1
|
An R, Guo Y, Gao M, Wang J. Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response. J Vet Sci 2023; 24:e72. [PMID: 38031651 PMCID: PMC10556295 DOI: 10.4142/jvs.23103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. OBJECTIVE This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. METHODS Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. RESULTS Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. CONCLUSIONS GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.
Collapse
Affiliation(s)
- Ran An
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China
| | - Yongli Guo
- Department of Immunology, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin 150000, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Junwei Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| |
Collapse
|
2
|
Ramsay TG, Arfken AM, Summers KL. Enteroendocrine peptides, growth, and the microbiome during the porcine weaning transition. Anim Microbiome 2022; 4:56. [DOI: 10.1186/s42523-022-00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Growth rate in pigs can be affected by numerous factors that also affect feeding behavior and the microbiome. Recent studies report some communication between the microbiome and the enteroendocrine system. The present study examined if changes in the piglet microbiome between birth and during the weaning transition can be correlated either positively or negatively with growth rate and plasma concentrations of enteroendocrine peptides.
Results
During the post-weaning transition, a 49% reduction in average daily gain was observed at day 24 (P < 0.05) relative to day 21. Pigs recovered by day 28 with body weight and average daily gain increases of 17% and 175%, respectively relative to day 24 and the highest rate of gain was measured at day 35 (462 g/day). The time interval between day 21–24 had the highest number of correlations (n = 25) between the relative abundance differences in taxa over time and corresponding percent weight gain. Amplicon sequence variants with the greatest correlation with percent weight gain between day 21–24 belonged to families Prevotellaceae NK3B31 (ρ = 0.65, P < 0.001), Veillonellaceae (ρ = 0.63, P < 0.001) and Rikenellaceae RC9 (ρ = 0.62, P < 0.001). Seven taxa were positively correlated with percent weight gain between day 24–28. Eight taxa were positively correlated with percent weight gain between day 28–35, of which four were Clostridia. Only Lactobacillus reuteri was positively correlated across both day 24–28 and day 28–35 analyses. Insulin-like growth factor 1 (IGF-1; R2 = 0.61, P < 0.001), glucose-dependent insulinotropic polypeptide (GIP; R2 = 0.20, P < 0.001), glucagon-like peptide 1 (GLP-1; R2 = 0.51, P < 0.001), and glucagon-like peptide 2 (GLP-2; R2 = 0.21, P < 0.001) were significantly associated with the piglet fecal community NMDS, while serotonin showed no significant association (R2 = 0.03, P = 0.15). Higher concentrations of GLP-1 and GLP-2 characterized day 1 fecal communities, while GIP levels had the strongest relationship primarily with samples ordinated with the day 21 cluster.
Conclusions
Demonstration of an association of certain taxa with individual gut peptides at specific ages suggests the potential for the microbiome to elicit changes in the gut enteroendocrine system during early postnatal development in the pig.
Collapse
|
3
|
Gao J, Cao S, Xiao H, Hu S, Yao K, Huang K, Jiang Z, Wang L. Lactobacillus reuteri 1 Enhances Intestinal Epithelial Barrier Function and Alleviates the Inflammatory Response Induced by Enterotoxigenic Escherichia coli K88 via Suppressing the MLCK Signaling Pathway in IPEC-J2 Cells. Front Immunol 2022; 13:897395. [PMID: 35911699 PMCID: PMC9331657 DOI: 10.3389/fimmu.2022.897395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal epithelial barrier injury disrupts immune homeostasis and leads to many intestinal disorders. Lactobacillus reuteri (L. reuteri) strains can influence immune system development and intestinal function. However, the underlying mechanisms of L. reuteri LR1 that regulate inflammatory response and intestinal integrity are still unknown. The present study aimed to determine the effects of LR1 on the ETEC K88-induced intestinal epithelial injury on the inflammatory response, intestinal epithelial barrier function, and the MLCK signal pathway and its underlying mechanism. Here, we showed that the 1 × 109 cfu/ml LR1 treatment for 4 h dramatically decreased interleukin-8 (IL-8) and IL-6 expression. Then, the data indicated that the 1 × 108 cfu/ml ETEC K88 treatment for 4 h dramatically enhanced IL-8, IL-6, and tumor necrosis factor-α (TNF-α) expression. Furthermore, scanning electron microscope (SEM) data indicated that pretreatment with LR1 inhibited the ETEC K88 that adhered on IPEC-J2 and alleviated the scratch injury of IPEC J2 cells. Moreover, LR1 pretreatment significantly reversed the declined transepithelial electrical resistance (TER) and tight junction protein level, and enhanced the induction by ETEC K88 treatment. Additionally, LR1 pretreatment dramatically declined IL-8, IL-17A, IL-6, and TNF-α levels compared with the ETEC K88 group. Then, ETEC K88-treated IPEC-J2 cells had a higher level of myosin light-chain kinase (MLCK), higher MLC levels, and a lower Rho-associated kinase (ROCK) level than the control group, while LR1 pretreatment significantly declined the MLCK and MLC expression and enhanced ROCK level in the ETEC K88-challenged IPEC-J2 cells. Mechanistically, depletion of MLCK significantly declined MLC expression in IPEC-J2 challenged with ETEC K88 compared to the si NC+ETEC K88 group. On the other hand, the TER of the si MLCK+ETEC K88 group was higher and the FD4 flux in the si MLCK+ETEC K88 group was lower compared with the si NC+ETEC K88 group. In addition, depletion of MLCK significantly enhanced Claudin-1 level and declined IL-8 and TNF-α levels in IPEC-J2 pretreated with LR1 followed by challenging with ETEC K88. In conclusion, our work indicated that L. reuteri LR1 can decline inflammatory response and improve intestinal epithelial barrier function through suppressing the MLCK signal pathway in the ETEC K88-challenged IPEC-J2.
Collapse
Affiliation(s)
- Jingchun Gao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kang Yao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaiyong Huang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Li Wang,
| |
Collapse
|
4
|
Dempsey E, Corr SC. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front Immunol 2022; 13:840245. [PMID: 35464397 PMCID: PMC9019120 DOI: 10.3389/fimmu.2022.840245] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.
Collapse
Affiliation(s)
- Elaine Dempsey
- Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
The Probiotic Properties of Lactic Acid Bacteria and Their Applications in Animal Husbandry. Curr Microbiol 2021; 79:22. [PMID: 34905106 DOI: 10.1007/s00284-021-02722-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The intestinal tract of animals is a complex ecosystem in which nutrients, microbiota and host cells interact extensively. Probiotics can be considered as part of the natural microbiota of the gut and are involved in improving homeostasis. Lactic acid bacteria (LAB) is a general term for a class of non-spore forming, gram-positive bacteria whose main product of fermented sugar is lactic acid. LAB are considered to be a type of probiotic due to their health-promoting effects on the host, and are very effective in the treatment of human and animal diseases. LAB have been widely used as a class of microbial agents in the field of livestock and poultry breeding. They are also considered to be the best substitutes for antibiotics to improve animal health. Here, we review the biological functions, probiotic characteristics and applications of LAB in livestock and poultry breeding. This review is designed to provide a theoretical base for the in-depth exploration and promotion of LAB use in animal diets.
Collapse
|
6
|
Ping Z, Fan H, Wen C, Ji Z, Liang S. GAPDH siRNA Regulates SH-SY5Y Cell Apoptosis Induced by Exogenous α-Synuclein Protein. Neuroscience 2021; 469:91-102. [PMID: 34216695 DOI: 10.1016/j.neuroscience.2021.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/15/2022]
Abstract
The transport mechanism of intestinal α-synuclein to the central nervous system has become a new hot topic in Parkinson's disease (PD) research. It is worth noting that the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to be involved in the pathogenesis of PD. After silencing GAPDH expression by GAPDH siRNA, the normal human intestinal epithelial crypt-like (HIEC) and human SH-SY5Y neuroblastoma cell lines were co-cultured with Escherichia coli cells which were transfected with an α-synuclein overexpression plasmid. The levels of autophagy-related proteins (BECN1, ATG5, LC3A/B and p62) were determined by Western blot analysis. Changes in pro-apoptosis protein levels and flow cytometry analysis were used to assess cell apoptosis and relative intracellular ATP concentration was measured. Oxidative stress was assessed by measuring the levels of reactive oxygen species (ROS) using 2',7'-dichlorofluorescein diacetate (DCFH-DA), thiobarbituric acid-reactive substances (TBARS), and antioxidant capacity was assessed by measuring the glutathione (GSH) levels and superoxide dismutase (SOD) activity. The silencing of the expression of GAPDH pre-knockdown was found to reduce the intracellular levels of ROS and lipid peroxidation, enhance autophagy activity, thereby reducing the cell injury, apoptosis and necrosis induced by exogenous α-synuclein protein in SH-SY5Y cells. This study identifies a new therapeutic target of exogenous α-synuclein protein induced SH-SY5Y cell injury and improves our understanding of the pathophysiological role of GAPDH in vitro.
Collapse
Affiliation(s)
- Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hu Fan
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chai Wen
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhang Ji
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shao Liang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; The people's Hospital of Yu Du County, Jiangxi, China.
| |
Collapse
|
7
|
Wang J, Li Y, Pan L, Li J, Yu Y, Liu B, Zubair M, Wei Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation. Vet Res 2021; 52:80. [PMID: 34082810 PMCID: PMC8173509 DOI: 10.1186/s13567-021-00952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma hyorhinis infects pigs causing polyserositis and polyarthritis, and has also been reported in a variety of human tumor tissues. The occurrence of disease is often linked with the systemic invasion of the pathogen. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), one of the key enzymes of glycolysis, was reported as a surface multifunctional molecule in several bacteria. Here, we investigated whether GAPDH could manifest binary functions; as an adhesin to promote colonization as well as a plasminogen receptor functioning in extracellular matrix (ECM) degradation to promote systemic invasion. The surface localization of GAPDH was observed in M. hyorhinis with flow cytometry and colony blot analysis. Recombinant GAPDH (rGAPDH) was found to be able to bind porcine-derived PK-15 and human-derived NCI-H292 cells. The incubation with anti-GAPDH antibody significantly decreased the adherence of M. hyorhinis to both cell lines. To investigate its function in recruiting plasminogen, firstly, the interaction between rGAPDH and plasminogen was demonstrated by ELISA and Far-Western blot assay. The activation of the rGAPDH-bound plasminogen into plasmin was proved by using a chromogenic substrate, and furtherly confirmed to degrade extracellular matrix by using a reconstituted ECM. Finally, the ability of rGAPDH to bind different ECM components was demonstrated, including fibronectin, laminin, collagen type IV and vitronectin. Collectively, our data imply GAPDH as an important adhesion factor of M. hyrohinis and a receptor for hijacking host plasminogen to degrade ECM. The multifunction of GAPDH to bind both plasminogen and ECM components is believed to increase the targeting of proteolysis and facilitate the dissemination of M. hyorhinis.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Longji Pan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Muhammad Zubair
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
8
|
Deng Z, Dai T, Zhang W, Zhu J, Luo XM, Fu D, Liu J, Wang H. Glyceraldehyde-3-Phosphate Dehydrogenase Increases the Adhesion of Lactobacillus reuteri to Host Mucin to Enhance Probiotic Effects. Int J Mol Sci 2020; 21:E9756. [PMID: 33371288 PMCID: PMC7766874 DOI: 10.3390/ijms21249756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The ability to adhere to the intestinal mucus layer is an important property of probiotic bacteria. Lactobacillus reuteri strains ZJ615 and ZJ617 show low and high adhesion, respectively, to intestinal epithelial cells. In this study, we quantified bacterial cell wall-associated glyceraldehyde-3-phosphate dehydrogenases (cw-GAPDH) and bacterial cell membrane permeability in both strains using immunoblotting and flow cytometry, respectively. Highly adhesive L. reuteri ZJ617 possessed significantly more cw-GAPDH, higher cell membrane permeability, and significantly higher adhesive ability toward mucin compared with low-adhesive L. reuteri ZJ615. In vitro adhesion studies and analysis of interaction kinetics using the Octet, the system revealed significantly decreased interaction between L. reuteri and mucin when mucin was oxidized when bacterial surface proteins were removed when bacteria were heat-inactivated at 80 °C for 30 min, and when the interaction was blocked with an anti-GAPDH antibody. SWISS-MODEL analysis suggested intensive interactions between mucin glycans (GalNAcα1-O-Ser, GalNAcαSer, and Galβ3GalNAc) and GAPDH. Furthermore, in vivo studies revealed significantly higher numbers of bacteria adhering to the jejunum, ileum, and colon of piglets orally inoculated with L. reuteri ZJ617 compared with those inoculated with L. reuteri ZJ615; this led to a significantly decreased rate of diarrhea in piglets inoculated with L. reuteri ZJ617. In conclusion, there are strong correlations among the abundance of cw-GAPDH in L. reuteri, the ability of the bacterium to adhere to the host, and the health benefits of this probiotic.
Collapse
Affiliation(s)
- Zhaoxi Deng
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.D.); (T.D.); (W.Z.); (D.F.); (J.L.)
| | - Tian Dai
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.D.); (T.D.); (W.Z.); (D.F.); (J.L.)
| | - Wenming Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.D.); (T.D.); (W.Z.); (D.F.); (J.L.)
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China;
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Dongyan Fu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.D.); (T.D.); (W.Z.); (D.F.); (J.L.)
| | - Jianxin Liu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.D.); (T.D.); (W.Z.); (D.F.); (J.L.)
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.D.); (T.D.); (W.Z.); (D.F.); (J.L.)
| |
Collapse
|
9
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Dai F, Zhang W, Zhuang Q, Shao Y, Zhao X, Lv Z, Li C. Dihydrolipoamide dehydrogenase of Vibrio splendidus is involved in adhesion to Apostichopus japonicus. Virulence 2020; 10:839-848. [PMID: 31647357 PMCID: PMC6816312 DOI: 10.1080/21505594.2019.1682761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vibrio splendidus is one of the most opportunistic marine pathogens and infects many important marine animals, including the sea cucumber Apostichopus japonicus. In this study, two genes named DLD1 and DLD2, encoding dihydrolipoamide dehydrogenase (DLD) homologues in pathogenic V. splendidus, were cloned, and conditionally expressed in Escherichia coli BL21 (DE3). The enzymatic activities of DLD1 and DLD2 showed that they both belonged to the NADH oxidase family. Both DLD1 and DLD2 were located on the outer membrane of V. splendidus as detected by whole-cell ELISA. To study the adhesion function of DLD1 and DLD2, polyclonal antibodies were prepared, and antibody block assay was performed to detect the normal function of the two proteins. DLD1 and DLD2 were determined to play important roles in adhesion to different matrices and the adhesive ability of V. splendidus reduced more than 50% when DLD1 or DLD2 was defective.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Qiuting Zhuang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , PR China
| |
Collapse
|
11
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
12
|
Edlund A, Yang Y, Yooseph S, He X, Shi W, McLean JS. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. MICROBIOME 2018; 6:217. [PMID: 30522530 PMCID: PMC6284299 DOI: 10.1186/s40168-018-0591-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Dental plaque is composed of hundreds of bacterial taxonomic units and represents one of the most diverse and stable microbial ecosystems associated with the human body. Taxonomic composition and functional capacity of mature plaque is gradually shaped during several stages of community assembly via processes such as co-aggregation, competition for space and resources, and by bacterially produced reactive agents. Knowledge on the dynamics of assembly within complex communities is very limited and derives mainly from studies composed of a limited number of bacterial species. To fill current knowledge gaps, we applied parallel metagenomic and metatranscriptomic analyses during assembly and maturation of an in vitro oral biofilm. This model system has previously demonstrated remarkable reproducibility in taxonomic composition across replicate samples during maturation. RESULTS Time course analysis of the biofilm maturation was performed by parallel sampling every 2-3 h for 24 h for both DNA and RNA. Metagenomic analyses revealed that community taxonomy changed most dramatically between three and six hours of growth when pH dropped from 6.5 to 5.5. By applying comparative metatranscriptome analysis we could identify major shifts in overall community activities between six and nine hours of growth when pH dropped below 5.5, as 29,015 genes were significantly up- or down- expressed. Several of the differentially expressed genes showed unique activities for individual bacterial genomes and were associated with pyruvate and lactate metabolism, two-component signaling pathways, production of antibacterial molecules, iron sequestration, pH neutralization, protein hydrolysis, and surface attachment. Our analysis also revealed several mechanisms responsible for the niche expansion of the cariogenic pathogen Lactobacillus fermentum. CONCLUSION It is highly regarded that acidic conditions in dental plaque cause a net loss of enamel from teeth. Here, as pH drops below 5.5 pH to 4.7, we observe blooms of cariogenic lactobacilli, and a transition point of many bacterial gene expression activities within the community. To our knowledge, this represents the first study of the assembly and maturation of a complex oral bacterial biofilm community that addresses gene level functional responses over time.
Collapse
Affiliation(s)
- Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92137, USA.
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, 75, Jansang-ro 101beon-gil, Janghang-eup, Seocheon-gun, Chungcheongnam-do, 33662, Korea
| | - Shibu Yooseph
- Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL, 32816, USA
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Wang G, Zhang M, Zhao J, Xia Y, Lai PFH, Ai L. A Surface Protein From Lactobacillus plantarum Increases the Adhesion of Lactobacillus Strains to Human Epithelial Cells. Front Microbiol 2018; 9:2858. [PMID: 30524417 PMCID: PMC6261977 DOI: 10.3389/fmicb.2018.02858] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Adhesion to epithelial cells is considered important for Lactobacillus to exert probiotic effects. In this study, we found that trypsin treatment decreased the adhesion ability of Lactobacillus plantarum AR326 and AR269, which exhibit good adhesion ability, and surface proteins extracts increased the adhesion of the strains with poor adhesion ability. By SDS–polyacrylamide gel electrophoresis and mass spectrometry analysis, the main component of the surface proteins was detected and identified as a protein of approximately 37 kDa. It was 100% homologous with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from L. plantarum WCFS1. The adhesion of AR326 and AR269 was decreased significantly by blocking with the anti-GAPDH antibody, and GAPDH restored the adhesion of AR326 and AR269 treated with trypsin. In addition, purified GAPDH significantly increased the adhesion of the strains with poor adhesion ability. These results indicated that GAPDH mediates the adhesion of these highly adhesive lactobacilli to epithelial cells and can be used to improve the adhesion ability of probiotics or other bacteria of interest.
Collapse
Affiliation(s)
- Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Minghui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Phoency F-H Lai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Cho CS, Kang DK. Comparative exoproteome analyses of Lactobacillus spp. reveals species- and strain-specific proteins involved in their extracellular interaction and probiotic potential. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. Int J Biol Macromol 2018; 110:598-607. [DOI: 10.1016/j.ijbiomac.2017.10.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
|
16
|
Pajarillo EAB, Kim SH, Valeriano VD, Lee JY, Kang DK. Proteomic View of the Crosstalk between Lactobacillus mucosae and Intestinal Epithelial Cells in Co-culture Revealed by Q Exactive-Based Quantitative Proteomics. Front Microbiol 2017; 8:2459. [PMID: 29312173 PMCID: PMC5732961 DOI: 10.3389/fmicb.2017.02459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/27/2017] [Indexed: 01/28/2023] Open
Abstract
Lactobacilli are bacteria that are beneficial to host health, but information on communication between Lactobacilli and host cells in the intestine is lacking. In this study, we examined the proteomes of the Lactobacillus mucosae strain LM1, as a model of beneficial bacteria, and the intestinal porcine epithelial cell line (IPEC-J2) after co-culture. Label-free proteomics demonstrated the high-throughput capability of the technique, and robust characterization of the functional profiles and changes in the bacteria and intestinal cells was achieved in pure and mixed cultures. After co-culture, we identified totals of 376 and 653 differentially expressed proteins in the LM1 and IPEC-J2 proteomes, respectively. The major proteomic changes in the LM1 strain occurred in the functional categories of transcription, general function, and translation, whereas those in IPEC-J2 cells involved metabolic and cellular processes, and cellular component organization/biogenesis. Among them, elongation factor Tu, glyceraldehyde 3-phosphate dehydrogenase, and phosphocarrier protein HPr, which are known to be involved in bacterial adhesion, were upregulated in LM1. In contrast, proteins involved in tight junction assembly, actin organization, and genetic information processing (i.e., histones and signaling pathways) were significantly upregulated in IPEC-J2 cells. Furthermore, we identified functional pathways that are possibly involved in host–microbe crosstalk and response. These findings will provide novel insights into host–bacteria communication and the molecular mechanism of probiotic establishment in the intestine.
Collapse
Affiliation(s)
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | | | - Ji Yoon Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, South Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
17
|
Cui Y, Liu L, Dou X, Wang C, Zhang W, Gao K, Liu J, Wang H. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide. Oncotarget 2017; 8:77489-77499. [PMID: 29100403 PMCID: PMC5652795 DOI: 10.18632/oncotarget.20536] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
Live probiotics are effective in reducing gut permeability and inflammation. We have previously reported that Lactobacillus reuteri ZJ617 (ZJ617) with high adhesive and Lactobacillus rhamnosus GG (LGG) can ameliorate intestine inflammation induced by lipopolysaccharide (LPS). The present study was aimed at elucidating the roles of ZJ617 and LGG in alleviating the LPS-induced barrier dysfunction of ileum in mice. Six C57BL/6 mice per group were orally inoculated with ZJ617 or LGG for one week (1× 108 CFU/mouse) and intraperitoneally injected with LPS (10 mg/kg body weight) for 24 h. The results demonstrated that pretreatment with ZJ617 and LGG attenuated LPS-induced increase in intestinal permeability. The probiotics supplementation suppressed LPS-induced oxidative stress. Both ZJ617 and LGG strongly reversed the decline of occludin and claudin-3 expression induced by LPS challenge. ZJ617 relieved LPS-induced apoptosis by decreasing caspase-3 activity. Noticeably, ratio of microtubule-associated light chain 3 (LC3)-II/LC3-I and LC3 activity were elevated by LPS stimulation, whereas such increases were obviously attenuated by both of the probiotics treatment. Moreover, phosphorylated mammalian target of rapamycin (p-mTOR) was significantly inhibited by LPS, whereas complementation of ZJ617 and LGG markedly increased the expression of p-mTOR. Collectively, our results indicated that ZJ617 could protect LPS-induced intestinal barrier dysfunction via enhancing antioxidant activities and tight junction and attenuating apoptosis and autophagy via mTOR signaling pathway. These findings could serve as systematic mechanisms through which probiotics promote and maintain gut homeostasis.
Collapse
Affiliation(s)
- Yanjun Cui
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China.,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, P.R. China
| | - Li Liu
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Xiaoxiao Dou
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Chong Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Wenming Zhang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Kan Gao
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China
| | - Jianxin Liu
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, P.R. China
| | - Haifeng Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, P.R. China.,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, P.R. China
| |
Collapse
|
18
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
19
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|