1
|
Liu J, Huang X, Jiang X, Qing C, Li Y, Xia P. Loss of submerged macrophytes in shallow lakes alters bacterial and archaeal community structures, and reduces their co-occurrence networks connectivity and complexity. Front Microbiol 2024; 15:1380805. [PMID: 38601927 PMCID: PMC11004660 DOI: 10.3389/fmicb.2024.1380805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Bacteria and archaea are important components in shallow lake ecosystems and are crucial for biogeochemical cycling. While the submerged macrophyte loss is widespread in shallow lakes, the effect on the bacteria and archaea in the sediment and water is not yet widely understood. Methods In this study, 16S rRNA gene sequencing was used to explore the bacteria and archaea in samples taken from the sediment and water in the submerged macrophyte abundant (MA) and submerged macrophyte loss (ML) areas of Caohai Lake, Guizhou, China. Results The results showed that the dominant bacterial phyla were Proteobacteria and Chloroflexi in the sediment; the dominant phyla were Proteobacteria, Actinobacteriota, and Bacteroidota in the water. The dominant archaea in sediment and water were the same, in the order of Crenarchaeota, Thermoplasmatota, and Halobacterota. Non-metric multidimensional scaling (NMDS) analyses showed that bacterial and archaeal community structures in the water were significantly affected by the loss of submerged macrophytes, but not by significant changes in the sediment. This suggests that the loss of submerged macrophytes has a stronger effect on the bacterial and archaeal community structures in water than in sediment. Furthermore, plant biomass (PB) was the key factor significantly influencing the bacterial community structure in water, while total nitrogen (TN) was the main factor significantly influencing the archaeal community structure in water. The loss of submerged macrophytes did not significantly affect the alpha diversity of the bacterial and archaeal communities in either the sediment or water. Based on network analyses, we found that the loss of submerged macrophytes reduced the connectivity and complexity of bacterial patterns in sediment and water. For archaea, network associations were stronger for MA network than for ML network in sediment, but network complexity for archaea in water was not significantly different between the two areas. Discussion This study assesses the impacts of submerged macrophyte loss on bacteria and archaea in lakes from microbial perspective, which can help to provide further theoretical basis for microbiological research and submerged macrophytes restoration in shallow lakes.
Collapse
Affiliation(s)
- Jiahui Liu
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xianfei Huang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Xin Jiang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Yue Li
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, Guizhou, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
2
|
Liao L, Yu D, Xu L, Hu Q, Liang T, Chen L, Zhu Q, Liu S, Zhong A. Submersed macrophytes Vallisneria natans and Vallisneria spinulosa improve water quality and affect microbial communities in sediment and water columns. Heliyon 2024; 10:e25942. [PMID: 38371958 PMCID: PMC10873746 DOI: 10.1016/j.heliyon.2024.e25942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Healthy aquatic ecosystems are essential for human beings. However, anthropogenic activities severely worsen water quality. In this study, using assembling mesocosms, we developed an efficient and easy-to-handle method to monitor the water quality by measuring the electrical conductivity (EC) of water. Our data demonstrate that the growth of two submersed macrophytes, Vallisnerianatans and Vallisneria spinulosa, improves water quality by decreasing EC. Furthermore, using high-throughput DNA sequencing, we analyzed the microbial community abundance and structure in sediment and water columns with or without plant growth. We generated 33,775 amplicon sequence variants from 69 samples of four sediment groups (BkM, CtM, VnR, and VsR) and three water column sample groups (CtW, VnW, and VsW). The results show that the relative abundance of bacteria was higher in the sediment than in the water column. Moreover, the diversity and composition of microbiomes were altered by Vallisneria spp. growth, and the α-diversity of the microbial communities decreased due to submersed macrophytes in both the sediment and water columns. The β-diversity of the microbial communities also varied significantly with or without Vallisneria spp. growth for both the sediment and water columns.
Collapse
Affiliation(s)
| | | | - Lei Xu
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| | - Qian Hu
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| | - Tongjun Liang
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| | - Ludan Chen
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| | - Qiuping Zhu
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| | - Songping Liu
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| | - Aiwen Zhong
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, 332900, Jiangxi, China
| |
Collapse
|
3
|
Wang X, Liu Y, Qing C, Zeng J, Dong J, Xia P. Analysis of diversity and function of epiphytic bacterial communities associated with macrophytes using a metagenomic approach. MICROBIAL ECOLOGY 2024; 87:37. [PMID: 38286834 PMCID: PMC10824801 DOI: 10.1007/s00248-024-02346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Epiphytic bacteria constitute a vital component of aquatic ecosystems, pivotal in regulating elemental cycling. Despite their significance, the diversity and functions of epiphytic bacterial communities adhering to various submerged macrophytes remain largely unexplored. In this study, we employed a metagenomic approach to investigate the diversity and function of epiphytic bacterial communities associated with six submerged macrophytes: Ceratophyllum demersum, Hydrilla verticillata, Myriophyllum verticillatum, Potamogeton lucens, Stuckenia pectinata, and Najas marina. The results revealed that the predominant epiphytic bacterial species for each plant type included Pseudomonas spp., Microbacterium spp., and Stenotrophomonas rhizophila. Multiple comparisons and linear discriminant analysis effect size indicated a significant divergence in the community composition of epiphytic bacteria among the six submerged macrophytes, with 0.3-1% of species uniquely identified. Epiphytic bacterial richness associated with S. pectinata significantly differed from that of both C. demersum and H. verticillata, although no significant differences were observed in diversity and evenness. Functionally, notable variations were observed in the relative abundances of genes associated with carbon, nitrogen, and phosphorus cycling within epiphytic bacterial communities on the submerged macrophyte hosts. Among these communities, H. verticillata exhibited enrichment in genes related to the 3-hydroxypropionate bicycle and nitrogen assimilation, translocation, and denitrification. Conversely, M. verticillatum showcased enrichment in genes linked to the reductive citric acid cycle (Arnon-Buchanan cycle), reductive pentose phosphate cycle (Calvin cycle), polyphosphate degradation, and organic nitrogen metabolism. In summary, our findings offer valuable insights into the diversity and function of epiphytic bacteria on submerged macrophyte leaves, shedding light on their roles in lake ecosystems.
Collapse
Affiliation(s)
- Xin Wang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Yi Liu
- Guizhou Caohai National Nature Reserve Management Committee, Weining, 55310, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institutie of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Jixing Dong
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Berthold M, Schumann R, Reiff V, Wulff R, Schubert H. Mesopredator‐mediated trophic cascade can break persistent phytoplankton blooms in coastal waters. OIKOS 2023. [DOI: 10.1111/oik.09469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Maximilian Berthold
- Biological Station Zingst, Univ. of Rostock Zingst Germany
- Phytoplankton Ecophysiology, Mount Allison Univ. Sackville Canada
| | - Rhena Schumann
- Biological Station Zingst, Univ. of Rostock Zingst Germany
| | - Volker Reiff
- Biological Station Zingst, Univ. of Rostock Zingst Germany
| | - Rita Wulff
- Biological Station Zingst, Univ. of Rostock Zingst Germany
| | | |
Collapse
|
6
|
Kang L, Luo W, Dai Q, Zhou H, Wei W, Tang J, Han H, Yuan Y, Long J, Zhang Z, Hong M. Giant pandas' staple food bamboo phyllosphere fungal community and its influencing factors. Front Microbiol 2022; 13:1009588. [PMID: 36246256 PMCID: PMC9561849 DOI: 10.3389/fmicb.2022.1009588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Giant pandas have developed a series of foraging strategies to adapt to their special bamboo diets. Although bamboo is an important food resource for giant pandas in Liziping National Nature Reserve (Liziping NR), China, there are relatively few studies on their phyllosphere fungal community and its influencing factors. Herein, we used ITS1 amplification and metagenomic sequencing to analyze the phyllosphere fungi diversity and functions (KEGG, CAZyme, and antibiotic resistance gene) and explore the influencing factors for the three giant pandas foraging bamboo species (Arundinaria spanostachya, AS; Yushania lineolate, YL; and Fargesia ferax, FF) over different seasons (spring vs. autumn) in Liziping NR, China. We found that Ascomycota and Basidiomycota were the most dominant phyla in the bamboo phyllosphere. The alpha diversity (e.g., the Sobs index and Shannon index) was relatively higher in autumn samples than in spring samples, and the community structure differed significantly between the three bamboo species in spring and autumn. Some biotic and abiotic variables (e.g., the elevation and mean base diameter of bamboo) significantly influenced the abundance, diversity, and community structure of the bamboo phyllosphere fungal community. Moreover, the functional analysis showed the differences in the glycoside hydrolase community and antibiotic resistance gene (ARG) profile between spring and autumn samples. Co-occurrence network modeling suggested that AS phyllosphere fungal communities in autumn employed a much more complex network than that in spring, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was high and closely correlated with other ARGs. These results indicate that fungal community's abundance, diversity, and community structure are mainly affected by the season, host species, and elevation. The season and host species are major factors affecting the biological functions (KEGG and CAZyme), ARGs, and interactions between sympatric bacterial and fungal communities in bamboo phyllosphere. This integrated study can provide a reference basis for the seasonal management of bamboo resources foraged by wild giant pandas, and predict the risk of antibiotic resistance in bamboo phyllosphere fungal flora in Liziping NR (Xiaoxiangling mountains), China.
Collapse
Affiliation(s)
- Liwen Kang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Luo
- Liziping National Nature Reserve Administration, Ya’an, China
| | - Qinglong Dai
- Liziping National Nature Reserve Administration, Ya’an, China
| | - Hong Zhou
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Wei
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Junfeng Tang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Han Han
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yuan Yuan
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Juejie Long
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zejun Zhang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Mingsheng Hong
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
7
|
Yan H, Yan Z, Wang L, Hao Z, Huang J. Toward understanding submersed macrophyte Vallisneria natans-microbe partnerships to improve remediation potential for PAH-contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127767. [PMID: 34836685 DOI: 10.1016/j.jhazmat.2021.127767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Rhizodegradation using submersed macrophytes Vallisneria natans (V. natans) is a promising biotechnology with the potential to restore polycyclic aromatic hydrocarbon (PAH)-contaminated sediments. However, how different sediment types influence the rhizoremediation outcome and the characterization of microbial community along the sediment-V. natans continuum is poorly understood. Here, we collect V. natans, sediments and overlying water from two types of vegetation zones with different levels of PAHs pollutions and set up sediment microcosms for phytoremediation tests. V. natans presence was particularly useful for PAHs remediation in the highly contaminated sites and had a significant effect on PAHs rhizodegradation and microbial communities, especially rhizosphere sediments. The structural composition of microbial communities along the sediment-plant continuum was shaped predominantly by compartment niche of V. natans. Moreover, selective enrichment of specific microbial taxa like Herbaspirillum (relative abundance = 94.80%) in endosphere of V. natans was observed. Herbaspirillum could use PAH as carbon source and promote the growth of plants. In the highly contaminated sediment, V. natans could recruit these bacteria for toxicant degradation into the root interior. Thus, understanding the complex V. natans-microbe interactions could help set up novel decontamination strategies based on the rhizosphere and root interior interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Haifeng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Luming Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Mitigation of Eutrophication in a Shallow Lake: The Influences of Submerged Macrophytes on Phosphorus and Bacterial Community Structure in Sediments. SUSTAINABILITY 2021. [DOI: 10.3390/su13179833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Remediating water eutrophication is critical for maintaining healthy and sustainable development of lakes. The aim of this study was to explore the seasonal variation in phosphorus (P) speciation and bacterial community structure in sediments of Qin Lake (Taizhou, Jiangsu Province, China) associated with the growth of submerged macrophyte Vallisneria natans. The differences in sediment bacterial diversity and community structure between V. natans growing and control areas were analyzed over a period of one year. The results showed that V. natans growth reduced the total P and organic matter contents of the sediments and increased the bioavailable iron (Fe) and Fe-bound P contents. The α-diversity of sediment bacteria was significantly higher in the presence of V. natans than in the controls during the vigorous plant growth stage. In the presence of V. natans, there was a higher relative abundance of Proteobacteria and lower relative abundances of Chloroflexi and Acidobacteria. The Fe(II) content in the sediment had a larger influence on the spatial distribution of bacterial communities than sediment Fe-bound P, organic matter, and Fe(II) contents. V. natans growth could reshape sediment bacterial community structure in the shallow lake, which, in turn, enhanced P immobilization in the sediments and thereby improved the water quality.
Collapse
|
9
|
Zhan P, Liu Y, Wang H, Wang C, Xia M, Wang N, Cui W, Xiao D, Wang H. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142194. [PMID: 33207455 DOI: 10.1016/j.scitotenv.2020.142194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 05/14/2023]
Abstract
Phyllospheric microbes play a crucial role in the biological decomposition of plant litter in wetland ecosystems. Previous studies have mainly focused on single stages of decomposition process, and to date there have been no reports on dynamic changes in the composition of phyllospheric microbes during the multiple stages of decomposition from living plant to death. Here we investigated fungal and bacterial community succession in the leaf litter of Schoenoplectus tabernaemontani, a wetland plant species using sequencing of the both fungal ITS and bacterial 16S genes. Our results revealed that, over the whole period of decomposition, the fungal communities underwent more distinct succession than did the bacterial communities. Proteobacteria dominated throughout the entire period, while, across different decomposition stages, the Ascomycete fungi were gradually replaced by the Ciliophora and Rozellomycota as the dominant fungi. Network analysis revealed higher degrees of species segregation and shorter average path lengths between species of fungi compared with species of bacteria. This suggests that fungal communities may harbor more niches and functional diversity and are potentially more susceptible to external interference than are bacterial communities. During decomposition, the contents of leaf cellulose, hemicellulose and lignin in the litter were significantly (p < 0.01) correlated with the fungal communities, and abiotic factors accounted for 89.8% of the total variation in the fungal communities. In contract, abiotic factors only explained 6.10% of the total variation in bacterial communities, suggesting external environments as drivers of fungal community succession. Overall, we provide evidence that the complex litter decay in wetlands is the result of a dynamic cross-kingdom succession, and this process is accompanied by distinct phyllospheric fungal community dynamics.
Collapse
Affiliation(s)
- Pengfei Zhan
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Yunshuo Liu
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Haocai Wang
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Chenli Wang
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Min Xia
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Na Wang
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Wanzhe Cui
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Derong Xiao
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Hang Wang
- National Plateau Wetlands Research Center/Wetlands College, Southwest Forestry University, Kunming 650224, People's Republic of China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
10
|
Szuróczki S, Szabó A, Korponai K, Felföldi T, Somogyi B, Márialigeti K, Tóth E. Prokaryotic community composition in a great shallow soda lake covered by large reed stands (Neusiedler See/Lake Fertő) as revealed by cultivation- and DNA-based analyses. FEMS Microbiol Ecol 2020; 96:5895321. [PMID: 32821929 DOI: 10.1093/femsec/fiaa159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Little is known about the detailed community composition of heterotrophic bacterioplankton in macrophyte-dominated littoral systems, where a considerable amount of dissolved organic carbon originates from aquatic macrophytes instead of phytoplankton. The aim of the present study was to reveal the effect of macrophytes on the microbial community and to elucidate their role in a macrophyte-dominated shallow soda lake, which can be characterised by a mosaic of open waters and reed marsh. Therefore, 16S rRNA gene amplicon sequencing, the most probable number method, cultivation of bacterial strains, EcoPlate and cultivation-based substrate utilisation techniques were applied. Differences in the structures of microbial communities were detected between the water and the sediment samples and between vegetated and unvegetated water samples. Planktonic bacterial communities of an inner pond and a reed-covered area showed significant similarities to each other. Woesearchaeia was the dominant archaeal taxon in the water samples, while Bathyarchaeia, 'Marine Benthic Group D' and 'DHVEG-1' were abundant in the sediment samples. The most probable number of heterotrophic bacteria was lower in the open water than in the reed-associated areas. The vast majority (83%) of the isolated bacterial strains from the water samples of the reed-covered area were able to grow on a medium containing reed extract as the sole source of carbon.
Collapse
Affiliation(s)
- Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3., 8237 Tihany, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
11
|
Hu J, Zhou Y, Lei Z, Liu G, Hua Y, Zhou W, Wan X, Zhu D, Zhao J. Effects of Potamogeton crispus decline in the rhizosphere on the abundance of anammox bacteria and nirS denitrifying bacteria ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114018. [PMID: 31991343 DOI: 10.1016/j.envpol.2020.114018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH4+ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO3- showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH4+/NO3- being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.
Collapse
Affiliation(s)
- Jinlong Hu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhao Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyan Lei
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiong Wan
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Bacterial Community Sequences of Submerged Aquatic Vegetation in the Potomac River. Microbiol Resour Announc 2020; 9:9/1/e01175-19. [PMID: 31896632 PMCID: PMC6940284 DOI: 10.1128/mra.01175-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we report results from PCR and sequencing of bacterial 16S rRNA genes from leaf and root surfaces from nine submerged aquatic vegetation (SAV) samples comprising five species. Samples were from four sites along the Potomac River. Here, we report results from PCR and sequencing of bacterial 16S rRNA genes from leaf and root surfaces from nine submerged aquatic vegetation (SAV) samples comprising five species. Samples were from four sites along the Potomac River.
Collapse
|
13
|
Shi L, Jin M, Shen M, Lu C, Wang H, Zhou X, Mei L, Yin S. Using Ipomoea aquatic as an environmental-friendly alternative to Elodea nuttallii for the aquaculture of Chinese mitten crab. PeerJ 2019; 7:e6785. [PMID: 31041154 PMCID: PMC6476289 DOI: 10.7717/peerj.6785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Elodea nuttallii is widely used in Chinese mitten crab (CMC) rearing practice, but it is not a native aquatic plant and cannot endure high temperature. Thus, large E. nuttallii mortality and water deterioration events could occur during high-temperature seasons. The aim of this study was to identify the use of local macrophytes in CMC rearing practice, including Ipomoea aquatic and Oryza sativa. A completely randomized field experiment was conducted to investigate the crab yield, water quality, bacterioplankton community and functions in the three different systems (E. nuttallii, I. aquatic, and O. sativa). Average crab yields in the different macrophyte systems did not differ significantly. The I. aquatic and O. sativa systems significantly decreased the total nitrogen and nitrate-N quantities in the outflow waters during the rearing period compared to the E. nuttallii system, and the I. aquatic and O. sativa plants assimilated more nitrogen than the E. nuttallii plant. Moreover, the significant changes of bacterioplankton abundances and biodiversity in the three systems implied that cleanliness of rearing waters was concomitantly attributed to the differential microbial community and functions. In addition, principle component analysis successfully differentiated the bacterioplankton communities of the three macrophytes systems. Environmental factor fitting and the co-occurrence network analyses indicated that pH was the driver of bacterioplankton community structure. Functional predictions using PICRUSt (v.1.1.3) software based on evolutionary modeling indicated a higher potential for microbial denitrification in the I. aquatic and O. sativa systems. Notably, the O. sativa plants stopped growing in the middle of the rearing period. Thus, the I. aquatic system rather than the O. sativa system could be a feasible and environmental-friendly alternative to the E. nuttallii system in CMC rearing practice.
Collapse
Affiliation(s)
- Linlin Shi
- College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, China
- Research Center of Agricultural Resource and Environment, Institute of Agricultural Science in Taihu Lake District, Suzhou, Jiangsu, China
| | - Meijuan Jin
- Research Center of Agricultural Resource and Environment, Institute of Agricultural Science in Taihu Lake District, Suzhou, Jiangsu, China
| | - Mingxing Shen
- Research Center of Agricultural Resource and Environment, Institute of Agricultural Science in Taihu Lake District, Suzhou, Jiangsu, China
| | - Changying Lu
- Research Center of Agricultural Resource and Environment, Institute of Agricultural Science in Taihu Lake District, Suzhou, Jiangsu, China
| | - Haihou Wang
- Research Center of Agricultural Resource and Environment, Institute of Agricultural Science in Taihu Lake District, Suzhou, Jiangsu, China
| | - Xingwei Zhou
- Research Center of Agricultural Resource and Environment, Institute of Agricultural Science in Taihu Lake District, Suzhou, Jiangsu, China
| | - Lijuan Mei
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shixue Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Yin X, Liu G, Peng L, Hua Y, Wan X, Zhou W, Zhao J, Zhu D. Microbial community of nitrogen cycle-related genes in aquatic plant rhizospheres of Lake Liangzi in winter. J Basic Microbiol 2018; 58:998-1006. [DOI: 10.1002/jobm.201800220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Xingjia Yin
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Lei Peng
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Xiaoqiong Wan
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research; Huazhong Agricultural University; Wuhan P. R. China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River); Ministry of Agriculture; Wuhan China
| |
Collapse
|
15
|
Mentes A, Szabó A, Somogyi B, Vajna B, Tugyi N, Csitári B, Vörös L, Felföldi T. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 2018; 94:4675209. [PMID: 29206918 DOI: 10.1093/femsec/fix164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton.
Collapse
Affiliation(s)
- Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Nóra Tugyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Lajos Vörös
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| |
Collapse
|
16
|
Wan Y, Ruan X, Zhang Y, Li R. Illumina sequencing-based analysis of sediment bacteria community in different trophic status freshwater lakes. Microbiologyopen 2017; 6. [PMID: 28173613 PMCID: PMC5552931 DOI: 10.1002/mbo3.450] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/30/2022] Open
Abstract
Sediment bacterial community is the main driving force for nutrient cycling and energy transfer in aquatic ecosystem. A thorough understanding of the community's spatiotemporal variation is critical for us to understand the mechanisms of cycling and transfer. Here, we investigated the sediment bacterial community structures and their relations with environmental factors, using Lake Taihu as a model system to explore the dependence of biodiversity upon trophic level and seasonality. To combat the limitations of conventional techniques, we employed Illumina MiSeq Sequencing and LeFSe cladogram to obtain a more comprehensive view of the bacterial taxonomy and their variations of spatiotemporal distribution. The results uncovered a 1,000-fold increase in the total amount of sequences harvested and a reverse relationship between trophic level and the bacterial diversity in most seasons of a year. A total of 65 phyla, 221 classes, 436 orders, 624 families, and 864 genera were identified in the study area. Delta-proteobacteria and gamma-proteobacteria prevailed in spring/summer and winter, respectively, regardless trophic conditions; meanwhile, the two classes dominated in the eutrophication and mesotrophication lake regions, respectively, but exclusively in the Fall. For LEfSe analysis, bacterial taxon that showed the strongest seasonal or spatial variation, majority had the highest abundance in spring/summer or medium eutrophication region, respectively. Pearson's correlation analysis indicated that 5 major phyla and 18 sub-phylogenetic groups showed significant correlation with trophic status. Canonical correspondence analysis further revealed that porewater NH4+ -N as well as sediment TOM and NOx -N are likely the dominant environmental factors affecting bacterial community compositions.
Collapse
Affiliation(s)
- Yu Wan
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| | - Yaping Zhang
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| | - Rongfu Li
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Li J, Zhang J, Liu L, Fan Y, Li L, Yang Y, Lu Z, Zhang X. Annual periodicity in planktonic bacterial and archaeal community composition of eutrophic Lake Taihu. Sci Rep 2015; 5:15488. [PMID: 26503553 PMCID: PMC4621408 DOI: 10.1038/srep15488] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Bacterioplankton plays a key role in nutrient cycling and is closely related to water eutrophication and algal bloom. We used high-throughput 16S rRNA gene sequencing to profile archaeal and bacterial community compositions in the surface water of Lake Taihu. It is one of the largest lakes in China and has suffered from recurring cyanobacterial bloom. A total of 81 water samples were collected from 9 different sites in 9 different months of 2012. We found that temporal variation of the microbial community was significantly greater than spatial variation (adonis, n = 9999, P < 1e−4). The composition of bacterial community in December was similar to that in January, and so was the archaeal community, suggesting potential annual periodicity. Unsupervised K-means clustering was used to identify the synchrony of abundance variations between different taxa. We found that the cluster consisting mostly of ACK-M1, C111 (members of acIV), Pelagibacteraceae (alfV-A) and Synechococcaceae showed relatively higher abundance in autumn. On the contrary, the cluster of Comamonadaceae and Methylophilaceae (members of lineage betI and betIV) had higher abundance in spring. The co-occurrence relationships between taxa were greatly altered during the cyanobacterial bloom according to our further network module analysis.
Collapse
Affiliation(s)
- Junfeng Li
- MOE Key Lab of Bioinformatics; Bioinformatics Division/Center for Synthetic and Systems Biology, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Junyi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Wuxi Environmental Monitoring Centre, Wuxi, China
| | - Liyang Liu
- MOE Key Lab of Bioinformatics; Bioinformatics Division/Center for Synthetic and Systems Biology, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Yucai Fan
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lianshuo Li
- MOE Key Lab of Bioinformatics; Bioinformatics Division/Center for Synthetic and Systems Biology, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Zuhong Lu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics; Bioinformatics Division/Center for Synthetic and Systems Biology, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Dong B, Han R, Wang G, Cao X. O2, pH, and redox potential microprofiles around Potamogeton malaianus measured using microsensors. PLoS One 2014; 9:e101825. [PMID: 25004129 PMCID: PMC4086961 DOI: 10.1371/journal.pone.0101825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/11/2014] [Indexed: 12/02/2022] Open
Abstract
This study aimed to elucidate the effects of periphyton on the microprofiles of oxygen (O2), pH, and oxidation-reduction potential around the stems and leaves of a submerged macrophyte Potamogeton malaianus and on the plant growth in the eutrophic shallow Taihu Lake, China. The microprofiles were measured using a motorized microprofiling system equipped with microsensors. The leaf age of the macrophyte and periphyton exerted significant effects on the microprofiles of O2, pH, and oxidation-reduction potential. O2 concentration and pH increased whereas the oxidation-reduction potential decreased with decreasing distance to the stem/leaf surface. The fluctuation amplitudes of O2, pH, and oxidation-reduction potential were the largest in the microprofiles of mature leaves and the lowest in senescent leaves. The periphyton increased the thickness of the broad diffusive boundary layer and fluctuation amplitudes of O2, pH, and oxidation-reduction potential. When the periphyton was removed, the thickness of the broad diffusive boundary layer in the microprofiles of stems, senescent leaves, and mature leaves reduced by 29.0%, 49.72%, and 70.34%, and the O2, pH, and oxidation-reduction potential fluctuation amplitudes also declined accordingly. Our results suggest that a thick periphyton exerted negative effects on the growth of macrophytes by providing extensive shading and creating a barrier that hindered the transport of dissolved substances such as O2, and led to premature decline in macrophytes in the eutrophic Taihu Lake. The consequent implications can help to elucidate the control mechanism of the broad diffusive boundary layer around macrophytes on nutrient cycling in eutrophic waters and to better understand the role of this layer in the Taihu Lake and other similar eutrophic waters.
Collapse
Affiliation(s)
- Bin Dong
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Geographical Science, Nanjing Normal University, Nanjing, P. R. China
- School of Resource and Environment, Linyi University, Linyi, P. R. China
| | - Ruiming Han
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Geographical Science, Nanjing Normal University, Nanjing, P. R. China
| | - Guoxiang Wang
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Geographical Science, Nanjing Normal University, Nanjing, P. R. China
- * E-mail:
| | - Xun Cao
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Geographical Science, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|