural and D-galactose (D-gal) induced aging model. After supplementation with fisetin, the activities of different membrane transporters and biomarkers of oxidative stress were evaluated. RESULTS Fisetin modulated membrane transporters such as calcium-ATPase, sodium potassium-ATPase and sodium hydrogen exchanger during senescence-induced as well as in natural aging. Fisetin also protected oxidative modifications in rat aging. DISCUSSION AND CONCLUSION Fisetin supplementation improves the ionic homeostasis, a factor that is involved in the aetiology of several age-associated diseases, in naturally old as well as D-gal induced aged rats.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | | | | |
Collapse
|
13
|
Whey protein concentrate protects against age-dependent alteration in redox biomarkers. Biol Futur 2021; 71:273-281. [PMID: 34554512 DOI: 10.1007/s42977-020-00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Aging is associated with decreased cellular cysteine uptake, which acts as a precursor for glutathione biosynthesis. Whey protein, a liquid aspect of milk, is an effective cysteine delivery system. The study was undertaken to evaluate the potential role of whey protein concentrate (WPC) on the redox biomarkers during aging. Male Wistar rats were divided into following four groups: young control (4 months old); young treated with WPC (300 mg/kg b.w./day orally); old (24 months old) control; old treated with WPC for 28 days. After treatment, changes in body weight, lipid profile and levels of redox biomarkers were determined. A marked decrease in prooxidants such as reactive oxygen species, lipid peroxidation and protein carbonyl and significant (p ≤ 0.05) increase in antioxidants such as reduced glutathione and GST levels were observed after WPC supplementation in old age rats. We also found marked decrease in the level of sialic acid and AGEs after WPC supplementation. In conclusion, WPC provides protection against age-dependent redox imbalance which might be attributed to its antioxidant activity.
Collapse
|
14
|
Clayton ZS, Hutton DA, Mahoney SA, Seals DR. Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging. ACTA ACUST UNITED AC 2021; 2:45-69. [PMID: 34212156 DOI: 10.1002/aac2.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and age is by far the greatest risk factor for developing CVD. Vascular dysfunction, including endothelial dysfunction and arterial stiffening, is responsible for much of the increase in CVD risk with aging. A key mechanism involved in vascular dysfunction with aging is oxidative stress, which reduces the bioavailability of nitric oxide (NO) and induces adverse changes to the extracellular matrix of the arterial wall (e.g., elastin fragmentation/degradation, collagen deposition) and an increase in advanced glycation end products, which form crosslinks in arterial wall structural proteins. Although vascular dysfunction and CVD are most prevalent in older adults, several conditions can "accelerate" these events at any age. One such factor is chemotherapy with anthracyclines, such as doxorubicin (DOXO), to combat common forms of cancer. Children, adolescents and young adults treated with these chemotherapeutic agents demonstrate impaired vascular function and an increased risk of future CVD development compared with healthy age-matched controls. Anthracycline treatment also worsens vascular dysfunction in mid-life (50-64 years of age) and older (65 and older) adults such that endothelial dysfunction and arterial stiffness are greater compared to age-matched controls. Collectively, these observations indicate that use of anthracycline chemotherapeutic agents induce a vascular aging-like phenotype and that the latter contributes to premature CVD in cancer survivors exposed to these agents. Here, we review the existing literature supporting these ideas, discuss potential mechanisms as well as interventions that may protect arteries from these adverse effects, identify research gaps and make recommendations for future research.
Collapse
|
15
|
Gadallah SH, Ghanem HM, Abdel-Ghaffar A, Metwaly FG, Hanafy LK, Ahmed EK. 4-Phenylbutyric acid and rapamycin improved diabetic status in high fat diet/streptozotocin-induced type 2 diabetes through activation of autophagy. Arch Physiol Biochem 2021; 127:235-244. [PMID: 31215250 DOI: 10.1080/13813455.2019.1628069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An accumulating body of evidence supports the role of autophagy in the pathophysiology of T2DM. Also, abnormal endoplasmic reticulum (ER) stress response that has been implicated as a cause of insulin resistance (IR) could also be affected by the autophagic status in β-cells. The present study was designed to investigate whether autophagy is regulated in T2DM as well as to investigate the modulatory effect of the ER stress inhibitor 4-phenylbutyric acid (4-PBA) and the autophagy inducer rapamycin (Rapa) on the autophagic and diabetic status using type 2 diabetic animal model with IR. Treatment of diabetic rats with either 4-PBA or Rapa improved significantly the states of hyperglycaemia and dyslipidaemia, increased the antioxidant capacity, reduced the levels of lipid peroxidation and ER stress and increased the autophagic flux. The obtained improvements were attributed mainly to the induction of autophagy with subsequent regulation of ER stress-oxidative activation and prevention of β-cell apoptosis.
Collapse
Affiliation(s)
- Shaimaa H Gadallah
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amany Abdel-Ghaffar
- Department of Biochemistry and Pharmacology, Research Institute of Ophthalmology, Giza, Egypt
| | - Fatma G Metwaly
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Laila K Hanafy
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Oxidative stress suppression contributes to antiseizure action of axitinib and rapamycin in pentylenetetrazol-induced kindling. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Tripathi SS, Kumar R, Arya JK, Rizvi SI. Plasma from Young Rats Injected into Old Rats Induce Antiaging Effects. Rejuvenation Res 2021; 24:206-212. [PMID: 33161876 DOI: 10.1089/rej.2020.2354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An experimental novel antiaging intervention strategy is based on the concept of parabiosis, which involves long-term treatment with factors derived from young blood facilitating rejuvenation of old individuals. In this study, we employed blood plasma from young rats as an intervention strategy to evaluate whether this could impact aging biomarkers in aged rats. The biomarkers studied include: reactive oxygen species, the ferric reducing ability of plasma, plasma membrane redox system, reduced glutathione, malondialdehyde, protein carbonyl, and advanced oxidation protein products in blood. Additionally, the level of tumor necrosis factor-α and interleukin-6 were also estimated in blood. We found that old rats injected with plasma from young rats were protected from oxidative stress. Thus, this study provides some evidence of the rejuvenating effects of young plasma. We hypothesize that young plasma may contain certain "factors," which may be responsible for the observed effects. The mechanism of action is not clearly understood and is open to further studies.
Collapse
Affiliation(s)
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | | | |
Collapse
|
18
|
Kabaklıoğlu M, Kaya M, Şahin IE, Gamsızkan M, Bahçıvan A, Eröz R. Short- and long-term effects of rapamycin on ischemic damage and apoptotic changes in torsion of rat testes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:85-94. [PMID: 32813042 DOI: 10.1007/s00210-020-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Rapamycin has antioxidant defense mechanisms and immune suppressive effects. To detect the short- and long-term effects of rapamycin on ischemic damage and apoptotic changes in torsion of rat testes, mature male albino Wistar rats (n = 48) were included in the study as control, sham, early torsion-detorsion (T/D), early rapamycin treatment, early rapamycin control, late T/D, late rapamycin treatment, and late rapamycin control. The right testis was rotated 720° in a clockwise direction during 4 h in operation groups. Rapamycin was administered orally three times: 30 min before detorsion and 24 and 48 h after detorsion. The animals were killed on the third day in early groups and on the tenth day in late groups after detorsion. Statistically significant differences among all groups were detected for SOD and TBARS, mean seminiferous tubule diameter (MSTD) and Cosentino's histologic score (CHS), caspase 3, bax, average number of apoptotic cells per tubule (ANPCT), and percentage of apoptotic tubule (PAT) values. ANPCT values were 10% lower in the rapamycin treatment groups compared with the untreated T/D groups, and the PAT values were also approximately 1.3 times lower. Although short-term usage of rapamycin may reduce to the tubular injury caused by I/R conversely to apoptosis in the testicular tissue after testicular torsion, rapamycin may have the potential to increase the long-term apoptosis with/without testicular torsion and a subsequent regression in fertility.
Collapse
Affiliation(s)
- Murat Kabaklıoğlu
- Department of Pediatric Surgery, Duzce University Medical Faculty, Duzce, Turkey.
| | - Murat Kaya
- Department of Pediatric Surgery, Duzce University Medical Faculty, Duzce, Turkey
| | - Ibrahim Ethem Şahin
- Department of Medical Biochemistry, Duzce University Medical Faculty, Duzce, Turkey
| | - Mehmet Gamsızkan
- Department of Medical Pathology, Duzce University Medical Faculty, Duzce, Turkey
| | - Atike Bahçıvan
- Department of Medical Pathology, Duzce University Medical Faculty, Duzce, Turkey
| | - Recep Eröz
- Department of Medical Genetics, Duzce University Medical Faculty, Duzce, Turkey
| |
Collapse
|
19
|
Verma AK, Singh S, Rizvi SI. Age-dependent altered redox homeostasis in the chronodisrupted rat model and moderation by melatonin administration. Chronobiol Int 2020; 37:1517-1527. [PMID: 32731777 DOI: 10.1080/07420528.2020.1792483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circadian disruption or chronodisruption (CD) occurs when day-night cycles and other internal rhythms are not adjusted to environmental light-dark regimens and are unable to synchronize among each other. Artificial light-induced oxidative stress is a major concern as the circadian physiology of the cell is chronically altered due to suppression of the time-keeping hormone, melatonin. The relationship between age-related impaired redox status and disrupted circadian rhythms is still not fully understood. The present study evaluated the effect of artificial light at night (ALAN) with respect to aging and role of melatonin supplementation. This study was conducted on young (3 months) and old (24 months) male Wistar rats subdivided into four groups control (C), melatonin treated (MLT), artificial light at night (ALAN), and ALAN+MLT group. Pronounced changes were observed in the old compared to the young rats. Reactive oxygen species (ROS), malondialdehyde (MDA), plasma membrane redox system (PMRS), protein carbonyl (PCO), and sialic acid (SA) were significantly (p ≤ 0.05) increased, while ferric reducing ability of plasma (FRAP) and reduced glutathione (GSH) were significantly (p ≤ 0.05) suppressed in light-exposed young and old animals compared to their age-matched controls. Advanced oxidation protein products (AOPP) increased non-significantly in young rats of the ALAN group; however, significant (p ≤ 0.05) changes were observed in the old rats of the ALAN group compared to their respective controls. Advanced glycation end products (AGEs) increased and acetylcholinesterase (AChE) activity decreased, significantly (p ≤ 0.05) in young animals of the ALAN group, while nonsignificant changes of both parameters were recorded in the old animals of the ALAN groups compared with their age-matched controls. Melatonin supplementation resulted in maintenance of the normal redox homeostasis in both young and old animal groups. Our study suggests that aged rats are more susceptible to altered photoperiod as their circadian redox homeostasis is under stress subsequent to ALAN. Melatonin supplementation could be a promising means of alleviating age-related circadian disturbances, especially in light-polluted areas.
Collapse
Affiliation(s)
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad , Allahabad, India
| | | |
Collapse
|
20
|
Bhoumik S, Kumar R, Rizvi SI. Time restricted feeding provides a viable alternative to alternate day fasting when evaluated in terms of redox homeostasis in rats. Arch Gerontol Geriatr 2020; 91:104188. [PMID: 32717588 DOI: 10.1016/j.archger.2020.104188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Intermittent fasting (IF) is a non-pharmacological dietary approach for intervening into aging in different organisms. We evaluated the efficacy of time restricted dietary regimen and alternate-day fasting in rats by measuring redox parameters which are frequently used as signature biomarkers of aging. Wistar rats (8 months) were divided into three groups of six rats each. Group I: Control; Group II: Time-restricted feeding (TRF) (fed and fasted at a ratio of 16:8 h respectively) and Group III. Alternate day feeding (ADF) (fed and fasted on alternate days), for a period of 1 month. The biomarkers of antioxidant defense and oxidative stress: FRAP, GSH, PMRS, ROS, AGE, MDA, PCO, AOPP, TNF-α and IL-6, were determined. Our results suggest that, based on predominant aging biomarkers, TRF has a similar effect on rats compared with ADF evaluated in terms of redox homeostasis. Observed results defend our purpose that the ADF and TRF methods are reliable dietary restriction regimens and subsequently improve the metabolic profile and redox homeostasis in rats.
Collapse
Affiliation(s)
- Sukanya Bhoumik
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
21
|
Verma AK, Garg G, Singh S, Rizvi SI. Melatonin protects against membrane alterations affected by ‘Artificial Light at Night’ in a circadian-disrupted model of rat. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1741265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
22
|
Kumar R, Akhtar F, Rizvi SI. Hesperidin attenuates altered redox homeostasis in an experimental hyperlipidaemic model of rat. Clin Exp Pharmacol Physiol 2020; 47:571-582. [DOI: 10.1111/1440-1681.13221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry University of Allahabad Allahabad India
| | - Farhan Akhtar
- Department of Biochemistry University of Allahabad Allahabad India
| | | |
Collapse
|
23
|
Verma AK, Singh S, Rizvi SI. Redox homeostasis in a rodent model of circadian disruption: Effect of melatonin supplementation. Gen Comp Endocrinol 2019; 280:97-103. [PMID: 31002824 DOI: 10.1016/j.ygcen.2019.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Continuous light or dark photoperiods are the leading cause of disruption in the circadian rhythm of day-night cycle. The purpose of this study was to understand the cellular redox balance in a model of circadian disrupted rat model and determine the effect of melatonin supplementation. Young male Wistar rats were randomly divided into five groups (n = 4). Group (I): normal day-night (12 h:12 h) cycle, Group (II): normal rats treated with melatonin, Group (III): rats subjected to continuous light exposure (CLE), Group (IV): CLE rats treated with melatonin, and Group (V) Rats subjected to continuous dark. Melatonin (10 mg/kg) was administered orally at dusk to the Group (II) & (IV). Rats were sacrificed after 10 days of treatment and biomarkers of oxidative stress were evaluated. Results demonstrated significant (p < 0.05) increase of malondialdehyde (MDA), plasma membrane redox system (PMRS), protein carbonyl oxidation (PCO), advanced oxidation protein products (AOPPs), and advanced glycation end products (AGEs) during CLE. A significantly (p < 0.05) decreased level of reduced glutathione (GSH) and ferric reducing antioxidant potential in plasma (FRAP) was also observed during CLE. Treatment with melatonin in CLE rats showed reduced level of MDA, PMRS, PCO, AOPPs and AGEs while GSH and FRAP activity were increased. During continuous dark exposure (CDE) the biomarkers of oxidative stress were attenuated compared to control. Supplementation of melatonin could be a promising strategy to maintain redox homeostasis during prolonged condition of light exposure and other conditions of redox imbalance.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
24
|
He JN, Zhang SD, Qu Y, Wang HL, Tham CC, Pang CP, Chu WK. Rapamycin Removes Damaged Mitochondria and Protects Human Trabecular Meshwork (TM-1) Cells from Chronic Oxidative Stress. Mol Neurobiol 2019; 56:6586-6593. [DOI: 10.1007/s12035-019-1559-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
|
25
|
Singh AK, Singh S, Tripathi VK, Bissoyi A, Garg G, Rizvi SI. Rapamycin Confers Neuroprotection Against Aging-Induced Oxidative Stress, Mitochondrial Dysfunction, and Neurodegeneration in Old Rats Through Activation of Autophagy. Rejuvenation Res 2019; 22:60-70. [DOI: 10.1089/rej.2018.2070] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, , India
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, , India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, , India
| | - Vinay Kumar Tripathi
- Department of Animal Science and Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Akalabya Bissoyi
- Department of Biomedical Engineering, National Institute of Technology, Raipur, , India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, , India
| | | |
Collapse
|
26
|
Singh S, Garg G, Singh AK, Bissoyi A, Rizvi SI. Fisetin, a potential caloric restriction mimetic, attenuates senescence biomarkers in rat erythrocytes. Biochem Cell Biol 2019; 97:480-487. [PMID: 30624963 DOI: 10.1139/bcb-2018-0159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An imbalanced redox status is a hallmark of the aging process. Caloric restriction mimetics (CRMs) are compounds that produce caloric restriction benefits at the molecular, cellular, and physiological level, translating into health-promoting effects. Fisetin is the least explored CRM, and its role in modulating oxidative stress during aging is not clearly known. This study investigated the antioxidative and protective potential of fisetin in a rat model of d-galactose (D-gal)-induced accelerated senescence, and in naturally aged rat erythrocytes. Young rats (4 months), aged D-gal-induced rats [24 months; 500 mg/kg body mass (b.m.); subcutaneous injection] and naturally aged D-gal-induced rats [24 months; 500 mg/kg b.m.; subcutaneous injection] were supplemented with fisetin (15 mg/kg b.m.; orally) for 6 weeks. The resulting data indicated that supplementation with fisetin suppresses aging-induced increases in the levels of reactive oxygen species, eryptosis, lipid peroxidation, and protein oxidation. Our data also show that fisetin significantly increases the levels of antioxidants and activates the plasma membrane redox system. Taken together, the findings show that a fisetin-rich diet could be an anti-aging intervention strategy.
Collapse
Affiliation(s)
- Sandeep Singh
- a Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Geetika Garg
- a Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | | | - Akalabya Bissoyi
- b Department of Biomedical Engineering, National Institute of Technology, Raipur-492010, India
| | - Syed Ibrahim Rizvi
- a Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
27
|
Ghasemnejad-berenji M, Ghazi-Khansari M, Pashapour S, Jafari A, Yazdani I, Ghasemnejad-berenji H, Saeedi Saravi SS, Sadeghpour S, Nobakht M, Abdollahi A, mohajer Ansari J, Dehpour AR. Synergistic effect of rapamycin and metformin against germ cell apoptosis and oxidative stress after testicular torsion/detorsion-induced ischemia/reperfusion in rats. Biomed Pharmacother 2018; 105:645-651. [DOI: 10.1016/j.biopha.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 01/09/2023] Open
|
28
|
Singh AK, Singh S, Garg G, Rizvi SI. Rapamycin mitigates erythrocyte membrane transport functions and oxidative stress during aging in rats. Arch Physiol Biochem 2018; 124:45-53. [PMID: 28758804 DOI: 10.1080/13813455.2017.1359629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Erythrocyte membrane is a suitable model to study various metabolic and physiological functions as it undergoes variety of biochemical changes during aging. An age-dependent modulatory effect of rapamycin on erythrocyte membrane functions is completely unknown. Therefore, the present study was undertaken to investigate the effect of rapamycin on age-dependent impaired activities of transporters/exchangers, altered levels of redox biomarkers, viz. protein carbonyl (PC), lipid hydroperoxides (LHs), total thiol (-SH), sialic acid (SA) and intracellular calcium ion [Ca2+]i, and osmotic fragility of erythrocyte membrane. A significant reduction in membrane-bound activities of Na+/K+-ATPase (NKA) and Ca2+-ATPase (PMCA), and levels of -SH and SA was observed along with a simultaneous induction in Na+/H+ exchanger (NHE) activity and levels of [Ca2+]i, PC, LH and osmotic fragility in old-aged rats. Rapamycin was found to be a promising age-delaying drug that significantly reversed the aging-induced impaired activities of membrane-bound ATPases and altered levels of redox biomarkers.
Collapse
Affiliation(s)
| | - Sandeep Singh
- a Department of Biochemistry , University of Allahabad , Allahabad , India
| | - Geetika Garg
- a Department of Biochemistry , University of Allahabad , Allahabad , India
| | - Syed Ibrahim Rizvi
- a Department of Biochemistry , University of Allahabad , Allahabad , India
| |
Collapse
|
29
|
Revin VV, Gromova NV, Revina ES, Grunyushkin IP, Tychkov AY, Samonova AY, Kukina AN, Moskovkin AA, Bourdon JC, Zhelev N. The effect of experimental hyperoxia on erythrocytes’ oxygen-transport function. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1414633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Victor Vasilevich Revin
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Natalia Vasilevna Gromova
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Elvira Sergeevna Revina
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Igor Pavlovich Grunyushkin
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Alexander Yurievich Tychkov
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Anastasia Yurievna Samonova
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Anastasia Nikolaevna Kukina
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | - Alexander Alexandrovich Moskovkin
- Faculty of Вiotechnology and Biology, Department of Вiotechnology, Bioengineering and Вiochemistry, Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk, Russia
| | | | - Nikolai Zhelev
- CMCBR, School of Science, Engineering & Technology, Abertay University, Dundee, UK
| |
Collapse
|
30
|
Singh AK, Garg G, Singh S, Rizvi SI. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes. Rejuvenation Res 2017; 20:420-429. [DOI: 10.1089/rej.2017.1916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
31
|
Rezabakhsh A, Ahmadi M, Khaksar M, Montaseri A, Malekinejad H, Rahbarghazi R, Garjani A. Rapamycin inhibits oxidative/nitrosative stress and enhances angiogenesis in high glucose-treated human umbilical vein endothelial cells: Role of autophagy. Biomed Pharmacother 2017; 93:885-894. [DOI: 10.1016/j.biopha.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022] Open
|
32
|
Chaudhary MK, Singh S, Rizvi SI. Redox imbalance in a model of rat mimicking Hutchinson-Gilford progeria syndrome. Biochem Biophys Res Commun 2017; 491:361-367. [PMID: 28728841 DOI: 10.1016/j.bbrc.2017.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 02/02/2023]
Abstract
Although several etiological factors contribute to the complexity of the aging process, the ultimate component of macromolecular damage and consequent cell death involves the altered redox balance inclined towards increased ROS production and/or decreased antioxidant protection. Given that, the chronic dihydrotachysterol (DHT) intoxication in rats induce Hutchinson Gilford progeria like syndrome, the present study provides the evidence for altered redox balance as evidenced by alteration in parameters of oxidative stress in blood plasma and erythrocytes including MDA, GSH, FRAP AOPP PMRS, AGEs, AChE and osmotic fragility which substantiate the suitability of the model for aging studies.
Collapse
Affiliation(s)
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
33
|
Antiaging Effect of Metformin on Brain in Naturally Aged and Accelerated Senescence Model of Rat. Rejuvenation Res 2017; 20:173-182. [DOI: 10.1089/rej.2016.1883] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Autophagy Activation Alleviates Amyloid-β-Induced Oxidative Stress, Apoptosis and Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. Neurotox Res 2017; 32:351-361. [PMID: 28484969 DOI: 10.1007/s12640-017-9746-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that ensures continuous removal of damaged cell organelles and long-lived protein aggregates to maintain cellular homeostasis. Although autophagy has been implicated in amyloid-β (Aβ) production and deposition, its role in pathogenesis of Alzheimer's disease remains elusive. Thus, the present study was undertaken to assess the cytoprotective and neuroprotective potential of autophagy on Aβ-induced oxidative stress, apoptosis and neurotoxicity in human neuroblastoma SH-SY5Y cells. The treatment of Aβ1-42 impaired the cell growth and redox balance, and induced apoptosis and neurotoxicity in SH-SY5Y cells. Next, the treatment of rapamycin (RAP) significantly elevated the expression of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), sequestosome-1/p62, Beclin-1, and unc-51-like kinase-1 (ULK1) in SH-SY5Y cells. RAP-induced activation of autophagy notably alleviated the Aβ1-42-induced impairment of redox balance by decreasing the levels of pro-oxidants such as reactive oxygen species, lipid peroxidation and Ca2+ influx, and concurrently increasing the levels of antioxidant enzymes such as superoxide dismutase and catalase. The RAP-induced autophagy also ameliorated Aβ1-42-induced loss of mitochondrial membrane potential and apoptosis. Additionally, the activated autophagy provided significant neuroprotection against Aβ1-42-induced neurotoxicity by elevating the expression of neuronal markers such as synapsin-I, PSD95, NCAM, and CREB. However, 3-methyladenine treatment significantly exacerbated the neurotoxic effects of Aβ1-42. Taken together, our study demonstrated that the activation of autophagy provided possible neuroprotection against Aβ-induced cytotoxicity, oxidative stress, apoptosis, and neurotoxicity in SH-SY5Y neuronal cells.
Collapse
|