1
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
2
|
Li L, Huang H, Jin Z, Jiang K, Zeng Y, Pathier D, Cheng X, Shen W. Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1723. [PMID: 38999563 PMCID: PMC11243525 DOI: 10.3390/plants13131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Molecular hydrogen (H2) is crucial for agricultural microbial systems. However, the mechanisms underlying its influence on crop yields is yet to be fully elucidated. This study observed that H2-based irrigation significantly increased strawberry (Fragaria × ananassa Duch.) yield with/without nutrient fertilization. The reduction in soil available nitrogen (N), phosphorus (P), potassium (K), and organic matter was consistent with the increased expression levels of N/P/K-absorption-related genes in root tissues at the fruiting stage. Metagenomics profiling showed the alterations in rhizosphere microbial community composition achieved by H2, particularly under the conditions without fertilizers. These included the enrichment of plant-growth-promoting rhizobacteria, such as Burkholderia, Pseudomonas, and Cupriavidus genera. Rhizobacteria with the capability to oxidize H2 (group 2a [NiFe] hydrogenase) were also enriched. Consistently, genes related to soil carbon (C) fixation (i.e., rbcL, porD, frdAB, etc.), dissimilar nitrate reduction (i.e., napAB and nrfAH), and P solublization, mineralization, and transportation (i.e., ppx-gppA, appA, and ugpABCE) exhibited higher abundance. Contrary tendencies were observed in the soil C degradation and N denitrification genes. Together, these results clearly indicate that microbe-mediated soil C, N, and P cycles might be functionally altered by H2, thus increasing plant nutrient uptake capacity and horticultural crop yield.
Collapse
Affiliation(s)
- Longna Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Huize Huang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Zhiwei Jin
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Ke Jiang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| | - Yan Zeng
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (D.P.); (X.C.)
| | - Didier Pathier
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (D.P.); (X.C.)
| | - Xu Cheng
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (D.P.); (X.C.)
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (L.L.); (H.H.); (Z.J.); (K.J.)
| |
Collapse
|
3
|
Ge Y, Wen Z, He L, Sheng X. Metal-immobilizing Pseudomonas taiwanensis WRS8 reduces heavy metal accumulation in Coriandrum sativum by changing the metal immobilization-related bacterial population abundances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27967-2. [PMID: 37247148 DOI: 10.1007/s11356-023-27967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Metal-immobilizing bacteria play a critical role in metal accumulation in vegetables. However, little is known concerning the mechanisms involved in bacteria-induced reduced metal availability and uptake in vegetables. In this study, the impacts of metal-immobilizing Pseudomonas taiwanensis WRS8 on the plant biomass, Cd and Pb availability and uptake in two coriander (Coriandrum sativum L.) cultivars, and bacterial community structure were investigated in the polluted soil. Strain WRS8 increased the biomass of two coriander cultivars by 25-48% and reduced Cd and Pb contents in the edible tissues by 40-59% and available Cd and Pb contents in the rhizosphere soils by 11.1-15.2%, compared with the controls. Strain WRS8 significantly increased the pH values and relative abundances of the dominant populations of Sphingomonas, Pseudomonas, Gaiellales, Streptomyces, Frankiales, Bradyrhizobium, and Luteimonas, while strain WRS8 significantly decreased the relative abundances of the dominant populations of Gemmatimonadaceae, Nitrospira, Haliangium, Paenibacillus, Massilia, Bryobacter, and Rokubacteriales and the rare bacterial populations of Enterorhabdus, Roseburia, Luteibacter, and Planifilum in the rhizosphere soils, compared with the controls. Significantly negative correlations were observed between the available metal concentrations and the abundances of Pseudomonas, Luteimonas, Frankiales, and Planifilum. These results implied that strain WRS8 could affect the abundances of the dominant and rare bacterial populations involved in metal immobilization, resulting in increased pH values and decreased metal availability and uptake in the vegetables in the contaminated soil.
Collapse
Affiliation(s)
- Yanyan Ge
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhenyu Wen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
4
|
Thanwisai L, Kim Tran HT, Siripornadulsil W, Siripornadulsil S. A cadmium-tolerant endophytic bacterium reduces oxidative stress and Cd uptake in KDML105 rice seedlings by inducing glutathione reductase-related activity and increasing the proline content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:72-86. [PMID: 36208600 DOI: 10.1016/j.plaphy.2022.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The effect of the endophytic Cupriavidus taiwanensis KKU2500-3 on the Cd toxicity of KDML105 rice seedlings was investigated in a 10 μM CdCl2 hydroponic system. As demonstrated after bacterial inoculation of germinating rice seeds, KKU2500-3 colonized all rice plant parts. In RB (Rice + KKU2500-3) and RBC (Rice + KKU2500-3+Cd), KKU2500-3 effectively colonized and was detected at a markedly higher number in the root surface and interior than in shoots and leaves. The activities of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) and the proline content in inoculated rice were higher in roots and aboveground tissues. RBC exhibited a higher reduced-to-oxidized glutathione ratio in roots and leaves (3-55%) but a lower malondialdehyde content (8-78%). Phytochelatins (PCs) were detected in all rice tissues, but their levels in RBC were 13-70% lower than those in RC (Rice + Cd), demonstrating that the induction of PCs in rice was unrelated to KKU2500-3. The Cd levels in roots and shoots were lower in RBC than RC, and the root-to-shoot Cd translocation factor was 0.6-62.2% lower. At 30 DAT, the Cd levels in RBC roots and shoots were 30.2% and 73.7% lower, respectively, than those in RC. Colonized KKU2500-3 activated GR and increased the proline content to overcome rice Cd toxicity. These effects may trap Cd in plant cells and reduce its translocation. Hence, KKU2500-3 synergistically interacts with rice to detoxify Cd at early growth stages, and KDML105 rice grains with low Cd accumulation could be produced if this interaction is maintained until late growth stages.
Collapse
Affiliation(s)
- Lalita Thanwisai
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hong Thi Kim Tran
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
5
|
Mao Y, Tan H, Wang M, Jiang T, Wei H, Xu W, Jiang Q, Bao H, Ding Y, Wang F, Zhu C. Research Progress of Soil Microorganisms in Response to Heavy Metals in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8513-8522. [PMID: 35816106 DOI: 10.1021/acs.jafc.2c01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil heavy-metal pollution leads to excessive heavy metals in rice and other food crops, which has caused serious impacts on the ecological environment and on human health. In recent years, environmental friendly treatment methods that reduce the bioavailability of heavy metals in soil by soil microorganisms improving the tolerance of heavy metals in rice and reducing the transfer of heavy metals from the roots to the above-ground parts of rice have attracted much attention. This paper reviews the role and mechanism of soil microorganisms in alleviating heavy-metal stress in rice at home and abroad in recent years. At present, microorganisms tolerant to heavy metals mainly include bacteria and fungi, and their mechanisms include the adsorption of heavy metals by microorganisms, the secretion of growth-promoting substances (growth hormone, ACC deaminase, IAA), changing the physical and chemical properties of the soil and the composition of the microbial community, changing the transport mode of heavy metals in soil, the improvement of the antioxidant capacity of rice, etc. Hence, soil microorganisms have good application value and prospects in rice and other crops. However, the vast majority of current research focuses on a single strain, the screening principles of strains are limited, the pathogenicities of the strains have not been evaluated, and there are still few field experiments under natural conditions. In the future, we should strengthen the action of soil microorganisms on rice in response to the above problems in heavy metals, to better promote the microbial remediation technology.
Collapse
Affiliation(s)
- Yangbin Mao
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Haifeng Tan
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Maomao Wang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Tianheng Jiang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hewen Wei
- Jinhua Institute of Food and Drug Inspection and Testing, Jinhua 321000, China
| | - Wenping Xu
- Armed Police Sergeant School, Hangzhou 310018, China
| | - Qiong Jiang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Yanfei Ding
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Feijuan Wang
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University/Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
6
|
Bravo D, Braissant O. Cadmium-tolerant bacteria: current trends and applications in agriculture. Lett Appl Microbiol 2022; 74:311-333. [PMID: 34714944 PMCID: PMC9299123 DOI: 10.1111/lam.13594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is considered a toxic heavy metal; nevertheless, its toxicity fluctuates for different organisms. Cadmium-tolerant bacteria (CdtB) are diverse and non-phylogenetically related. Because of their ecological importance these bacteria become particularly relevant when pollution occurs and where human health is impacted. The aim of this review is to show the significance, culturable diversity, metabolic detoxification mechanisms of CdtB and their current uses in several bioremediation processes applied to agricultural soils. Further discussion addressed the technological devices and the possible advantages of genetically modified CdtB for diagnostic purposes in the future.
Collapse
Affiliation(s)
- D. Bravo
- Laboratory of Soil Microbiology & CalorimetryCorporación Colombiana de Investigación Agropecuaria AGROSAVIAMosqueraColombia
| | - O. Braissant
- Department of Biomedical EngineeringFaculty of MedicineUniversity of BaselAllschwillSwitzerland
| |
Collapse
|
7
|
Zhou X, Liu X, Zhao J, Guan F, Yao D, Wu N, Tian J. The endophytic bacterium Bacillus koreensis 181-22 promotes rice growth and alleviates cadmium stress under cadmium exposure. Appl Microbiol Biotechnol 2021; 105:8517-8529. [PMID: 34609525 DOI: 10.1007/s00253-021-11613-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022]
Abstract
Recently, cadmium (Cd) contamination in paddy soils has become a highly concerning pollution problem. Endophytic microbes in rice not only affect the plant growth but also contribute to ion absorption by the roots. Therefore, they are a promising, ecologically sound means of reducing the Cd transport from soils to shoots and grains of the plant. In this study, a Cd-resistant endophytic bacterium, named 181-22, with high Cd absorption capacity (90.8%) was isolated from the roots of rice planting in heavily Cd-contaminated paddy soils and was identified as Bacillus koreensis CGMCC 19,468. The strain significantly increased fresh weight of roots and shoots (44.4% and 42.7%) and dry weight of roots and shoots (71.3% and 39.9%) and decreased Cd content in the rice roots (12.8%), shoots (34.3%), and grains (39.1%) under Cd stress compared to uninoculated plant by colonizing rice roots via seed inoculation. Moreover, colonization of 181-22 reprogrammed rice physiology to alleviate Cd stress by increasing pigment and total protein content, regulating Cd-induced oxidative stress enzymes such as superoxide dismutase and catalase and reducing malondialdehyde. Thus, B. koreensis 181-22 has the potential to protect rice against Cd stress and can be used as a biofertilizer to bioremediate paddy soils contaminated with Cd. KEY POINTS: • Bacillus koreensis 181-22 colonized the inside of rice roots at high numbers via seed inoculation. • B. koreensis 181-22 promoted rice growth and decreased Cd accumulation in grains. • B. koreensis 181-22 regulated the physiological response to alleviated Cd stress in rice.
Collapse
Affiliation(s)
- Xin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jintong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongsheng Yao
- Institute of Microbial Biotechnology, Guangdong Province, Jinan University, Guangzhou City, 510632, China
- National Engineering Research Center of Genetic Medicine, Guangdong Province, Guangzhou City, 510632, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Cheng C, Wang R, Sun L, He L, Sheng X. Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513). CHEMOSPHERE 2021; 275:130109. [PMID: 33677267 DOI: 10.1016/j.chemosphere.2021.130109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
In this study, an cadmium (Cd)-immobilizing and arginine decarboxylase-producing endophytic Sphingomonas sp. strain C40 obtained from the seeds of Oryza sativa Cliangyou 513 was characterized for its Cd availability and Cd uptake in host rice using hydroponic and soil experiments. The Cd concentration decreased by 51-95% compared to the control, while the spermidine concentration increased by 19-25% with Cd compared with no Cd in the strain C40-inoculated solution. Strain C40 decreased the above-ground tissue Cd content by 27-37% and increased spermine and spermidine contents by 28-67% and the expression levels of genes involved in spermine and spermidine production by 29-217% in rice roots compared to the controls. Furthermore, correlation analyses showed the significantly negative correlation between rice root spermine and spermidine contents and above-ground tissue Cd content. In the Cd-added soil, strain C40 promoted the rice biomass by 29-36% and decreased rice root, above-ground tissue, and grain Cd contents by 18, 16, and 33% and total grain Cd uptake by 14% compared with the controls at the maturity stage. Strain C40 decreased the exchangeable Cd content by 27% and increased the Fe and Mn oxides-bound Cd content by 45% in the rice rhizosphere soils at the maturity stage compared with the controls. These results suggested that the endophytic bacterial strain C40 increased rice root polyamine production and their related gene expression and the transformation of available Cd to unavailable Cd, leading to reduced Cd accumulation and translocation from the rice roots to grains.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China
| | - Ru Wang
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China
| | - Lijing Sun
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Wang C, Huang Y, Yang X, Xue W, Zhang X, Zhang Y, Pang J, Liu Y, Liu Z. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. CHEMOSPHERE 2020; 252:126603. [PMID: 32240860 DOI: 10.1016/j.chemosphere.2020.126603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Microbial remediation of heavy metal-polluted soil is a commonly used method. Burkholderia sp. Y4, isolated from cadmium (Cd)-contaminated rice rhizosphere soil, was investigated for its direct and indirect effects on Cd accumulation in rice by SEM-EDS, FITR and sequencing analysis of the soil bacterial community. Burkholderia sp. Y4 inoculation reduced Cd accumulation in rice roots, rachises, and grains of the two rice varieties T705 and X24 and increased levels of essential elements, especially Fe and Mn, which competitively inhibited Cd transport through cationic channels. Living Burkholderia sp. Y4 cells, rather than non-living ones, could colonize the surface of rice roots and accumulated more Cd through direct biosorption associated with -CO and -NH/-CO bonds of amino acids and proteins. The results of soil microbial community showed that the colonization of externally added Burkholderia sp. Y4 could be maintained over some time to impact the total rhizospheric environment. Burkholderia sp. Y4 inoculation decreased the abundance of microbes involved in the iron cycle (Acidobacteria) as well as of those mediating the transformation of ammonium nitrogen to nitrate nitrogen (Nitrosomonadaceae and Nitrospira). So Burkholderia sp. Y4 inoculation may indirectly change the availability of micronutrients and Cd in rice rhizosphere soil through iron-nitrogen coupled cycles to increase essential nutrient uptake and inhibit Cd accumulation in rice by preferential Cd-biosorption. Therefore, Burkholderia sp. Y4 is potentially suitable for the bioremediation of Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xiaorong Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Weijie Xue
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yahui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Jie Pang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Yuemin Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| |
Collapse
|
10
|
Shan S, Guo Z, Lei P, Li Y, Wang Y, Zhang M, Cheng W, Wu S, Wu M, Du D. Increased biomass and reduced tissue cadmium accumulation in rice via indigenous Citrobacter sp. XT1-2-2 and its mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135224. [PMID: 31796275 DOI: 10.1016/j.scitotenv.2019.135224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Microbial remediation is a promising technique to remediate heavy metals contaminated soils. In this study, the cadmium (Cd)- resistant Citrobacter sp. XT1-2-2, isolated from heavy metals contaminated paddy soils, was investigated to evaluate the effect of this strain on soil Cd speciation, cellular Cd distribution, tissue Cd accumulation and rice biomass. The percentage of Cd2+ removal by Citrobacter sp. XT1-2-2 was up to 82.3 ± 2.1% within 240 min in the solution. The average content of soil soluble plus exchangeable and carbonate-bound fractions of Cd decreased, whereas Fe/Mn oxide-bound, organic matter-bound and residual fractions increased with bacteria inoculation. For the paddy soil inoculated with the XT1-2-2 strain, Cd concentrations of roots, culms, leaves and grains were significantly reduced by 24.1%, 46.9%, 41.5% and 66.7%, respectively. In addition, inoculation bacteria significantly increased the biomass of the roots, above-ground tissues and the rice grains. All results indicated that the XT1-2-2 strain had the ability to immobilize soil Cd and decrease Cd accumulation in rice grains. Therefore, the XT1-2-2 strain has potential for application to remediate Cd-contaminated paddy soils. It is possible to exploit a new bacterial-assisted technique for the remediation in Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Shiping Shan
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China; Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, Hunan 410083, China
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China; Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, Hunan 410083, China.
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Yilu Li
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Yushuang Wang
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Min Zhang
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Wei Cheng
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China; Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, Hunan 410083, China
| | - Shandong Wu
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Minxi Wu
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Dongxia Du
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China.
| |
Collapse
|
11
|
Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103265. [PMID: 31563731 DOI: 10.1016/j.etap.2019.103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Rice farmland cadmium pollution is an increasing problem for food safety. Cd-resistant bacterial strain was isolated from rice rhizosphere soil and identified as Bacillus cereus M4. Treatment with M4 fermentation broth increased rice seedlings growth in vermiculite, while reduced Cd accumulation in grains of rice grown in Cd-contaminated potted soil from 0.309 to 0.186 mg/kg. Indoleacetic acid (IAA) was detected in M4 metabolites and in potted soil solutions supplemented with M4 broth. M4 broth increased the abundance of Bacillus from 0.54% to 0.95% and changed the soil bacterial community composition. These findings indicate that M4 promotes rice growth by secreting IAA and altering the rhizospheric soil microenvironment, via soil solution composition and microbial community, which may affect Cd translocation from soil to rice roots, thereby decreasing grain Cd accumulation. Therefore, B. cereus M4 is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaohan Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhouyue Hu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|
12
|
Liu Y, Tie B, Li Y, Lei M, Wei X, Liu X, Du H. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:223-229. [PMID: 30055387 DOI: 10.1016/j.ecoenv.2018.07.081] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Bioremediation of heavy metal polluted soil using metal-resistant bacteria has received increasing attentions. In the present study, we isolated a heavy metal-resistant bacterial strain from a Cd-contaminated soil, and conducted pot experiments to evaluate the effect of bacterial inoculation in soil on soil Cd speciation, rice grain biomass and Cd accumulation. We find that the isolated bacterial strain is a Gram-negative bacterium, and named as Delftia sp. B9 based on the 16S rDNA gene sequence analysis. TEM-EDS manifests that Cd can be bioaccumulated inside cell, resulting in intracellular dissolution. The Cd contents of rice grain in the two rice cultivars (early and late rice) are all below the standard limit for Food Safety of People's Republic of China (0.2 mg/kg) after the treatment of both living and non-living cells. Non-living cells are more applicable than the use of living cells for the short time bioremediation. The average content of soil exchangeable fraction of Cd decreases whereas the residual fraction increases with bacterial inoculation. All our results suggest Delftia sp. B9 is able to the stabilization of Cd in soil and reduce Cd accumulation in rice grain, therefore, this strain is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Yuling Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China.
| | - Yuanxinglu Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Xiangdong Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Xiaoli Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China.
| |
Collapse
|